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1. (25) Consider the curve in R
3 defined parametrically by

x = t,

y = t,

z = t2.

(a) Find the length of the curve from (0, 0, 0) to (1, 1, 1). You
need not numerically evaluate the resulting integral.

(b) Find the unit tangent at the point (1, 1, 1).

Solution

The point (0, 0, 0) corresponds to t = 0. The point (1, 1, 1) corresponds to t = 1.

By the Pythagorean theorem, we have for a differential element of arc length ds that

ds =
√

dx2 + dy2 + dz2.

Scaling by dt, one gets

ds

dt
=

√

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

Then making the substitutions and integrating, one gets

ds

dt
=

√

12 + 12 + (2t)2,

=
√

2 + 4t2,

ds =
√

2 + 4t2 dt,

s =

∫

1

0

√

2 + 4t2 dt,

s =
1

2

(

t
√

2 + 4t2 + sinh−1(
√

2t)
)

∣

∣

∣

∣

1

0

,

s =
1

2

(√
6 + sinh−1(

√
2)
)

,

s = 1.79785.



The tangent vector is given by

t =
dx
dt i + dy

dt j + dz
dt k

√

(

dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2

,

=
1i + 1j + 2tk

√

12 + 12 + (2t)2

∣

∣

∣

∣

∣

t=1

,

=
i + j + 2k√

6
.

2. (25) Consider two functions in L2[0, 1]: v1 = 1, v2 = t3.

(a) Determine if v1 and v2 are orthonormal.

(b) Project the Heaviside function H(t − 1/2) onto the space spanned by v1

and v2; that is, find the constants α1, α2 that best approximate

α1v1 + α2v2 ∼ H(t − 1/2).

Solution

To test for orthogonality of v1 and v2, one can use the inner product, which is

<v1, v2> =

∫

1

0

v1(t)v2(t) dt,

=

∫

1

0

(1)t3 dt,

=
t4

4

∣

∣

∣

∣

1

0

,

=
1

4
.

The inner product is not zero, so the vectors are not orthogonal, so they cannot be
orthonormal.

Next, let us project H(t− 1/2) onto the space spanned by v1 and v2. So we seek α1 and
α2 such that

α1v1 + α2v2 ∼ H(t − 1/2).

Take two inner products, one with v1 and the other with v2:

<v1, α1v1 + α2v2> = <v1, H(t − 1/2)>,

<v2, α1v1 + α2v2> = <v2, H(t − 1/2)>

Using the properties of the inner product, we find then that

α1<v1, v1> + α2<v1, v2> = <v1, H(t − 1/2)>,

α1<v2, v1> + α2<v2, v2> = <v2, H(t − 1/2)>.
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Figure 1: The function H(t − 1/2) and its projection onto the space spanned by the
functions v1 = 1 and v2 = t3.

In matrix form, this gives
(

<v1, v1> <v1, v2>
<v2, v1> <v2, v2>

)(

α1

α2

)

=

(

<v1, H(t − 1/2)>
<v2, H(t − 1/2)>

)

Now replace the inner product with its integral form to get

(∫ 1

0
v1v1 dt

∫

1

0
v1v2 dt

∫

1

0
v2v1 dt

∫

v2v2 dt

)(

α1

α2

)

=

(
∫

1

1/2
v1 dt

∫

1

1/2
v2 dt>

)

Now substitute for v1 and v2 to get

(∫ 1

0
(1)(1) dt

∫

1

0
(1)t3 dt

∫

1

0
t3(1) dt

∫

t3t3 dt

)(

α1

α2

)

=

(
∫

1

1/2
(1) dt

∫

1

1/2
t3 dt>

)

Evaluating each of the integrals, we find
(

1 1

4
1

4

1

7

)(

α1

α2

)

=

(

1

2
15

64

)

Solving the two equations in two unknowns gives
(

α1

α2

)

=

(

23

144
49

36

)

.

So the projection of H(t − 1/2) in the space spanned by 1 and t3 is

H(t − 1/2) ∼ 23

144
+

49

36
t3.

A plot of H(t − 1/2) and its projection is given in Figure 1.



3. (25) For A : C
3 → C

2, find the vector x ∈ C
3 of smallest ||x||2 which minimizes

the error norm ||A · x − b||2 when

A =

(

1 1 i
2 2 2i

)

.

and

b =

(

0
1 + i

)

.

Solution

Consider

A · x ∼ b,

AH · A · x = AH · b,




1 2
1 2
−i −2i





(

1 1 i
2 2 2i

)





x1

x2

x3



 =





1 2
1 2
−i −2i





(

0
1 + i

)

,





5 5 5i
5 5 5i

−5i −5i 5









x1

x2

x3



 =





2 + 2i
2 + 2i
2 − 2i



 ,





5 5 5i
0 0 0
0 0 0









x1

x2

x3



 =





2 + 2i
0
0



 .

Take as free variables x2 = s, x3 = t. Then, solving, one finds

x1 =
2

5
(1 + i) − s − it.

So one has




x1

x2

x3



 =





2

5
(1 + i)

0
0



+ s





−1
1
0



+ t





−i
0
1



 .

The vectors of which s and t are coefficients span the right null space of A. The other
vector has components in both the row space and right null space of A. Let us find the
part of that vector which lies in the row space. Thus, we solve for the constants α1, α2

and α3 in




1 −1 −i
1 1 0
−i 0 1









α1

α2

α3



 =





2

5
(1 + i)

0
0



 .

Solving, we find




α1

α2

α3



 =
2

15





1 + i
−1 − i
−1 + i



 .

So that the solution vector is then expressed as





x1

x2

x3



 =
2

15
(1 + i)





1
1
−i



+

(

s − 2

15
(1 + i)

)





−1
1
0



+

(

t +
2

15
(−1 + i)

)





−i
0
1



 .



The vector x with smallest norm is found by removing the null space components. Doing
so, we find





x1

x2

x3



 =
2

15
(1 + i)





1
1
−i



 .

4. (25) Consider

A =

(

1 1
−1 3

)

.

Cast the matrix A into Jordan canonical form; that is, find matrices S and J

such that A = S · J · S−1.

Solution

We first find the eigenvalues of A:

(1 − λ)(3 − λ) + 1 = 0,

3 − 4λ + λ2 + 1 = 0,

λ2 − 4λ + 4 = 0,

(λ − 2)2 = 0.

So we have a repeated root
λ = 2, λ = 2.

First find the ordinary eigenvector associated with λ = 2.

A · e = λe,

A · e = λI · e,

(A − λI) · e = 0,
(

1 − λ 1
−1 3 − λ

)(

e1

e2

)

=

(

0
0

)

,

(

1 − 2 1
−1 3 − 2

)(

e1

e2

)

=

(

0
0

)

,

(

−1 1
−1 1

)(

e1

e2

)

=

(

0
0

)

,

(

1 −1
0 0

)(

e1

e2

)

=

(

0
0

)

This gives e2 as a free variable e2 = t. Then we get

(

e1

e2

)

= t

(

1
1

)

.

For simplicity, take t = 1, so

e =

(

1
1

)

.



Seek now a generalized eigenvector g such that

(A − λI) · g = e,
(

1 − λ 1
−1 3 − λ

)

·
(

g1

g2

)

=

(

1
1

)

,

(

1 − 2 1
−1 3 − 2

)

·
(

g1

g2

)

=

(

1
1

)

,

(

−1 1
−1 1

)

·
(

g1

g2

)

=

(

1
1

)

,

(

1 −1
0 0

)

·
(

g1

g2

)

=

(

−1
0

)

,

Take the free variable to be g2 = s. This then yields g1 = −1 + s. So,
(

g1

g2

)

=

(

−1
0

)

+ s

(

1
1

)

.

Choosing s = 0 still gives a non-trivial solution of

g =

(

−1
0

)

.

Then we can construct the matrix S by placing e and g in its columns to get

S ≡
(

1 −1
1 0

)

.

Now the inverse of S is easily shown to be

S−1 =

(

0 1
−1 1

)

.

We can then get the matrix J by taking

J = S−1 · A · S,

=

(

0 1
−1 1

)(

1 1
−1 3

)(

1 −1
1 0

)

,

=

(

0 1
−1 1

)(

2 −1
2 1

)

,

=

(

2 1
0 2

)

.

It is also easy to verify that one recovers A when forming S · J · S−1:

S · J · S−1 =

(

1 −1
1 0

)(

2 1
0 2

)(

0 1
−1 1

)

,

=

(

1 −1
1 0

)(

−1 3
−2 2

)

,

=

(

1 1
−1 3

)

.


