AME 561
Examination 2
Prof. J. M. Powers
16 November 2000

1. (20) Given $x \in \mathcal{R}^{1}, f: \mathcal{R}^{1} \rightarrow \mathcal{R}^{1}$,

$$
f(x)= \begin{cases}0, & x \in[-2,2) \\ 1, & x \in[2,3] .\end{cases}
$$

find the first two terms in a Fourier-sine expansion of $f(x)$.
2. (20) Show, using Cartesian index notation, that

$$
\frac{1}{2} \nabla(\mathbf{u} \cdot \mathbf{u})=(\mathbf{u} \cdot \nabla) \mathbf{u}+\mathbf{u} \times(\nabla \times \mathbf{u}) .
$$

3. (20) For $\mathbf{A}: \mathcal{C}^{2} \rightarrow \mathcal{C}^{3}$, find the vector $\mathbf{x} \in \mathcal{C}^{2}$ of minimum $\|\mathbf{x}\|_{2}$ which minimizes $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
i & 2 i \\
1 & 0
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
i \\
0 \\
0
\end{array}\right) .
$$

4. (20) Consider the vector space in which vectors \mathbf{X} and \mathbf{Y} are complex two-by-two matrices, that is $\mathbf{X}, \mathbf{Y} \in \mathcal{C}^{2 \times 2}$ with

$$
\mathbf{X}=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right), \quad \mathbf{Y}=\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right) .
$$

Determine if the operation $\mathbf{X}: \mathbf{Y}=\sum_{i=1}^{2} \sum_{j=1}^{2} \bar{x}_{i j} y_{i j}$ is an inner product.
5. (20) Find a set of reciprocal basis vectors in \mathcal{R}^{2} to the basis vectors

$$
u_{1}=\binom{2}{1}, \quad u_{2}=\binom{3}{2}
$$

