AME 60611

Examination 2: Solution
J. M. Powers

18 November 2005

1. (25) Consider the curve in \mathbb{R}^{3} defined parametrically by

$$
\begin{aligned}
& x=t \\
& y=t \\
& z=t^{2}
\end{aligned}
$$

(a) Find the length of the curve from $(0,0,0)$ to $(1,1,1)$. You need not numerically evaluate the resulting integral.
(b) Find the unit tangent at the point $(1,1,1)$.

Solution

The point $(0,0,0)$ corresponds to $t=0$. The point $(1,1,1)$ corresponds to $t=1$.
By the Pythagorean theorem, we have for a differential element of arc length $d s$ that

$$
d s=\sqrt{d x^{2}+d y^{2}+d z^{2}} .
$$

Scaling by $d t$, one gets

$$
\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}
$$

Then making the substitutions and integrating, one gets

$$
\begin{aligned}
\frac{d s}{d t} & =\sqrt{1^{2}+1^{2}+(2 t)^{2}}, \\
& =\sqrt{2+4 t^{2}}, \\
d s & =\sqrt{2+4 t^{2}} d t \\
s & =\int_{0}^{1} \sqrt{2+4 t^{2}} d t \\
s & =\left.\frac{1}{2}\left(t \sqrt{2+4 t^{2}}+\sinh ^{-1}(\sqrt{2} t)\right)\right|_{0} ^{1} \\
s & =\frac{1}{2}\left(\sqrt{6}+\sinh ^{-1}(\sqrt{2})\right) \\
s & =1.79785 .
\end{aligned}
$$

The tangent vector is given by

$$
\begin{aligned}
\mathbf{t} & =\frac{\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}}{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}}, \\
& =\left.\frac{1 \mathbf{i}+1 \mathbf{j}+2 t \mathbf{k}}{\sqrt{1^{2}+1^{2}+(2 t)^{2}}}\right|_{t=1}, \\
& =\frac{\mathbf{i}+\mathbf{j}+2 \mathbf{k}}{\sqrt{6}}
\end{aligned}
$$

2. (25) Consider two functions in $\mathbb{L}_{2}[0,1]: v_{1}=1, v_{2}=t^{3}$.
(a) Determine if v_{1} and v_{2} are orthonormal.
(b) Project the Heaviside function $H(t-1 / 2)$ onto the space spanned by v_{1} and v_{2}; that is, find the constants α_{1}, α_{2} that best approximate

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2} \sim H(t-1 / 2)
$$

Solution

To test for orthogonality of v_{1} and v_{2}, one can use the inner product, which is

$$
\begin{aligned}
<v_{1}, v_{2}> & =\int_{0}^{1} v_{1}(t) v_{2}(t) d t \\
& =\int_{0}^{1}(1) t^{3} d t \\
& =\left.\frac{t^{4}}{4}\right|_{0} ^{1} \\
& =\frac{1}{4}
\end{aligned}
$$

The inner product is not zero, so the vectors are not orthogonal, so they cannot be orthonormal.
Next, let us project $H(t-1 / 2)$ onto the space spanned by v_{1} and v_{2}. So we seek α_{1} and α_{2} such that

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2} \sim H(t-1 / 2)
$$

Take two inner products, one with v_{1} and the other with v_{2} :

$$
\begin{aligned}
& <v_{1}, \alpha_{1} v_{1}+\alpha_{2} v_{2}>\quad<\quad<v_{1}, H(t-1 / 2)> \\
& <v_{2}, \alpha_{1} v_{1}+\alpha_{2} v_{2}>=<v_{2}, H(t-1 / 2)>
\end{aligned}
$$

Using the properties of the inner product, we find then that

$$
\begin{aligned}
& \alpha_{1}<v_{1}, v_{1}>+\alpha_{2}<v_{1}, v_{2}>=<v_{1}, H(t-1 / 2)> \\
& \alpha_{1}<v_{2}, v_{1}>+\alpha_{2}<v_{2}, v_{2}>=<v_{2}, H(t-1 / 2)>
\end{aligned}
$$

Figure 1: The function $H(t-1 / 2)$ and its projection onto the space spanned by the functions $v_{1}=1$ and $v_{2}=t^{3}$.

In matrix form, this gives

$$
\left(\begin{array}{cc}
<v_{1}, v_{1}> & <v_{1}, v_{2}> \\
<v_{2}, v_{1}> & <v_{2}, v_{2}>
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{<v_{1}, H(t-1 / 2)>}{<v_{2}, H(t-1 / 2)>}
$$

Now replace the inner product with its integral form to get

$$
\left(\begin{array}{cc}
\int_{0}^{1} v_{1} v_{1} d t & \int_{0}^{1} v_{1} v_{2} d t \\
\int_{0}^{1} v_{2} v_{1} d t & \int v_{2} v_{2} d t
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{\int_{1 / 2}^{1} v_{1} d t}{\int_{1 / 2}^{1} v_{2} d t>}
$$

Now substitute for v_{1} and v_{2} to get

$$
\left(\begin{array}{cc}
\int_{0}^{1}(1)(1) d t & \int_{0}^{1}(1) t^{3} d t \\
\int_{0}^{1} t^{3}(1) d t & \int t^{3} t^{3} d t
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{\int_{1 / 2}^{1}(1) d t}{\int_{1 / 2}^{1} t^{3} d t>}
$$

Evaluating each of the integrals, we find

$$
\left(\begin{array}{cc}
1 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{7}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{1}{2}}{\frac{15}{64}}
$$

Solving the two equations in two unknowns gives

$$
\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{23}{144}}{\frac{49}{36}} .
$$

So the projection of $H(t-1 / 2)$ in the space spanned by 1 and t^{3} is

$$
H(t-1 / 2) \sim \frac{23}{144}+\frac{49}{36} t^{3}
$$

A plot of $H(t-1 / 2)$ and its projection is given in Figure 1.
3. (25) For $\mathbf{A}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$, find the vector $\mathbf{x} \in \mathbb{C}^{3}$ of smallest $\|\mathbf{x}\|_{2}$ which minimizes the error norm $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & i \\
2 & 2 & 2 i
\end{array}\right)
$$

and

$$
\mathbf{b}=\binom{0}{1+i}
$$

Solution

Consider

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{x} & \sim \mathbf{b}, \\
\left(\begin{array}{cc}
1 & 2 \\
1 & 2 \\
-i & -2 i
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & i \\
2 & 2 & 2 i
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{cc}
1 & 2 \\
1 & 2 \\
-i & -2 i
\end{array}\right)\binom{0}{1+i}, \\
\left(\begin{array}{ccc}
5 & 5 & 5 i \\
5 & 5 & 5 i \\
-5 i & -5 i & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{c}
2+2 i \\
2+2 i \\
2-2 i
\end{array}\right), \\
\left(\begin{array}{ccc}
5 & 5 & 5 i \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{c}
2+2 i \\
0 \\
0
\end{array}\right) .
\end{aligned}
$$

Take as free variables $x_{2}=s, x_{3}=t$. Then, solving, one finds

$$
x_{1}=\frac{2}{5}(1+i)-s-i t .
$$

So one has

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{5}(1+i) \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-i \\
0 \\
1
\end{array}\right) .
$$

The vectors of which s and t are coefficients span the right null space of \mathbf{A}. The other vector has components in both the row space and right null space of \mathbf{A}. Let us find the part of that vector which lies in the row space. Thus, we solve for the constants α_{1}, α_{2} and α_{3} in

$$
\left(\begin{array}{ccc}
1 & -1 & -i \\
1 & 1 & 0 \\
-i & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{5}(1+i) \\
0 \\
0
\end{array}\right) .
$$

Solving, we find

$$
\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\frac{2}{15}\left(\begin{array}{c}
1+i \\
-1-i \\
-1+i
\end{array}\right) .
$$

So that the solution vector is then expressed as

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\frac{2}{15}(1+i)\left(\begin{array}{c}
1 \\
1 \\
-i
\end{array}\right)+\left(s-\frac{2}{15}(1+i)\right)\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+\left(t+\frac{2}{15}(-1+i)\right)\left(\begin{array}{c}
-i \\
0 \\
1
\end{array}\right) .
$$

The vector \mathbf{x} with smallest norm is found by removing the null space components. Doing so, we find

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\frac{2}{15}(1+i)\left(\begin{array}{c}
1 \\
1 \\
-i
\end{array}\right)
$$

4. (25) Consider

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right)
$$

Cast the matrix \mathbf{A} into Jordan canonical form; that is, find matrices \mathbf{S} and \mathbf{J} such that $\mathbf{A}=\mathbf{S} \cdot \mathbf{J} \cdot \mathbf{S}^{-1}$.

Solution

We first find the eigenvalues of \mathbf{A} :

$$
\begin{aligned}
(1-\lambda)(3-\lambda)+1 & =0 \\
3-4 \lambda+\lambda^{2}+1 & =0 \\
\lambda^{2}-4 \lambda+4 & =0 \\
(\lambda-2)^{2} & =0
\end{aligned}
$$

So we have a repeated root

$$
\lambda=2, \quad \lambda=2
$$

First find the ordinary eigenvector associated with $\lambda=2$.

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{e} & =\lambda \mathbf{e} \\
\mathbf{A} \cdot \mathbf{e} & =\lambda \mathbf{I} \cdot \mathbf{e} \\
(\mathbf{A}-\lambda \mathbf{I}) \cdot \mathbf{e} & =\mathbf{0} \\
\left(\begin{array}{cc}
1-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right)\binom{e_{1}}{e_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
1-2 & 1 \\
-1 & 3-2
\end{array}\right)\binom{e_{1}}{e_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
-1 & 1 \\
-1 & 1
\end{array}\right)\binom{e_{1}}{e_{2}} & =\binom{0}{0} \\
\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)\binom{e_{1}}{e_{2}} & =\binom{0}{0}
\end{aligned}
$$

This gives e_{2} as a free variable $e_{2}=t$. Then we get

$$
\binom{e_{1}}{e_{2}}=t\binom{1}{1}
$$

For simplicity, take $t=1$, so

$$
\mathbf{e}=\binom{1}{1}
$$

Seek now a generalized eigenvector \mathbf{g} such that

$$
\begin{aligned}
(\mathbf{A}-\lambda \mathbf{I}) \cdot \mathbf{g} & =\mathbf{e} \\
\left(\begin{array}{cc}
1-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right) \cdot\binom{g_{1}}{g_{2}} & =\binom{1}{1} \\
\left(\begin{array}{cc}
1-2 & 1 \\
-1 & 3-2
\end{array}\right) \cdot\binom{g_{1}}{g_{2}} & =\binom{1}{1} \\
\left(\begin{array}{cc}
-1 & 1 \\
-1 & 1
\end{array}\right) \cdot\binom{g_{1}}{g_{2}} & =\binom{1}{1} \\
\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) \cdot\binom{g_{1}}{g_{2}} & =\binom{-1}{0}
\end{aligned}
$$

Take the free variable to be $g_{2}=s$. This then yields $g_{1}=-1+s$. So,

$$
\binom{g_{1}}{g_{2}}=\binom{-1}{0}+s\binom{1}{1}
$$

Choosing $s=0$ still gives a non-trivial solution of

$$
\mathbf{g}=\binom{-1}{0}
$$

Then we can construct the matrix \mathbf{S} by placing \mathbf{e} and \mathbf{g} in its columns to get

$$
\mathbf{S} \equiv\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

Now the inverse of \mathbf{S} is easily shown to be

$$
\mathbf{S}^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

We can then get the matrix \mathbf{J} by taking

$$
\begin{aligned}
\mathbf{J} & =\mathbf{S}^{-1} \cdot \mathbf{A} \cdot \mathbf{S} \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 & 1 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

It is also easy to verify that one recovers \mathbf{A} when forming $\mathbf{S} \cdot \mathbf{J} \cdot \mathbf{S}^{-1}$:

$$
\begin{aligned}
\mathbf{S} \cdot \mathbf{J} \cdot \mathbf{S}^{-1} & =\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
-1 & 3 \\
-2 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right)
\end{aligned}
$$

