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1. (25) Find the minimum distance between the ellipse de-

scribed by x2 + 4y2 = 1 and the line x + y = 2.

Solution

Most people had foundational difficulties with this problem. It was not a Lagrange
multiplier problem, as assumed by most. A few people were on the right track, which
needed to account for the reality that there were two points to find, both with unknown
coordinates.

The ellipse and the line are plotted in Fig. ??.
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Figure 1: Plot relevant ellipse, line, and points of minimum distance.

Let us consider the point on the ellipse to be (x1, y1). Let us consider the point on the
line to be (x2, y2). For the point on the ellipse we have

x2

1
+ 4y2

1
= 1,



so

y1 =
±
√

1 − x2

1

2
.

Examining Fig. ??, we can infer that the “+” root is the appropriate root, so

y1 =

√

1 − x2

1

2
.

For the line, we have
y2 = 2 − x2.

Now take the distance between (x1, y1) and (x2, y2) to be ℓ. By the distance formula
from analytic geometry, we have

ℓ2 = (x2 − x1)
2 + (y2 − y1)

2.

Eliminating y1 and y2, we find

ℓ2 = (x2 − x1)
2 +

(

2 − x2 −
1

2

√

1 − x2

1

)2

.

Now, if we minimize ℓ2, we also minimize ℓ, so let us focus on choosing an appropriate
x1 and x2 so as to minimize ℓ2; this requires that the appropriate partial derivatives of
ℓ2 with respect to x1 and x2 be zero:

∂ℓ2

∂x1

∣

∣

∣

∣

x2

= x1

(

2 − x2 − 1

2

√

1 − x2

1
√

1 − x2

1

)

− 2(x2 − x1) = 0.

∂ℓ2

∂x2

∣

∣

∣

∣

x1

= −2

(

2 − x2 −
1

2

√

1 − x2

1

)

+ 2(x2 − x1) = 0.

These provide two equations in two unknowns for x1 and x2. Solving the second for x2,
we find

x2 =
1

4

(

4 + 2x1 −
√

1 − x2

1

)

.

Use this to eliminate x2 from the first, and then factor to obtain
(

−4 + 2x1 +
√

1 − x2

1

)(

−x1 + 2
√

1 − x2

1

)

= 0.

Solving for x1, we find

x1 =
2√
5
,

8 ± i
√

11

5
.

We take the real root only, so x1 = 2/
√

5. For this root, we then recover

x2 =
1

20

(

20 + 3
√

5
)

.

We then solve for y1 and y2 and find the points on the ellipse and line, respectively, to
be

(x1, y1) =

(

2√
5
,

1

2
√

5

)

.

(x2, y2) =

(

1

20

(

20 + 3
√

5
)

, 2 − 1

20

(

20 + 3
√

5
)

)

.

The corresponding distance between these two points is

ℓ =

√

(

− 2√
5

+
1

20

(

20 + 3
√

5
)

)2

+

(

2 − 1

2
√

5
− 1

20

(

20 + 3
√

5
)

)2

= 0.623644...



2. (25) Find the appropriate Green’s function solution for the differential equation

d3y

dx3
= f(x), y(0) = 0, y′(0) = 0, y′′(0) = 0.

Test your method if f(x) = 1.

Solution

Most people got a good start on this. Many got lost in the algebra. Many plowed
through to a correct answer.

First consider x < s. The Green’s function must satisfy the homogeneous version of the
governing equation everywhere in this domain, so

d3g

dx3
= 0,

d2g

dx2
= C1,

dg

dx
= C1x + C2,

g(x, s) =
1

2
C1x

2 + C2x + C3.

Now since this is valid for x < s, this portion of g(x, s) must satisfy the boundary
conditions at x = 0. By inspection, this requires that C1 = C2 = C3 = 0, so we have

g(x, s) = 0, x < s.

For x > s, the equation for g(x, s) must again satisfy the homogeneous portion of the
governing equation. Thus we find again that

d3g

dx3
= 0,

d2g

dx2
= B1,

dg

dx
= B1x + B2,

g(x, s) =
1

2
B1x

2 + B2x + B3, x > s.

Now, at x = s, we have continuity of g, dg/dx, and a jump condition for d2g/dx2. They
are

0 =
1

2
B1s

2 + B2s + B3,

0 = B1s + B2

1 = B1.

Solving gives
B1 = 1,



B2 = −s,

B3 =
1

2
s2.

So

g(x, s) =
1

2
x2 − sx +

1

2
s2 =

1

2
(x − s)2, x > s.

So the general solution for arbitrary f(x) is

y(x) =

∫ x

0

f(s)g(x, s)ds +

∫

∞

x

f(s)g(x, s)ds.

y(x) =

∫ x

0

f(s)
1

2
(x − s)2ds +

∫

∞

x

f(s)0ds.

y(x) =

∫ x

0

f(s)
1

2
(x − s)2ds

Note that y(0) = 0 by construction. The first derivative, by Leibniz’s rule, is

dy

dx
=

∫ x

0

f(s)(x − s)ds.

Note that y′(0) = 0. The second derivative, by Leibniz’s rule, is

d2y

dx2
=

∫ x

0

f(s)ds.

Note the y′′(0) = 0. The third derivative, by Leibniz’s rule, is

d3y

dx3
= f(x),

which is the original equation.

Let us check this when f(x) = 1.

y(x) =

∫ x

0

(1)
1

2
(x − s)2ds.

y(x) = − 1

2

1

3
(x − s)3

∣

∣

∣

∣

s=x

s=0

,

y(x) =
x3

6
.

By inspection y′ = x2/2, y′′ = x, y′′′ = 1, and all of the conditions are satisfied at x = 0.

3. (25) Find an exact solution for y(x) if

x2
d2y

dx2
+ y = 0, y(1) = 0, y′(1) = 1.



Solution

This is an Euler equation. Many people recognized this but did not follow through well.
Some made a lot of progress on this.

Let us take the transformation
z = lnx.

The inverse transformation is thus

x = ez.

When x = 1, we get z = 0. We also have

dz

dx
=

1

x
= e−z.

Thus
dy

dx
=

dy

dz

dz

dx
= e−z dy

dz
.

Thus
d

dx
= e−z d

dz
.

Transforming the original ODE into z space, we find

e2ze−z d

dz

(

e−z dy

dz

)

+ y = 0, y(0) = 0,
dy

dz
(0) = 1.

Expanding, we get
d2y

dz2
− dy

dz
+ y = 0.

This is linear with constant coefficients. Take y = Aerz, which yields a characteristic
polynomial

r2 − r + 1 = 0.

This has roots

r =
1

2
± i

√
3

2
.

So we can say

y(z) = ez/2

(

C1 sin

(√
3z

2

)

+ C2 cos

(√
3z

2

))

.

Now y(z = 0) = 0, so we find C2 = 0. This leaves us with

y(z) = C1e
z/2 sin

(√
3z

2

)

.

The derivative is

dy

dz
= C1e

z/2

(√
3

2
cos

(√
3z

2

)

+
1

2
sin

(√
3z

2

))

Imposing the boundary condition, we get

1 = C1

(√
3

2

)



So

C1 =
2√
3
,

and

y(z) =
2√
3
ez/2 sin

(√
3z

2

)

.

In terms of x, we get

y(x) =
2
√

x√
3

sin

(√
3 lnx

2

)

.

The character of the solution is best revealed in the log-log plot of Fig. ??. We plot
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Figure 2: |y(x)| for solution to x2y′′ + y = 0, y(1) = 0, y′(1) = 1.

|y| because y itself is often negative, and this cannot be plotted on the log scale. The
spikes indicated where zero crossings occur on a linear scale. We see there are many
zero crossings. Moreover the amplitude is growing as

√
x. This is manifested as linear

amplitude growth on the log scale.

4. (25) For 0 < ǫ << 1, find a uniformly valid approximate solution to y(x) which
satisfies the differential equation and boundary conditions

ǫ
d2y

dx2
+

dy

dx
+ xy2 = 0, y(0) = 1, y(1) = 1.

Solution

Most people made a good try at this and a few got it fully correct.



First get the outer solution. Set ǫ = 0 and solve

dy

dx
+ xy2 = 0.

By separation of variables, we get

−dy

y2
= xdx.

Solving, we get
1

y
=

1

2
x2 + C,

y =
2

x2 + 2C
.

Let’s match the condition at x = 1 for the outer solution. If this proves not to work, we
can try the other choice. But it will work, so there will be no need.

1 =
2

12 + 2C
.

2C + 1 = 2.

C =
1

2
.

Thus

youter =
2

x2 + 1
.

Note that youter(0) = 2, which does not satisfy the boundary condition at x = 0. So we
need an inner layer.

Let’s try a new variable:

X =
x

ǫ
.

This gives d/dx = (1/ǫ)d/dX , and our differential equation transforms to

1

ǫ

d2y

dX2
+

1

ǫ

dy

dX
+ ǫXy2 = 0.

d2y

dX2
+

dy

dX
+ ǫ2Xy2 = 0.

At leading order this becomes

d2y

dX2
+

dy

dX
= 0.

Assuming solutions of the type, y = Aerx, we find a characteristic polynomial of r2 +r =
0, which has solutions r = 0,−1. So

yinnner = C1 + C2e
−X .

Now at x = 0, we have
1 = C1 + C2e

−0,

so
C2 = 1 − C1.

Thus
yinner = C1 + (1 − C1)e

−X .



Now as x → 0, we have youter → 2. And as X → ∞, we have

yinner → C1.

So for a proper matching, we require C1 = 2. Adding the inner and outer solutions,
then subtraction the common part of 2, we recover the uniformly valid solution

y ∼ 2

x2 + 1
− e−x/ǫ.

The full solution obtained by numerical integration, the outer solution, and the uniformly
valid solution are plotted in Fig. ??.
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Figure 3: Full, outer, and uniformly valid asymptotic solution to ǫy′′ + y′ + xy2 =
0, y(0) = 1, y(1) = 1, ǫ = 1/20.


