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Purpose of Derivation 

•  Shock waves cause flow variables to change 

discontinuously. 

•  Curvature/Acceleration of a shockwave, non-uniform 

free stream conditions, and reaction rates cause 

downstream variables to be non-uniform. 

•  Purpose:  Use the behaviors and gradients of flow 

variables at a shock to determine the field of a flow 

variable in a region downstream of the shock. 



Coordinate System 

β = Shock Angle 

δ = Deflection Angle 

α = Angle between flow direction (streamline) and feature direction (e.g. 

entropy contour)  



Thermodynamic Properties 
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Assume h and T obey caloric and thermal equations of state: 

Where p is the pressure, ρ is the density, and ci is the mass fraction where 

This allows us to derive the change in enthalpy: 



Equations of Motion 
Assumptions: 
1.  Steady Flow 
2.  Uniform Flow in Free Stream 
3.  All w and z derivatives are zero (except wz) 
4.  Interested in area at shock wave (y = 0) 
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uux + vuy − kuv + px /ρ = 0

uvx + vvy + ku2 + py /ρ = 0
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hp + hρρy + hci ciy
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∑ + vvy + uuy = 0

hp px + hρρx + uux + vvx = 0
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(ρu)x − (k − l)ρv + ρlsinβ + (ρv)y = 0
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Form of Navier 
Stokes 

Conservation of 
Energy 

Conservation of 
Momentum 



Shock Jump Relations 
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p − p∞ = sin2 β(1−1/ρ)
ci = ci∞
v = sinβ /ρ
2(h − h∞) = sin2 β(1−1/ρ2)
u = cosβ

ρ =
γ +1

γ −1+ 2 /(M 2 sin2 β)

γ = ratio of Specific Heats (γ = 1.4) 

M = Mach Number (M = 6) 

•  “Boundary” conditions for the 

equations of motion. 

•  Interesting note:  The shock jump 

relations take place before any 

reaction occurs, therefore no 

changes in mass fractions. 



Simplified Differential 
Equations 

€ 

py = A(p )(M,γ,β)r + B(p )(M,γ,β)l + C(p )(M,γ,β)k
uy = C(u)(M,γ,β)k
vy = A(v )(M,γ,β)r + B(v )(M,γ,β)l + C(v )(M,γ,β)k
ρy = A(ρ )(M,γ,β)r + B(ρ )(M,γ,β)l + C(ρ )(M,γ,β)k

l = Transverse Shock Curvature 

k = Flow-Plane Shock Curvature 
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dci
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Reaction Model 

•  Based on dissociating molecules in a hypersonic 
flow 
•  Can be either endothermic or exothermic 
• Model of Arrhenius Form: 

where θ is the dissociation energy (θ = 0.95), and 
ε is a rate constant (treated as a parameter). 

€ 

r =
θ
ε
exp(−θρ / p)



Density Field 

•  At small shock angles, β, the contour angle is approximately 180°. 

•  As β increases, suddenly the contour angle changes to 0°. 

•  In the small range where ϕ changes rapidly, there is a saddle point. 

•  As dissociation rate increases, the “switch” angle decreases greatly. 

Plane Flow Axisymmetric Flow 

High Dissociation Rate Frozen Flow 



Pressure Field 

High Dissociation Rate Frozen Flow 

Plane Flow Axisymmetric Flow 

•  Similar to density, there is a saddle point at the shock. 

•  Much less abrupt though 

•  Less sensitive to the reaction rate. 

•  For exothermic reaction, almost no change in pressure contour angle. 



Entropy Field 

High Dissociation Rate Frozen Flow 

Contour vs. Free Stream Direction Contour vs. Streamline Direction 

•  The entropy increases in flow direction along a streamline. 

•  Endothermic and Exothermic have same effect on contours. 

•  Near stagnation point, entropy contour is normal to streamline, but always 

asymptotically approaches streamline as flows reach equilibrium. 



Questions? 


