AME 60611
Examination 1
J. M. Powers

30 September 2011

1. (25) Consider the transformation relating Cartesian $\left(\xi^{1}, \xi^{2}\right)$ to a new coordinate system, $\left(x^{1}, x^{2}\right)$:

$$
\begin{aligned}
\xi^{1} & =x^{1} \\
\xi^{2} & =-x^{1}+x^{2}
\end{aligned}
$$

(a) Find the Jacobian matrix, the metric tensor, determine if the mapping is orthogonal, area- and orientation-preserving.
(b) Sketch lines of constant x^{1} and x^{2} in the $\left(\xi^{1}, \xi^{2}\right)$ plane.
(c) For a known function, $\phi\left(\xi^{1}, \xi^{2}\right)$, find a representation for $\partial \phi / \partial x^{1}$ and $\partial \phi / \partial x^{2}$ using appropriate transformation rules.
2. (25) Consider on the domain $x \in[0, \infty)$ the differential equation and initial condtion

$$
\epsilon \frac{d y}{d x}+y=f(x), \quad y(0)=0 .
$$

(a) For any ϵ, large or small, use the Green's function method to find a solution of the form

$$
y(x)=\int_{0}^{\infty} g(x, s) f(s) d s
$$

(b) Find $y(x)$ via the Green's function for $f(x)=1$ and show from direct expansion of the Green's function solution that $y(x) \rightarrow f(x)=1$ as $\epsilon \rightarrow 0$.
(c) Discuss the solution for $y(x)$ when $f(x)=1$ and $0<\epsilon \ll 1$ in the context of boundary layer theory.
3. (25) Find the most general solution to

$$
\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+y=x
$$

4. (25) Find the general solution to

$$
\left(\frac{d y}{d x}\right)^{2}-\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}=0
$$

