AME 60611
Examination 2
Prof. J. M. Powers
21 November 2008

1. (20) Given $x \in \mathbb{R}^{1}, f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$,

$$
f(x)=e^{x}, \quad x \in[-1,1],
$$

find the first two terms in a Fourier-Legendre expansion of $f(x)$. The first two Legendre polynomials are $P_{o}(s)=1, P_{1}(s)=s$, $s \in[-1,1]$.
2. (20) If $\mathbf{u}=x \mathbf{i}+y \mathbf{j}$, evaluate

$$
I=\oint_{C} \mathbf{u}^{T} \cdot d \mathbf{r}
$$

where C is a single loop around the closed contour described by the ellipse, $x^{2}+2 y^{2}=1$.
3. (20) For $x \in \overline{\mathbb{L}}_{2}[0,1], y \in \overline{\mathbb{L}}_{2}[0,1], t \in \mathbb{R}^{1}$, find the angle between the two functions

$$
\begin{aligned}
x(t) & =i t, \\
y(t) & =i .
\end{aligned}
$$

4. (20) For $\mathbf{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, find the vector $\mathbf{x} \in \mathbb{R}^{3}$ of minimum $\|\mathbf{x}\|_{2}$ which minimizes $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 6 & 3
\end{array}\right), \quad \mathbf{b}=\binom{2}{3}
$$

5. (20) Find the singular value decomposition of \mathbf{A} where

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 4 i & 0
\end{array}\right) .
$$

