AME 561
Examination 2
J. M. Powers

22 November 2002

1. (15) Find the curvature of the parabola $y=x^{2}$ at the point $x=1$.
2. (15) Find the matrix \mathbf{A} that operates on any vector in the $x-y$ plane so as to turn it through a counterclockwise angle θ about the z-axis without changing its length.
3. (20) Given $x \in \mathbb{R}^{1}, f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$,

$$
f(x)=\frac{1}{x}, \quad x \in[1,3]
$$

find the first term in a Fourier-Laguerre expansion of $f(x)$. The set of orthonormal functions which arise from the Laguerre equation are $\varphi_{n}(s)=\left\{e^{-s / 2}, e^{-s / 2}(1-s), \ldots, e^{-s / 2} L_{n}(s)\right\}$. It is acceptable to express your answer in terms of a definite integral.
4. (20) For $x \in[0,1] \in \mathbb{R}^{1}, y \in \mathbb{L}_{2}[0,1]$, consider

$$
\frac{d^{2} y}{d x^{2}}+8 \sqrt{y}=x, \quad y(0)=0, \quad y(1)=0
$$

Use a one term collocation method to find an approximate solution.
5. (30) Consider

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right), \quad \mathbf{b}=\binom{1}{1}
$$

(a) Find $\|\mathbf{A}\|_{2}$.
(b) Find the most general \mathbf{x} which minimizes $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$.
(c) Of all the vectors which minimize $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$, find the vector \mathbf{x} with minimum $\|\mathbf{x}\|_{2}$.

