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1. (15) Find the curvature of the parabola y = x2 at the point x = 1.

Solution

Most people got this problem correct. κ =
d2y

dx2(
1+( dy

dx)2
)3/2

∣∣∣∣∣
x=1

. So κ = 2
(1+(2x)2)3/2 =

2
(1+(2(1))2)3/2 = 2

53/2 = 2
√

5
25 .

2. (15) Find the matrix A that operates on any vector in the x− y plane so as to
turn it through a counterclockwise angle θ about the z-axis without changing
its length.

Solution

Most people got this one as well, but there was some confusion. There are a variety of
ways one could approach this problem, and some are lengthy, albeit very general. Here
we take an intuitive, non-rigorous approach, which can easily be checked to see that it

does in fact work. Consider rotation of the unit vector in the x direction
(

1
0

)
about

the z axis by an angle θ. This will yield the vector c1 =
(

cos θ
sin θ

)
. Rotation of the

unit vector in the y direction
(

0
1

)
through the same angle will yield c2 =

(− sin θ
cos θ

)
.

Combining these two operations gives us the necessary matrix

A = ( c1 c2 ) =
(

cos θ − sin θ
sin θ cos θ

)
.

This matrix is obviously orthogonal since ||c1||2 = ||c2||2 = 1, and c1 · c2 = 0. Since

A
T · A =

(
1 0
0 1

)
= I, and because eigenvalues of I are λ = 1, 1, the spectral norm of

A is 1, and therefore ||A · x||2 = ||x||2, that is the length of the vector is not changed
by matrix multiplication in this case.



3. (20) Given x ∈ R
1, f : R

1 → R
1,

f(x) =
1

x
, x ∈ [1, 3],

find the first term in a Fourier-Laguerre expansion of f(x). The set of orthonor-
mal functions which arise from the Laguerre equation are

ϕn(s) =
{
e−s/2, e−s/2(1 − s), . . . , e−s/2Ln(s)

}
.

It is acceptable to express your answer in terms of a definite integral.

Solution

There was a good deal of confusion on this problem. A large fraction of people did not
correctly transform the domain for the Laguerre polynomials, nor were they confident
with the details of the expansion technique. The first job is to find any transformation
which will take x ∈ [1, 3] into a transformed space x̂ ∈ [0,∞). Many transformations
will work; one which certainly does is

x̂ =
1 − x

x− 3
.

Others are tempting but wrong, and one should check to see if the transformation chosen
maps x ∈ [1, 3] into positive values of x̂. One should also check to see if there are any
interior singularities in the transformation selected. With the above transformation, we
get an inverse transformation of

x =
1 + 3x̂
1 + x̂

.

Now, our formula for a one-term Fourier-Laguerre coefficient is

A0 =
∫ ∞

0

f(x̂)φ0(x̂) dx̂.

Now 1
x = 1+x̂

1+3x̂ , so substituting this as well as the expression for ϕ0 gives

A0 =
∫ ∞

0

1 + x̂

1 + 3x̂
e−x̂/2 dx̂.

This integral is difficult. Mathematica shows that it evaluates to

A0 = −2
9

(
−3 + e1/6Ei

(
−1

6

))
= 1.02751.

So the final solution is 1
x ∼ 1.02751e−x̂/2, or in terms of x,

1
x
∼ 1.02751 exp

(
x− 1
2x− 6

)
.



4. (20) For x ∈ [0, 1] ∈ R
1, y ∈ L2[0, 1], consider

d2y

dx2
+ 8

√
y = x, y(0) = 0, y(1) = 0.

Use a one term collocation method to find an approximate solution.

Solution

Most people did acceptable work on this one. There were a few conceptual difficulties
and some algebra blunders. Many choices were possible for trial functions. One that
obviously works in that it satisfies the boundary conditions is

φ = x(x − 1).

So take
ya = cx(x − 1),

and find c to minimize the weighted error in a collocation technique. The error is

e(x) =
d2ya

dx2
+ 8

√
ya − x,

so
e(x) = 2c+ 8

√
cx2 − cx− x.

Now we want <ψ(x)e(x)> = 0, so
∫ 1

0

ψ(x)
(
2c+ 8

√
cx2 − cx− x

)
dx = 0.

For the collocation method let us arbitrarily choose the collocation point to be at x = 1/2
so that ψ(x) = δ(x − 1/2), so

∫ 1

0

δ(x− 1/2)
(
2c+ 8

√
cx2 − cx− x

)
dx = 0.

Evaluating, we get

2c+ 8
√
c

4
− c

2
− 1

2
= 0.

Solving the resulting quadratic equation for c, we get

c = −7
4
±
√

3,

so we find two solutions for the non-linear equation

y(x) ∼
(
−7

4
±
√

3
)
x(x− 1).

5. (30) Consider

A =

(
1 i
0 0

)
, b =

(
1
1

)
.



(a) Find ||A||2.

Solution
Many people missed this one. Some people got the right answer for the wrong
reason. The norm of an operator, such as A, is, as defined in class

||A|| = supx 6=0

||A · x||
||x|| .

And the only norm we defined for a matrix was the so-called spectral norm, that
is the square root of the maximum eigenvalue of AH · A, which can be shown to
satisfy the definition of the norm of an operator. So

AH ·A =
(

1 0
−i 0

) (
1 i
0 0

)
=

(
1 i
−i 1

)
.

The eigenvalues of the matrix are given by solutions to the characteristic polyno-
mial

(1 − λ)2 − i(−i) = 0,

which are λ = 0, 2. Taking the positive square root of the maximum eigenvalue,
we get

||A|| =
√

2.

(b) Find the most general x which minimizes ||A · x − b||2.

Solution
Most people got this part correct. Considering the system of equations

(
1 i
0 0

) (
x1

x2

)
=

(
1
1

)
,

it is obvious that the second equation cannot be satisfied. So we can only expect
a solution which minimizes the least squares error. Multiplying both sides by the
Hermitian transpose we get

(
1 0
−i 0

) (
1 i
0 0

) (
x1

x2

)
=

(
1 0
−i 0

) (
1
1

)
,

(
1 i
−i 1

) (
x1

x2

)
=

(
1
−i

)
.

Performing Gaussian elimination, we get
(

1 i
0 0

) (
x1

x2

)
=

(
1
0

)
.

We then take x2 = t, and solve the first equation to get x1 = 1 − it, so the most
general solution is

x =
(
x1

x2

)
=

(
1
0

)
+ t

(−i
1

)
.



The vector
(−i

1

)
is in the right null space of A. The vector

(
1
0

)
lies partially

in the row space and partially in the right null space, but for this problem that is
not important, since all that was requested was a general form. We see that

A · x − b =
(

0
−1

)
,

so
||A · x− b||2 = 1.

(c) Of all the vectors which minimize ||A · x − b||2, find the vector x with
minimum ||x||2.

Solution
Most people missed this problem. It does not suffice to simply select t = 0 in the
expression from the previous part, as what remains contains a component from
the right null space. Since the row vector r and the right null space vector n are
linearly independent (in fact orthogonal), they form a basis, and we can seek α
and β such that (

1
0

)
= αr + βn.

We know that n =
(−i

1

)
. We must be careful with the row space vector. Living

as a row vector it is ( 1 i ). But when we cast it in column form, we must take

the conjugate transpose so r =
(

1
−i

)
. Therefore, we solve

(
1
0

)
=

(
1 −i
−i 1

) (
α
β

)
.

Solving, we find α = 1/2, and β = i/2, so
(

1
0

)
=

1
2

(
1
−i

)
+
i

2

(−i
1

)
.

Therefore the general solution can also be expressed as
(
x1

x2

)
=

1
2

(
1
−i

)
+

(
t+

i

2

) (−i
1

)
.

We can suppress the right null space vector by choosing t = −i/2, giving

x =
(
x1

x2

)
=

1
2

(
1
−i

)
.

This has ||x||2 =
√

2
2 .


