AME 60611
Examination 1: Solution
J. M. Powers

2 October 2009

1. (25) If

$$
u^{2}+v^{2}+x^{2}+y^{2}=1, \quad u+2 v^{3}+3 x^{3}+4 y^{4}=0
$$

find $\left.\frac{\partial u}{\partial x}\right|_{y}$.

Solution

Let

$$
\begin{gathered}
f(u, v, x, y)=u^{2}+v^{2}+x^{2}+y^{2}-1=0, \\
g(u, v, x, y)=u+2 v^{3}+3 x^{3}+4 y^{4}=0 .
\end{gathered}
$$

Then, differentiating gives

$$
\begin{aligned}
d f & =2 u d u+2 v d v+2 x d x+2 y d y=0 \\
d g & =d u+6 v^{2} d v+9 x^{2} d x+16 y^{3} d y=0 .
\end{aligned}
$$

Now, we consider $d y=0$, so

$$
\begin{aligned}
d f & =2 u d u+2 v d v+2 x d x=0, \\
d g & =d u+6 v^{2} d v+9 x^{2} d x=0 .
\end{aligned}
$$

Divide by $d x$ to get

$$
\begin{gathered}
\left.2 u \frac{\partial u}{\partial x}\right|_{y}+\left.2 v \frac{\partial v}{\partial x}\right|_{y}+2 x=0 \\
\left.\frac{\partial u}{\partial x}\right|_{y}+\left.6 v^{2} \frac{\partial v}{\partial x}\right|_{y}+9 x^{2}=0 .
\end{gathered}
$$

In matrix form, we get

$$
\left(\begin{array}{cc}
2 u & 2 v \\
1 & 6 v^{2}
\end{array}\right)\binom{\left.\frac{\partial u}{\partial x}\right|_{y}}{\left.\frac{\partial v}{\partial x}\right|_{y}}=\binom{-2 x}{-9 x^{2}} .
$$

Solve for $\left.\frac{\partial u}{\partial x}\right|_{y}$ via Cramer's rule:

$$
\left.\frac{\partial u}{\partial x}\right|_{y}=\frac{\left|\begin{array}{cc}
-2 x & 2 v \\
-9 x^{2} & 6 v^{2}
\end{array}\right|}{\left|\begin{array}{cc}
2 u & 2 v \\
1 & 6 v^{2}
\end{array}\right|}=\frac{-12 x v^{2}+18 x^{2} v}{12 u v^{2}-2 v}=\frac{-6 x v+9 x^{2}}{6 u v-1} .
$$

2. (25) Solve

$$
\frac{d^{3} y}{d x^{3}}+x \frac{d^{2} y}{d x^{2}}=x, \quad y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=0 .
$$

(You may find the error function, defined as $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s$, to be useful.)

Solution

First note, there was a small error in the definition of the error function posted in the exam. The present version is correct.
Let $u=d^{2} y / d x^{2}$. Then the equation becomes

$$
\frac{d u}{d x}+x u=x, \quad u(0)=0
$$

This has an integrating factor of

$$
e^{\int x d x}=e^{x^{2} / 2}
$$

Multiply the first order ODE by the integrating factor to get

$$
e^{x^{2} / 2} \frac{d u}{d x}+x e^{x^{2} / 2} u=x e^{x^{2} / 2}
$$

Use the product rule and obtain

$$
\frac{d}{d x}\left(e^{x^{2} / 2} u\right)=x e^{x^{2} / 2}
$$

Integrate both sides and recover

$$
e^{x^{2} / 2} u=\int x e^{x^{2} / 2} d x
$$

For the right side, take $v=x^{2} / 2$, so $d v=x d x$. The integral on the right side is then

$$
\int x e^{x^{2} / 2} d x=\int e^{v} d v=e^{v}+C_{1}=e^{x^{2} / 2}+C
$$

So we get

$$
e^{x^{2} / 2} u=e^{x^{2} / 2}+C_{1}
$$

or

$$
u=1+C_{1} e^{-x^{2} / 2}
$$

For $u(0)=0$, we need $C_{1}=-1$, so

$$
u=1-e^{-x^{2} / 2}
$$

Now return to y :

$$
\frac{d^{2} y}{d x^{2}}=1-e^{-x^{2} / 2}
$$

Integrate to get

$$
\frac{d y}{d x}=x-\int_{0}^{x} e^{-s^{2} / 2} d s+C_{2}
$$

We need $y^{\prime}(0)=0$, so $C_{2}=0$. Thus

$$
\frac{d y}{d x}=x-\int_{0}^{x} e^{-s^{2} / 2} d s
$$

Integrate once more to get

$$
y(x)=\frac{1}{2} x^{2}-\int_{0}^{x} \int_{0}^{t} e^{-s^{2} / 2} d s d t+C_{3}
$$

Now $y(0)=0$, so $C_{3}=0$. Thus,

$$
y(x)=\frac{1}{2} x^{2}-\int_{0}^{x} \int_{0}^{t} e^{-s^{2} / 2} d s d t
$$

Some simplification can be done on this expression. This can be achieved by changing the order of integration. Care must be used to change the limits correctly. In $s-t$ space, the domain of integration is a triangular region bounded by $s=0, s=t$, then by $t=0, t=x$. This is emphasized by explicitly writing

$$
y(x)=\frac{1}{2} x^{2}-\int_{t=0}^{t=x} \int_{s=0}^{s=t} e^{-s^{2} / 2} d s d t .
$$

Let us now change the order of integration:

$$
y(x)=\frac{1}{2} x^{2}-\int_{s=0}^{s=x} \int_{t=s}^{t=x} e^{-s^{2} / 2} d t d s
$$

We can then bring $e^{-s^{2} / 2}$ outside the first integral to get

$$
y(x)=\frac{1}{2} x^{2}-\int_{s=0}^{s=x} e^{-s^{2} / 2} \int_{t=s}^{t=x} d t d s
$$

The inner integral can then be taken and evaluated at the appropriate limits to get

$$
y(x)=\frac{1}{2} x^{2}-\int_{s=0}^{s=x} e^{-s^{2} / 2}(x-s) d s
$$

Now split the integral into two parts:

$$
y(x)=\frac{1}{2} x^{2}-x \int_{s=0}^{s=x} e^{-s^{2} / 2} d s+\int_{s=0}^{s=x} s e^{-s^{2} / 2} d s
$$

Taking once more $v=-s^{2} / 2$ with $d v=-s d s$, we get

$$
y(x)=\frac{1}{2} x^{2}-x \int_{s=0}^{s=x} e^{-s^{2} / 2} d s-\int_{v=0}^{v=-x^{2} / 2} e^{v} d v
$$

Integrating the final term, we find

$$
y(x)=\frac{1}{2} x^{2}-x \int_{s=0}^{s=x} e^{-s^{2} / 2} d s-\left(e^{-x^{2} / 2}-1\right)
$$

Rearranging, we get

$$
y(x)=1+\frac{1}{2} x^{2}-e^{-x^{2} / 2}-x \int_{0}^{x} e^{-s^{2} / 2} d s
$$

In terms of the error function, we can take $\tau=s / \sqrt{2}$. This gives $d \tau=d s / \sqrt{2}$, or $d s=\sqrt{2} d \tau$. So our solution becomes

$$
\begin{gathered}
y(x)=1+\frac{1}{2} x^{2}-e^{-x^{2} / 2}-\frac{\sqrt{2 \pi}}{\sqrt{\pi}} \frac{\sqrt{2}}{\sqrt{2}} x \int_{0}^{x / \sqrt{2}} e^{-\tau^{2}} d \tau . \\
y(x)=1+\frac{1}{2} x^{2}-e^{-x^{2} / 2}-\frac{2 \sqrt{\pi}}{\sqrt{\pi}} \frac{1}{\sqrt{2}} x \int_{0}^{x / \sqrt{2}} e^{-\tau^{2}} d \tau \\
y(x)=1+\frac{1}{2} x^{2}-e^{-x^{2} / 2}-\sqrt{\frac{\pi}{2}} x \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) .
\end{gathered}
$$

The solution is plotted in Fig. 1.

Figure 1: $y(x)$ for problem 2
3. (25) For $0<\epsilon \ll 1$, use boundary layer methods to find a uniformly valid asymptotic solution to

$$
\epsilon \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}-y=0, \quad y(0)=0, y(1)=0
$$

Solution

The problem is linear, so if a solution exists, it will be unique. By inspection, the solution

$$
y(x)=0
$$

satisfies the differential equation and both boundary conditions, so this is the uniformly valid solution!

Solution

The problem is more interesting when my typographical error is removed, and the boundary conditions are replaced by $y(0)=y(1)=1$. In this case, we first look for the outer solution by solving

$$
-x^{2} \frac{d y}{d x}-y=0
$$

We separate variables to get

$$
\begin{gathered}
\frac{d y}{y}=-\frac{d x}{x^{2}} \\
\ln y=\frac{1}{x}+C^{\prime} .
\end{gathered}
$$

Solving for y, taking $C_{o}=e^{C^{\prime}}$, we find

$$
y=C_{o} e^{1 / x}
$$

Let us put a boundary layer of thickness ϵ at $x=1$. So let us define a transformed distance as

$$
X \equiv \frac{1-x}{\epsilon}
$$

So $d X / d x=-1 / \epsilon$. By the chain rule $d y / d x=(d y / d X)(d X / d x)=-(1 / \epsilon) d y / d X$. Thus $d^{2} y / d x^{2}=\left(1 / \epsilon^{2}\right) d^{2} y / d X^{2}$. So our ODE becomes

$$
\begin{gathered}
\epsilon \frac{1}{\epsilon^{2}} \frac{d^{2} y}{d X^{2}}+(\epsilon X-1)^{2} \frac{1}{\epsilon} \frac{d y}{d X}-y=0 \\
\frac{d^{2} y}{d X^{2}}+(\epsilon X-1)^{2} \frac{d y}{d X}-\epsilon y=0
\end{gathered}
$$

At leading order, this reduces to

$$
\frac{d^{2} y}{d X^{2}}+\frac{d y}{d X}=0
$$

This has solution

$$
y=A_{o}+B_{o} e^{-X}
$$

Now at $x=1$, we have $X=0$ and $y=1$. So $1=A_{o}+B_{o}$, so we have in the layer near $x=1$ that

$$
y=A_{o}+\left(1-A_{o}\right) e^{-X}
$$

Now as we move back towards $x=0$, we find that $X \rightarrow \infty$, and the boundary layer solution goes to $y=A_{o}$. This must match to the outer solution which has $y \rightarrow C_{o} e$ as $x \rightarrow 1$. So we take

$$
A_{o}=C_{o} e
$$

So the inner solution near $x=1$ is

$$
y=C_{o} e+\left(1-C_{o} e\right) e^{-X}=C_{o} e+\left(1-C_{o} e\right) e^{\frac{x-1}{\epsilon}}
$$

Now the outer solution also has a problem at $x=0$. So let us propose a boundary layer near $x=0$. Let us suggest a transformed variable of

$$
Z=\frac{x}{\epsilon^{\alpha}} .
$$

So $d Z / d x=\epsilon^{-\alpha}, d y / d x=d y / d Z d Z / d x=\epsilon^{-\alpha} d y / d Z$, and $d^{2} y / d x^{2}=\epsilon^{-2 \alpha} d^{2} y / d Z^{2}$. Our ODE become in this region

$$
\epsilon^{1-2 \alpha} \frac{d^{2} y}{d Z^{2}}-\epsilon^{\alpha} Z^{2} \frac{d y}{d Z}-y=0
$$

Let us balance the first and third terms. Other choices could be made, but lead to inconsistencies. So choose α such that $1-2 \alpha=0$. This gives $\alpha=1 / 2$. So our scaling is $Z=x / \epsilon^{1 / 2}$, and our ODE becomes

$$
\frac{d^{2} y}{d Z^{2}}-\epsilon^{1 / 2} Z^{2} \frac{d y}{d Z}-y=0
$$

At leading order, this is

$$
\frac{d^{2} y}{d Z^{2}}-y=0
$$

This has solution

$$
y=D_{o} e^{Z}+E_{o} e^{-Z}
$$

At the boundary at $x=0$, we have $Z=0$ and $y=1$. Thus we insist that

$$
1=D_{o}+E_{o}
$$

To prevent exponential growth away from $x=0$, we insist next that $D_{o}=0$. Thus $E_{o}=1$. So we have in the inner layer that

$$
y=e^{-Z}
$$

In order to match the inner layer to the outer layer we must take

$$
C_{o}=0 .
$$

So our composite solution is the two inners plus the outer (zero) minus the two common parts (both of which are zero):

$$
y=e^{-x / \epsilon^{1 / 2}}+e^{\frac{x-1}{\epsilon}}
$$

The solution is plotted in Fig. 2.

Figure 2: $y(x)$ for the modified problem 3: $\epsilon y^{\prime \prime}-x^{2} y^{\prime}-y=0, y(0)=y(1)=1$. Here $\epsilon=0.02$.
4. (25) Find a general solution to

$$
\frac{d^{2} y}{d x^{2}}+y=x^{2}+e^{x}
$$

Solution

The homogeneous part has solution

$$
y=C_{1} \sin x+C_{2} \cos x
$$

For the particular solution, we look for solutions of the form

$$
y=A_{0}+A_{1} x+A_{2} x^{2}+B_{0} e^{x}
$$

The first and second derivatives of the particular solution are

$$
\begin{gathered}
\frac{d y}{d x}=A_{1}+2 A_{2} x+B_{0} e^{x} \\
\frac{d^{2} y}{d x^{2}}=2 A_{2}+B_{0} e^{x}
\end{gathered}
$$

Substituting into the ODE, we get

$$
2 A_{2}+B_{0} e^{x}+A_{0}+A_{1} x+A_{2} x^{2}+B_{0} e^{x}=x^{2}+e^{x}
$$

Regrouping, we find

$$
\left(2 A_{2}+A_{0}\right) x^{0}+\left(A_{1}\right) x^{1}+\left(A_{2}-1\right) x^{2}+\left(2 B_{0}-1\right) e^{x}=0
$$

Since all the functions of x are linearly independent, we insist that their coefficients be zero, leading to a solution of

$$
\begin{aligned}
A_{0} & =-2 \\
A_{1} & =0 \\
A_{2} & =1 \\
B_{0} & =\frac{1}{2}
\end{aligned}
$$

Thus the general solution is

$$
y=C_{1} \sin x+C_{2} \cos x-2+x^{2}+\frac{1}{2} e^{x}
$$

