AME 60611
Examination 2
J. M. Powers

18 November 2005

1. (25) Consider the curve in $\mathbb{R}^{3}$ defined parametrically by

$$
\begin{aligned}
& x=t \\
& y=t \\
& z=t^{2} .
\end{aligned}
$$

(a) Find the length of the curve from $(0,0,0)$ to $(1,1,1)$. You need not numerically evaluate the resulting integral.
(b) Find the unit tangent at the point $(1,1,1)$.
2. (25) Consider two functions in $\mathbb{L}_{2}[0,1]: v_{1}=1, v_{2}=t^{3}$.
(a) Determine if $v_{1}$ and $v_{2}$ are orthonormal.
(b) Project the Heaviside function $H(t-1 / 2)$ onto the space spanned by $v_{1}$ and $v_{2}$; that is, find the constants $\alpha_{1}, \alpha_{2}$ that best approximate

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2} \sim H(t-1 / 2)
$$

3. (25) For $\mathbf{A}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$, find the vector $\mathbf{x} \in \mathbb{C}^{3}$ of smallest $\|\mathbf{x}\|_{2}$ which minimizes the error norm $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & i \\
2 & 2 & 2 i
\end{array}\right) .
$$

and

$$
\mathbf{b}=\binom{0}{1+i}
$$

4. (25) Consider

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right)
$$

Cast the matrix A into Jordan canonical form; that is, find matrices $\mathbf{S}$ and $\mathbf{J}$ such that $\mathbf{A}=\mathbf{S} \cdot \mathbf{J} \cdot \mathbf{S}^{-1}$.

