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1. In many places “non-linear” appears that should be recast as “nonlinear.”
This is found on pages 248, 559, 559, 566, 566, 566.

2. p. 98: Sec. 2.6.3: In the analysis of Eqs. (2.346-2.348), several factors of
1/2 are missing; e.g. dx1 should be replaced by (dx1)/2 in Eq. (2.346).

3. p. 89, 91, 112, 113: We would be better to employ an opposite sign
convention for torsion τ . This is more common in the literature. For
example, the Frenet-Serret equations, Eqs. (2.259-2.261), p. 89, are better
stated with the more common sign convection as

dt

ds
= κn,

dn

ds
= −κt+ τb,

db

ds
= −τn.

4. p. 98: Note: some sources define

div T = ∇ ·TT =
∂Tji

∂xi
.

As long as the analysis is internally consistent, as it is here, it is correct.

5. p. 111: Problem 4g is a repeat of Problem 1.

6. p. 113: Problem 22–The first equation in the problem may need to be

tT · d
2t

ds2
× dt

ds
= κ2τ

This would change if we change the sign convention for τ .

7. p. 113: Problem 30 should have corners at (0, 0, 0), (0, 1, 0), (1, 1, 0), and
(1, 0, 0).

8. p. 113: Problem 30 should have “For f(x, y, z) =....”

9. p. 114: Problem 38 should read ”...one finds that the three principal...”
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10. p. 114: Problem 38 should have qi = −kij∂T/∂xj ....

11. p. 123-124: Much of the text from Eq. (3.55) to Eq. (3.65) is better
replaced by the following, removing the need for F :

The general first-order linear equation

dy(x)

dx
+ P (x)y(x) = Q(x),

with

y(x0) = y0,

can be solved using the integrating factor e
∫

x

x0
P (s) ds

. Multiply by the
integrating factor and proceed:

(

e
∫

x

x0
P (s) ds

) dy(x)

dx
+
(

e
∫

x

x0
P (s) ds

)

P (x) y(x) =
(

e
∫

x

x0
P (s) ds

)

Q(x).

Now use the product rule to combine terms on the left side:

d

dx

(

e
∫

x

x0
P (s) ds

y(x)
)

=
(

e
∫

x

x0
P (s) ds

)

Q(x).

Next replace x by t

d

dt

(

e
∫

t

x0
P (s) ds

y(t)
)

=
(

e
∫

t

x0
P (s) ds

)

Q(t),

Now apply the operator
∫ x

x0

(·) dt to both sides:

∫ x

x0

d

dt

(

e
∫

t

x0
P (s) ds

y(t)
)

dt =

∫ x

x0

(

e
∫

t

x0
P (s) ds

)

Q(t) dt,

e
∫

x

x0
P (s) ds

y(x)− e
∫

x0

x0
P (s) ds

y(x0) =

∫ x

x0

(

e
∫

t

x0
P (s) ds

)

Q(t) dt,

e
∫

x

x0
P (s) ds

y(x)− y(x0) =

∫ x

x0

(

e
∫

t

x0
P (s) ds

)

Q(t) dt,

which yields an exact solution for y(x) in terms of arbitrary P (x), Q(x),
x0, and y0:

y(x) = e
−

∫
x

x0
P (s) ds

(

y0 +

∫ x

x0

(

e
∫

t

x0
P (s) ds

)

Q(t) dt

)

.

12. p. 124: Example 3.7 should be modified slightly. Replace a by x0 = 0 in
Eq. (3.69) and (3.70). Remove Eq. (3.72). Remove x0 in Eq. (3.77).
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Figure 1: Modified Fig. 3.10. y(x) which solves y′ = exp(−3x)/x − y/x +
3 exp(3x).

13. p. 128: Figure 3.10 has a few incorrect labels for C in the first quadrant.
The solution for various values of C is plotted in Fig. 3.10. Also insert the
text

“Solving for C, we get

C = − x

e3x − y
− e−3x

3
.

There is a singularity when y = e3x.”

14. p. 145: Problem 29: The problem is better stated as “...are possible when
b = 2.2617, and find the corresponding frequency.”

15. p. 156: Eq. (4.102) has a small error. The argument of the second term
should be −i

√
14 lnx. So we should have

y(x) =
1

x

(

C1(exp(lnx))
i
√
14 + C2(exp(lnx))

−i
√
14
)

,

=
1

x

(

C1 exp(i
√
14 lnx) + C2 exp(−i

√
14 lnx)

)

,

=
1

x

(

Ĉ1 cos(
√
14 lnx) + Ĉ2 sin(

√
14 lnx)

)

.

16. p.181: The sentence after Eq. (4.380)
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“One can also show the Legendre functions of the second kind, Qn(x),
satisfy a similar orthogonality condition.”

is better stated as

“The orthogonality condition for the Legendre functions of the second
kind, Qn(x), is not straightforward.”

A similar comment can be made for the Hermite and Laguerre polyno-
mials, Ĥn(x), L̂n(x), as well as the Bessel functions of the second kind
Yν(µx).

17. p. 184: An additional sentence of clarification should appear at the bottom
of the page:

“Some sources define the complementary functions differently, taking them
to be Un(x) = Vn+1(x)/

√
1− x2. The difference is not substantive.”

18. p. 214: Problem 29: We should have

P (u, v) =

n
∑

k=1

k
∑

j=1

(−1)j−1 d
k−ju

dxk−j

dj−1

dxj−1
(an−kv).

19. p. 216: Problem 4.52, should read “...to being connected as well as iden-
tical to mass 1...” and “. . . of the two masses and the potential energy of
the three springs.”

20. p. 217: Problem 4.53 needs an additional factor of “2” in the error func-
tion, so as to be consistent with the correct Eq. (A.103) on p. 594.

21. p. 230: Fig. 5.5’s caption should be dy/dx = −√
xy

22. p. 236: The second term in Eq. (5.146) should be

2k

(

1 + x+
1

4
x2 + ...

)

instead of

2k

(

1 + x+
1

2
x2 + ...

)

23. p. 237. It would be useful to add the following text and figure at the end
of Example 5.10:

“Detailed calculation reveals that y1 and y2 can be expressed as

y1(x) =
√
xI1(2

√
x),

y2(x) = (1 − 2γ)
√
xI1(2

√
x) + 2

√
xK1(2

√
x).

Here γ is known as Euler’s constant. It is given by

γ = lim
n→∞

(

− lnn+
n
∑

m=1

1

m

)

= 0.5772156649...
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Figure 2: Exact and five term series solutions of xy′′ − y = 0 with y(0) = 0,
y′(0) = 1.

It has not been proved to be irrational.

If y(0) = 0, y′(0) = 1, the solution is

y =
√
xI1

(

2
√
x
)

.

The Taylor series representation of the solution is

y = x+
1

2
x2 +

1

12
x3 +

1

144
x4 +

1

2880
x5 + . . . .

Clearly the Taylor series representation is Eq. (5.151) with C1 = 1, and
C2 = 0. The exact and five term series solutions are plotted in Fig. 2.
For x < 0, the exact equation predicts a locally oscillatory solution. The
wavelength of the oscillation increases as x → −∞. For x > 0, the exact
equation predicts a locally exponential solution. The series solution is
accurate only for a limited range, x ∈ [−4, 10].”

24. p. 238: Just after Eq. (5.159), replace the phrase “..and the linear ap-
proximation to the exact solution...” with “...and a two-term series ap-
proximation to the exact solution...”

25. p. 239: Eq. (5.179) should be

y = x+
x2

2
+

x4

12
+ ....

26. p. 257: Eq. (5.319) should have

y(x) = y0(x) + ǫy1(x) + ǫ2y2(x)....

27. p. 269: Just before Eq. (5.429) we should find ξ2 + η2 = r2 instead of
x2 + y2 = r2.
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Figure 3: Circle of diameter 6 and circumference 24 in an ℓ1(R
2) Banach space.

28. p. 272: Problem 15 is identical to Example 5.11.

29. p. 276: Problem 55 repeats Problem 50.

30. p. 277: Problem 57 repeats Problem 18.

31. p. 292: The following example would be a useful addition.

For x ∈ ℓ1(R
2) find the numerical value of π, defined as the ratio of the

circumference to the diameter of a circle in this space.

For ℓ1(R
2), we give a sketch of a circle of diameter 6 in Fig. 3. In this

space our mathematical taxicab, depicted at the origin O : (0, 0), can only
move horizontally or vertically. Its distance to either points A, B, C, or D
is 3 units. And combinations of horizontal and vertical motions that sum
to 3 units can also take the taxicab to anywhere on line segments AB,
BC, CD, or DA. So each point on ABCD is three units from the origin.
This represents a circle of radius 3. Thus, its diameter D is 6. Now in a
Euclidean space we would have |AB| =

√
32 + 32 = 3

√
2 = 4.243. But one

literally cannot cut corners in ℓ1(R
2). So to drive from A to B requires

traversing a series of horizontal and vertical segments, and their distances
add to 6. So each side of ABCD has length 6, giving the circumference C
of this circle as 4(6) = 24. Thus our estimate for π in this space is

πℓ1(R2) =
C
D =

24

6
= 4.

More formally, we can say in this space the distance d from any point
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P : (x1, x2) to the origin is

d = |OP | = |x1|+ |x2|.

Thus for us |OA| = |OB| = |OC| = |OD| = 3, the radius of the circle.

And the distance from a point P (1) : (x
(1)
1 , x

(1)
2 ) to P (2) : (x

(2)
1 , x

(2)
2 ) is

d = |P (1)P (2)| = |x(1)
1 − x

(2)
1 |+ |x(1)

2 − x
(2)
2 |.

So |AB| is

|AB| = |3− 0|+ |0− 3| = 6.

If |OA| = a, |OB| = b, and |AB| = c, we have an analog to the Pythagorean
theorem for the triangle OAB:

c = a+ b.

If we were in a Euclidian space, ℓ2(R
2), we would have the traditional

c2 = a2 + b2.

32. p. 296: The equation appearing just before Eq. (6.92) should receive a
number.

33. p. 302: In Example 6.19, ||x||2 = 3.873 not 3.870.

34. p. 311: In Fig. 6.9, need more space in needed in the term “−0.23 sin4t.”

35. p. 316: Eq. (6.239) needs an approximate equals sign rather than an
equals sign. So we should find

t2 ≈
N
∑

n=1

αnϕn.

36. p. 319. Eqs. (6.264, 6.265) each have the same small error. The associated
figures are correct. We should find

“Taking this into account and retaining only the necessary basis functions,
we can write the Fourier sine series as

x(t) = t(1− t) ∼ xp(t) =

N
∑

m=1

8

(2m− 1)3π3
sin(2m− 1)πt.

The norm of the error is then

||x(t) − xp(t)||2 =

√

√

√

√

∫ 1

0

(

t(1− t)−
(

N
∑

m=1

8

(2m− 1)3π3
sin(2m− 1)πt

))2

dt.

”
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37. p. 327: Eq. (6.335) has a · between the matrix and the vector and should
not. We should find

(

ξ1

ξ2

)

=

(

2 1
0 3

)(

x1

x2

)

.

38. p. 335: Eq. (6.401) has an extra comma that should be removed in a21,

39. p. 349: Within Example 6.53, the analysis of Eq. (6.563) and below
should be restructured to be consistent with the definition of the adjoint
in Eq. (6.386): 〈Lx, y〉 = 〈x,L∗y〉. So very small changes are useful in
Eqs. (6.563-6.566). The results are not changed in any substantive way.
Thus, the text is better as

“Now, because by definition 〈Lxn, ym〉 = 〈xn,L
∗ym〉, we have

〈Lxn, ym〉 − 〈xn,L
∗ym〉 = 0,

〈λnxn, ym〉 − 〈xn, λ
∗
mym〉 = 0,

λn〈xn, ym〉 − λ∗
m〈xn, ym〉 = 0,

(λ∗
n − λ∗

m)〈xn, ym〉 = 0.

So, for m = n, we get 〈xn, yn〉 6= 0, and for m 6= n, we get 〈xn, ym〉 = 0.
Thus, we must have the so-called bi-orthogonality condition

〈xn, ym〉 = Dnm,

Dnm = 0 if m 6= n.

Here Dnm is a diagonal matrix that can be reduced to the identity matrix
with proper normalization. Also because xn and ym are strictly real, the
inner product commutes and we have

〈ym, xn〉 = 〈xn, ym〉 = Dnm.

Now consider the following series of operations on the original form of the
expansion we seek

f(s) =

N
∑

n=1

αnxn(s),

〈ym(s), f(s)〉 = 〈ym(s),
N
∑

n=1

αnxn(s)〉,

〈ym(s), f(s)〉 =

N
∑

n=1

αn〈ym(s), xn(s)〉,

〈ym(s), f(s)〉 = αm〈ym(s), xm(s)〉,

αm =
〈ym(s), f(s)〉
〈ym(s), xm(s)〉 ,

αn =
〈yn(s), f(s)〉
〈yn(s), xn(s)〉

, n = 1, 2, 3, . . .

8



Now in the case at hand, . . . ”

40. p. 363: Eq. (6.693) should have αφ(t) instead of cφ(t).

41. pp. 364-5: In Eqs. (6.702), (6.703), one could replace (t5/4)2/5 by t1/2.
Additional simplification is possible that is easily achieved with computer
algebra.

42. p. 371: Eq. (6.754) should have λt3 instead of λt2. So we should find

∫ 1

0

(

−(1− 2t)2 + λt3(1 − t)2
)

dt = 0,

−1

3
+

λ

60
= 0,

λ = 20.

43. p. 378: The y-axis of the rightmost graph of Fig. 6.28 is mis-labeled. It
should be y(t = 1).

44. p. 379: Problem 10 is too similar to Example 6.39.

45. p. 381: Problem 27: the inner product should be enclosed by angle brack-
ets instead of parentheses. So we should have

〈x, y〉 =
∫ b

a

w(t)x(t)y(t) dt,

46. p. 381: Problem 30 is a repeat of Problem 18.

47. p. 381: Problem 31 is a repeat of Problem 8.

48. p. 381: Problem 33 is a repeat of Problem 4.

49. p. 382: Problem 37 is a repeat of Problem 11.

50. p. 384: Problem 57 is a repeat of Problem 14.

51. p. 385: Problem 61 is a repeat of Problem 56.

52. p. 385: Problem 66 is a repeat of Problem 64.

53. pp. 385-386: Problem 70 should have r(t) instead of r(x).

54. p. 386: Problem 72 may benefit from changing the lower limit to −∞.
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Figure 4: Modified Fig. 7.5.

55. p. 424: Eq. (7.229) should actually employ uuT ; it presently incorrectly
uses uT · u, though Eq. (7.230) is correct. We should thus find

H = I− 2uuT ,

=

(

1 0
0 1

)

− 2

(

− 1√
10

3√
10

)

(

− 1√
10

3√
10

)

,

=

(

1 0
0 1

)

− 2

(

1
10

−3
10

−3
10

9
10

)

,

=

(

4
5

3
5

3
5

−4
5

)

.

56. p. 426: Eq. (7.240) should read I − 2uuT . The actual numerical values
are correct.

57. p. 431: Figs. 7.5 and 7.6 would be more effective if it plotted 2|ck|/
√
N

vs. k. When so done, it returns the actual amplitude of the mode for
modes that are sufficiently resolved. It would be useful to present the
analysis to show this. Figure 4 gives an example of how this could be
fixed.

58. p. 439: To illustrate an application of the Q ·U decomposition, it would
be useful to use it to find the roots of a polynomial via identification of
the eigenvalues of the so-called “companion matrix.” An iterative method
involving the Q ·U decomposition may be employed.

59. p. 440: Eq. (7.337) has an unneeded dot in the matrix product.

60. p. 441: It would be useful in Section 7.9.5 to have more discussion of
algebraic and geometric multiplicity of the eigenspace.

61. p. 450: Columns of Q should be the normalized eigenvectors, not just the
eigenvectors.

62. p. 457: More nuance is needed for the projection matrix P. The matrix
P as defined by Eq. (7.477) is guaranteed symmetric with spectral norm
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of 1 with eigenvalues of 1 or 0. And it guarantees P · x = P · P · x, as
required. However if

B =

(

1 0
1 0

)

,

we find a) B · x = B · B · x, b) the eigenvalues of B are 1 and 0; c)
B is asymmetric, d) the spectral norm of B is ||B|| =

√
2, thus B can

stretch vectors of certain orientation, e.g. if x = (1, 0)T , B · x = (1, 1)T .
In fact here B should be called a non-orthogonal projection or an oblique

projection. Oblique projections satisfy B ·B = B but are not symmetric:
B 6= BT . In contrast orthogonal projection matrices P satisfy P · P = P

and P = PT with spectral norm of 1.

63. p. 460: Eq. (7.497) needs another “dot” within its matrix multiplication.
So we should find

a =
(

(W ·A)
T ·W ·A

)−1

· (W ·A)
T ·W · b.

64. p. 469: In Eq. (7.593), we should have q11 = 1/
√
10.

65. p. 475: Problem 32 has no Cholesky decomposition as the matrix is not
positive definite.

66. p. 486: Figure 8.2 needs negative signs on some numbers on the y axis.

67. p. 491: Some confusion exists here. The φi of Eq. (8.72) is orthonormal.
The φi of Eq. (8.73) is not. It is written carefully, but it is confusing. It
could and should be reformulated for more clarity.

68. p. 506: Eq. (9.60) needs a small correction. It should have

S−1 =

(

−i√
3

1
2 +

√
3
6 i

i√
3

1
2 −

√
3
6 i

)

69. p. 518: Just after Eq. (9.159), should read “...eigenvectors ek, k = 1, 2, ...,K,
as possible.”

70. p. 553: In the caption of Fig. 9.13, one should replace dx/dx by dx/dt.

71. p. 562: Eq. (9.494) should have an 8 in the numerator of both terms, not
4
√
2. So we should find

T (x, t) ≈ 8

π3
e−π2t sin(πx) +

8

27π3
e−9π2t sin(3πx).

72. p. 562: Eq. (9.495) should have additional
√
2 on both terms because this

is part of the basis function. Thus, we should find

T (x, t) ≈ α1(t)
√
2 sin(πx) + α2(t)

√
2 sin(3πx),
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