AME 60611
Examination 2
J. M. Powers

23 November 2009

1. (20) For $x \in[0,3]$, find the first two terms in a Fourier-Legendre expansion of the Heaviside unit step function:

$$
f(x)=H(x-1)
$$

The first two Legendre polynomials are $P_{o}(s)=1, P_{1}(s)=s$, for $s \in[-1,1]$.
2. (20) Given

$$
\mathbf{A}=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)
$$

where $\alpha \in \mathbb{R}^{1}, \beta \in \mathbb{R}^{1}, \gamma \in \mathbb{R}^{1}$ find the conditions on α, β, and γ which insure that \mathbf{A} is positive definite.
3. (20) For $t \in[0,1]$, find all approximate solutions available from a one-term Galerkin method applied to the differential equation and initial conditions

$$
\frac{d^{2} y}{d t^{2}}+y^{2}=1, \quad y(0)=0,\left.\quad \frac{d y}{d t}\right|_{t=0}=0 .
$$

4. (20) Find the \mathbf{x} of minimum $\|\mathbf{x}\|_{2}$ which minimizes the quantity $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right), \quad \mathbf{b}=\binom{2}{1} .
$$

5. (20) For a scalar field $\phi\left(x_{i}\right)$, use Cartesian index notation and prove the curl of the gradient of that scalar field is zero.
