AME 60611
Examination 2
J. M. Powers

26 November 2007

1. (20) Consider the lines in \mathbb{E}^{3} given by

$$
x=y=z
$$

and

$$
3 x+y=y+1=z-1
$$

It is straightforward to find the distance from a point on one line to a point on the other. Find the coordinates of the two points, one on each line, which minimizes this distance, and find the value of the distance.
2. (20) Find \mathbf{x} of minimum $\|\mathbf{x}\|_{2}$ which minimizes $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{cc}
1+i & i \\
2+2 i & 2 i \\
1 & 0
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

3. (20) In \mathbb{R}^{3}, a set of vectors is given as

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

(a) Determine if these form a basis in \mathbb{R}^{3}.
(b) Find the reciprocal basis.
4. (20) Use a one-term Galerkin method with a polynomial basis function to estimate the solution to the differential equation

$$
\frac{d^{3} y}{d x^{3}}+y=x, \quad y(0)=0, y(1)=0, y^{\prime}(0)=0
$$

5. (20) Use Cartesian index notation to prove the identity

$$
\nabla \times(\nabla \times \mathbf{u})=\nabla(\nabla \cdot \mathbf{u})-\nabla \cdot \nabla \mathbf{u}
$$

