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1. (25) If
u2 + v2 + x2 + y2 = 1, u + 2v3 + 3x3 + 4y4 = 0,

find ∂u
∂x

∣

∣

y
.

Solution

Let
f(u, v, x, y) = u2 + v2 + x2 + y2 − 1 = 0,

g(u, v, x, y) = u + 2v3 + 3x3 + 4y4 = 0.

Then, differentiating gives

df = 2u du + 2v dv + 2x dx + 2y dy = 0,

dg = du + 6v2 dv + 9x2 dx + 16y3 dy = 0.

Now, we consider dy = 0, so

df = 2u du + 2v dv + 2x dx = 0,

dg = du + 6v2 dv + 9x2 dx = 0.

Divide by dx to get

2u
∂u

∂x

∣

∣

∣

∣

y

+ 2v
∂v

∂x

∣

∣

∣

∣

y

+ 2x = 0,

∂u

∂x

∣

∣

∣

∣

y

+ 6v2
∂v

∂x

∣

∣

∣

∣

y

+ 9x2 = 0.

In matrix form, we get

(

2u 2v
1 6v2

)

(

∂u
∂x

∣

∣

y
∂v
∂x

∣

∣

y

)

=

(

−2x
−9x2

)

.

Solve for ∂u
∂x

∣

∣

y
via Cramer’s rule:

∂u

∂x

∣

∣

∣

∣

y

=

∣

∣

∣

∣

−2x 2v
−9x2 6v2

∣

∣

∣

∣

∣

∣

∣

∣

2u 2v
1 6v2

∣

∣

∣

∣

=
−12xv2 + 18x2v

12uv2 − 2v
=

−6xv + 9x2

6uv − 1
.



2. (25) Solve

d3y

dx3
+ x

d2y

dx2
= x, y(0) = 0, y′(0) = 0, y′′(0) = 0.

(You may find the error function, defined as erf(x) = 2√
π

∫ x

0
e−s2

ds, to be

useful.)

Solution

First note, there was a small error in the definition of the error function posted in the
exam. The present version is correct.

Let u = d2y/dx2. Then the equation becomes

du

dx
+ xu = x, u(0) = 0.

This has an integrating factor of

e
R

x dx = ex2/2.

Multiply the first order ODE by the integrating factor to get

ex2/2
du

dx
+ xex2/2u = xex2/2.

Use the product rule and obtain

d

dx

(

ex2/2u
)

= xex2/2.

Integrate both sides and recover

ex2/2u =

∫

xex2/2 dx.

For the right side, take v = x2/2, so dv = x dx. The integral on the right side is then

∫

xex2/2 dx =

∫

ev dv = ev + C1 = ex2/2 + C.

So we get

ex2/2u = ex2/2 + C1,

or
u = 1 + C1e

−x2/2.

For u(0) = 0, we need C1 = −1, so

u = 1 − e−x2/2.

Now return to y:
d2y

dx2
= 1 − e−x2/2.

Integrate to get
dy

dx
= x −

∫ x

0

e−s2/2 ds + C2.



We need y′(0) = 0, so C2 = 0. Thus

dy

dx
= x −

∫ x

0

e−s2/2 ds.

Integrate once more to get

y(x) =
1

2
x2 −

∫ x

0

∫ t

0

e−s2/2 ds dt + C3.

Now y(0) = 0, so C3 = 0. Thus,

y(x) =
1

2
x2 −

∫ x

0

∫ t

0

e−s2/2 ds dt.

Some simplification can be done on this expression. This can be achieved by changing
the order of integration. Care must be used to change the limits correctly. In s − t
space, the domain of integration is a triangular region bounded by s = 0, s = t, then by
t = 0, t = x. This is emphasized by explicitly writing

y(x) =
1

2
x2 −

∫ t=x

t=0

∫ s=t

s=0

e−s2/2 ds dt.

Let us now change the order of integration:

y(x) =
1

2
x2 −

∫ s=x

s=0

∫ t=x

t=s

e−s2/2 dt ds.

We can then bring e−s2/2 outside the first integral to get

y(x) =
1

2
x2 −

∫ s=x

s=0

e−s2/2

∫ t=x

t=s

dt ds.

The inner integral can then be taken and evaluated at the appropriate limits to get

y(x) =
1

2
x2 −

∫ s=x

s=0

e−s2/2(x − s) ds.

Now split the integral into two parts:

y(x) =
1

2
x2 − x

∫ s=x

s=0

e−s2/2 ds +

∫ s=x

s=0

se−s2/2 ds

Taking once more v = −s2/2 with dv = −sds, we get

y(x) =
1

2
x2 − x

∫ s=x

s=0

e−s2/2 ds −

∫ v=−x2/2

v=0

ev dv

Integrating the final term, we find

y(x) =
1

2
x2 − x

∫ s=x

s=0

e−s2/2 ds −
(

e−x2/2 − 1
)

.

Rearranging, we get

y(x) = 1 +
1

2
x2 − e−x2/2 − x

∫ x

0

e−s2/2 ds.



In terms of the error function, we can take τ = s/
√

2. This gives dτ = ds/
√

2, or
ds =

√
2dτ . So our solution becomes

y(x) = 1 +
1

2
x2 − e−x2/2 −

√
2π

√
π

√
2

√
2
x

∫ x/
√

2

0

e−τ2

dτ.

y(x) = 1 +
1

2
x2 − e−x2/2 −

2
√

π
√

π

1
√

2
x

∫ x/
√

2

0

e−τ2

dτ.

y(x) = 1 +
1

2
x2 − e−x2/2 −

√

π

2
x erf

(

x
√

2

)

.

The solution is plotted in Fig. 1.
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Figure 1: y(x) for problem 2

3. (25) For 0 < ǫ << 1, use boundary layer methods to find a uniformly valid
asymptotic solution to

ǫ
d2y

dx2
− x2

dy

dx
− y = 0, y(0) = 0, y(1) = 0.

Solution

The problem is linear, so if a solution exists, it will be unique. By inspection, the solution

y(x) = 0,

satisfies the differential equation and both boundary conditions, so this is the uniformly
valid solution!



Solution

The problem is more interesting when my typographical error is removed, and the bound-
ary conditions are replaced by y(0) = y(1) = 1. In this case, we first look for the outer
solution by solving

−x2
dy

dx
− y = 0.

We separate variables to get
dy

y
= −

dx

x2
.

ln y =
1

x
+ C′.

Solving for y, taking Co = eC′

, we find

y = Coe
1/x.

Let us put a boundary layer of thickness ǫ at x = 1. So let us define a transformed
distance as

X ≡
1 − x

ǫ
.

So dX/dx = −1/ǫ. By the chain rule dy/dx = (dy/dX)(dX/dx) = −(1/ǫ)dy/dX . Thus
d2y/dx2 = (1/ǫ2)d2y/dX2. So our ODE becomes

ǫ
1

ǫ2
d2y

dX2
+ (ǫX − 1)2

1

ǫ

dy

dX
− y = 0.

d2y

dX2
+ (ǫX − 1)2

dy

dX
− ǫy = 0.

At leading order, this reduces to

d2y

dX2
+

dy

dX
= 0.

This has solution
y = Ao + Boe

−X .

Now at x = 1, we have X = 0 and y = 1. So 1 = Ao + Bo, so we have in the layer near
x = 1 that

y = Ao + (1 − Ao)e
−X .

Now as we move back towards x = 0, we find that X → ∞, and the boundary layer
solution goes to y = Ao. This must match to the outer solution which has y → Coe as
x → 1. So we take

Ao = Coe.

So the inner solution near x = 1 is

y = Coe + (1 − Coe)e
−X = Coe + (1 − Coe)e

x−1

ǫ .

Now the outer solution also has a problem at x = 0. So let us propose a boundary layer
near x = 0. Let us suggest a transformed variable of

Z =
x

ǫα
.



So dZ/dx = ǫ−α, dy/dx = dy/dZdZ/dx = ǫ−αdy/dZ, and d2y/dx2 = ǫ−2αd2y/dZ2. Our
ODE become in this region

ǫ1−2α d2y

dZ2
− ǫαZ2

dy

dZ
− y = 0.

Let us balance the first and third terms. Other choices could be made, but lead to
inconsistencies. So choose α such that 1 − 2α = 0. This gives α = 1/2. So our scaling
is Z = x/ǫ1/2, and our ODE becomes

d2y

dZ2
− ǫ1/2Z2

dy

dZ
− y = 0.

At leading order, this is
d2y

dZ2
− y = 0.

This has solution
y = Doe

Z + Eoe
−Z .

At the boundary at x = 0, we have Z = 0 and y = 1. Thus we insist that

1 = Do + Eo.

To prevent exponential growth away from x = 0, we insist next that Do = 0. Thus
Eo = 1. So we have in the inner layer that

y = e−Z .

In order to match the inner layer to the outer layer we must take

Co = 0.

So our composite solution is the two inners plus the outer (zero) minus the two common
parts (both of which are zero):

y = e−x/ǫ1/2

+ e
x−1

ǫ .

The solution is plotted in Fig. 2.
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Figure 2: y(x) for the modified problem 3: ǫy′′ − x2y′ − y = 0, y(0) = y(1) = 1. Here
ǫ = 0.02.



4. (25) Find a general solution to

d2y

dx2
+ y = x2 + ex.

Solution

The homogeneous part has solution

y = C1 sin x + C2 cosx.

For the particular solution, we look for solutions of the form

y = A0 + A1x + A2x
2 + B0e

x.

The first and second derivatives of the particular solution are

dy

dx
= A1 + 2A2x + B0e

x.

d2y

dx2
= 2A2 + B0e

x.

Substituting into the ODE, we get

2A2 + B0e
x + A0 + A1x + A2x

2 + B0e
x = x2 + ex.

Regrouping, we find

(2A2 + A0)x
0 + (A1)x

1 + (A2 − 1)x2 + (2B0 − 1)ex = 0.

Since all the functions of x are linearly independent, we insist that their coefficients be
zero, leading to a solution of

A0 = −2,

A1 = 0,

A2 = 1,

B0 =
1

2
.

Thus the general solution is

y = C1 sin x + C2 cosx − 2 + x2 +
1

2
ex.


