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1. (20) Find all y(x) which satisfy

d4y

dx4
− y = x2 + ex.

Solution

A lot of people had problems with this. The homogeneous part was pretty easy, but
many did not understand the fundamentals of this. The particular solution was mildly
tricky, but not particularly tricky. Those who tried variation of parameters for the
particular solution were led to a messy problem.

The equation is linear in y and has constant coefficients. First find the complementary
functions, found by solving the homogeneous version of the equation:

d4y

dx4
− y = 0.

Assume solutions of the form y = Cerx. With this assumption the homogeneous differ-
ential equation becomes

Cr4erx − Cerx = 0.

Since we seek non-trivial solutions for which C 6= 0, and erx 6= 0, the equation reduces
to the characteristic polynomial

r4 − 1 = 0.

This yields
r4 = 1,

which is quadratic in r2, so that

(
r2
)2

= 1.

Solving for r2, we get
r2 = ±1.

Solving these two quadratic equations for r, we obtain the four roots

r = ±1, r = ±i.

The four linearly independent complementary functions can be added to form a general
solution to the homogeneous version of the differential equation:

y = C1e
x + C2e

−x + C3e
ix + C4e

−ix.

Euler’s formula can be employed to remove i, thus arriving at the form

y = C1e
x + C2e

−x + C′

3
sin x + C′

4
cosx.



We next seek a particular solution. We have some concern because the forcing function
ex is itself a complementary function. Let us seek then solutions of the form

y = a0 + a1x + a2x
2 + b1xex.

Taking derivatives, we get

y′ = a1 + 2a2x + b1(xex + ex).

y′′ = 2a2 + b1(xex + 2ex).

y′′′ = b1(xex + 3ex).

y′′′′ = b1(xex + 4ex).

Substituting into the differential equation, we find

b1(xex + 4ex)
︸ ︷︷ ︸

=y′′′′

− (a0 + a1x + a2x
2 + b1xex)

︸ ︷︷ ︸

=y

= x2 + ex.

Rearranging, we get

ex(4b1 − 1) + xex(b1 − b1) − a0 − a1x − x2(a2 + 1) = 0.

Since ex, 1, x, and x2 are linearly independent functions, the only way we can achieve
the equality is to demand the coefficients of each function be zero, giving

b1 =
1

4
, a0 = 0, a1 = 0, a2 = −1.

So the particular solution is

y = −x2 +
1

4
xex.

The total solution is obtained by adding the particular solution to linear combinations
of the complementary functions:

y = C1e
x + C2e

−x + C′

3 sin x + C′

4 cosx − x2 +
xex

4
.

2. (20) Use the method of strained coordinates to find the appropriate frequency
modulation, valid at order ǫ, to achieve a secularity-free solution to the equation

d2x

dt2
+ x + ǫx5 = 0, x(0) = 0,

dx

dt

∣
∣
∣
∣
t=0

= 1.

You have the identities

sin5 θ =
5

8
sin θ −

5

16
sin 3θ +

1

16
sin 5θ; cos5 θ =

5

8
cos θ +

5

16
cos 3θ +

1

16
cos 5θ.

Solution

A lot of people had foundational issues with this, and really did not make much progress
towards a solution. A few made it harder than it was by using the method of multiple



scales. I think one person got it right, and the small number of people who were on the
right track got a lot of credit.

This is very similar to the Duffing equation studied in lecture. Recognizing that a regular
expansion is likely to lead to secular terms, let us strain time at the outset

t = (1 + c1ǫ + c2ǫ
2 + . . .)τ.

This defines the strained time τ , but we do not yet know the value of c1, c2, etc.

Check for boundedness of the solution.

ẋẍ + ẋx + ǫẋx5 = 0.

d

dt

(
1

2
ẋ2 +

1

2
x2 +

ǫ

6
x6

)

= 0,

1

2
ẋ2 +

1

2
x2 +

ǫ

6
x6 = C.

The solution is bounded.

As in lecture,

dx

dt
=

dx

dτ

dτ

dt
=

dx

dτ

(
dt

dτ

)
−1

.

dx

dt
∼

dx
dτ

1 + c1ǫ + . . .
.

dx

dt
∼

dx

dτ
(1 − c1ǫ + . . .).

The second derivative then is

d2x

dt2
∼

d2x

dτ2
(1 − c1ǫ + . . .)2.

d2x

dt2
∼

d2x

dτ2
(1 − 2c1ǫ + . . .).

Taking next the expansion
x ∼ x0 + ǫx1 + . . . ,

our differential equation becomes

(
d2x0

dτ2
+ ǫ

d2x1

dτ2
+ . . .

)

(1 − 2c1ǫ + . . .)

︸ ︷︷ ︸

d2x/dt2

+ (x0 + ǫx1 + . . .)
︸ ︷︷ ︸

=x

+ǫ (x0 + . . .)5
︸ ︷︷ ︸

=x5

= 0.

The initial conditions become

x0(0) + ǫx1(0) + . . . = 0.

dx0

dτ

∣
∣
∣
∣
t=0

(1 − 2c1ǫ + . . .) + ǫ
dx1

dτ

∣
∣
∣
∣
t=0

(1 − 2c2ǫ + . . .) + . . . = 1.

The leading order problem is given by

d2x0

dτ2
+ x0 = 0, x0(0) = 0,

dx0

dτ

∣
∣
∣
∣
t=0

= 1.

This has the obvious solution
x0(τ) = sin τ.



At O(ǫ), we get the problem

d2x1

dτ2
+ x1 = 2c1

d2x0

dτ2
− x5

0, x1(0) = 0,
dx1

dt

∣
∣
∣
∣
t=0

= 2c1

dx0

dτ

∣
∣
∣
∣
t=0

.

Substituting the known x0(τ), the O(ǫ) problem becomes

d2x1

dτ2
+ x1 = −2c1 sin τ − sin5 τ, x1(0) = 0,

dx1

dt

∣
∣
∣
∣
t=0

= 2c1.

Using our expansion for sin5 τ , we get

d2x1

dτ2
+ x1 = −2c1 sin τ −

5

8
sin τ +

5

16
sin 3τ −

1

16
sin 5τ.

To avoid secularities, choose

c1 = −
5

16
.

This gives the leading order frequency modulation, so the corrected solution is

x(t) = sin

((

1 +
5

16
ǫ + O(ǫ2)

)

)t

)

+ O(ǫ)

3. (20) Find ∂u
∂x

∣
∣
y

if

x + 2y + sin u sin v = 1,

u2 + v2 = xy.

Solution

There were few problems with this problem. Most people got full credit.

Take
f(x, y, u, v) = x + 2y + sin u sin v − 1 = 0,

g(x, y, u, v) = u2 + v2 − xy = 0.

Taking differentials, we find

df = dx + 2dy + cosu sin vdu + sin u cos vdv = 0,

dg = −ydx − xdy + 2udu + 2vdv = 0.

We are holding y constant, so dy = 0 and

dx + cosu sin vdu + sin u cos vdv = 0,

−ydx + 2udu + 2vdv = 0.

Dividing by dx, we get

1 + cosu sin v
∂u

∂x

∣
∣
∣
∣
y

+ sinu cos v
∂v

∂x

∣
∣
∣
∣
y

= 0,



−y + 2u
∂u

∂x

∣
∣
∣
∣
y

+ 2v
∂v

∂x

∣
∣
∣
∣
y

= 0.

In matrix form, this becomes

(
cosu sin v sin u cos v

2u 2v

)( ∂u
∂x

∣
∣
y

∂v
∂x

∣
∣
y

)

=

(
−1
y

)

.

Use Cramer’s rule to solve for ∂u
∂x

∣
∣
y

to get

∂u

∂x

∣
∣
∣
∣
y

=
−2v − y sin u cos v

2v cosu sin v − 2u sinu cos v
.

4. (20) Find all y(x) which satisfy

(
d2y

dx2

)2

+ x
d2y

dx2
=

dy

dx
, y′(0) = 1, y(0) = 0.

A lot of people did not recognize that this was a Clairaut equation. If they did
recognize it, many still had shaky solution methods. A few got it right.

Solution

Taking v ≡ dy
dx , this is a first order equation for v:

(
dv

dx

)2

+ x
dv

dx
= v, v(0) = 1.

Rearranging, we get

v = x
dv

dx
+

(
dv

dx

)2

,

which is a Clairaut equation for v(x). Letting then dv
dx ≡ u(x), the equation reduces to

v = xu + u2.

Differentiating with respect to x, we get

dv

dx
= x

du

dx
+ u + 2u

du

dx
,

or

u = x
du

dx
+ u + 2u

du

dx
,

Rearranging, we get
du

dx
(x + 2u) = 0.

Aiming first for the regular solution, we demand that

du

dx
= 0.



This gives
u = C.

or
v = Cx + C2.

Since v(0) = 1, we get
1 = C(0) + C2.

So
C = ±1,

and
v = 1 ± x.

Returning to y, we then get

dy

dx
= 1 ± x, y(0) = 0.

Integrating, we get

y(x) = x ±
x2

2
+ C.

Applying the initial condition, we get

0 = C.

Thus, we find two solutions which satisfy the initial conditions and the ordinary differ-
ential equation:

y(x) = x
(

1 ±
x

2

)

.

This illustrates the property that non-unique solutions can exist for non-linear differen-
tial equations.

5. (20) Consider the transformation from non-Cartesian coordinates (x1, x2) to
Cartesian coordinates (ξ1, ξ2):

ξ1 = (x1)2,

ξ2 = x1 + 2x2.

A vector field u has Cartesian representation U i = (2ξ1, 3ξ2)T . Find

(a) the metric tensor of the transformation, and

(b) an expression for the vector field components ui in the non-Cartesian sys-
tem, (x1, x2).

Solution

This problem was a mixed bag. There was no need to get the inverse transform, as many
tried. Many people got the Jacobian right, but flunked simple matrix multiplication to
get the metric tensor. A small number of people realized that one only need employ



the definition of a contravariant vector to get the representation in the transformed
coordinates.

First, get the Jacobian matrix:

J =
∂ξi

∂xj
=

(
∂ξ1

∂x1

∂ξ1

∂x2

∂ξ2

∂x1

∂ξ2

∂x2

)

=

(
2x1 0
1 2

)

For the metric tensor, we get then

G = J
T · J =

(
2x1 1
0 2

)

·

(
2x1 0
1 2

)

=

(

4
(
x1
)2

+ 1 2
2 4

)

From the definition of contravariance, U i = ∂ξi

∂xl u
l,

U1 =
∂ξ1

∂x1
u1 +

∂ξ1

∂x2
u2 = 2x1u1.

U2 =
∂ξ2

∂x1
u1 +

∂ξ2

∂x2
u2 = u1 + 2u2.

So

u1 =
U1

2x1
=

2ξ1

2x1
=

2(x1)2

2x1
= x1,

u2 =
U2

2
−

u1

2
=

3ξ2

2
−

x1

2
=

3

2
(x1 + 2x2) −

x1

2
= x1 + 3x2.

Thus
ui = (u1, u2)T = (x1, x1 + 3x2)T .


