AME 60611
Examination 1
J. M. Powers

8 October 2007

1. (20) Find all $y(x)$ which satisfy

$$
\frac{d^{4} y}{d x^{4}}-y=x^{2}+e^{x} .
$$

2. (20) Use the method of strained coordinates to find the appropriate frequency modulation, valid at order ϵ, to achieve a secularity-free solution to the equation

$$
\frac{d^{2} x}{d t^{2}}+x+\epsilon x^{5}=0, \quad x(0)=0,\left.\frac{d x}{d t}\right|_{t=0}=1
$$

You have the identities $\sin ^{5} \theta=\frac{5}{8} \sin \theta-\frac{5}{16} \sin 3 \theta+\frac{1}{16} \sin 5 \theta ; \cos ^{5} \theta=\frac{5}{8} \cos \theta+\frac{5}{16} \cos 3 \theta+\frac{1}{16} \cos 5 \theta$.
3. (20) Find $\left.\frac{\partial u}{\partial x}\right|_{y}$ if

$$
\begin{aligned}
x+2 y+\sin u \sin v & =1, \\
u^{2}+v^{2} & =x y .
\end{aligned}
$$

4. (20) Find all $y(x)$ which satisfy

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x \frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}, \quad y^{\prime}(0)=1, y(0)=0
$$

5. (20) Consider the transformation from non-Cartesian coordinates $\left(x^{1}, x^{2}\right)$ to Cartesian coordinates $\left(\xi^{1}, \xi^{2}\right)$:

$$
\begin{aligned}
\xi^{1} & =\left(x^{1}\right)^{2} \\
\xi^{2} & =x^{1}+2 x^{2} .
\end{aligned}
$$

A vector field \mathbf{u} has Cartesian representation $U^{i}=\left(2 \xi^{1}, 3 \xi^{2}\right)^{T}$. Find
(a) the metric tensor of the transformation, and
(b) an expression for the vector field components u^{i} in the nonCartesian system, $\left(x^{1}, x^{2}\right)$.

