AME 60611
Examination 1: SOLUTION
J. M. Powers

30 September 2011

1. (25) Consider the transformation relating Cartesian $\left(\xi^{1}, \xi^{2}\right)$ to a new coordinate system, $\left(x^{1}, x^{2}\right)$:

$$
\begin{aligned}
\xi^{1} & =x^{1} \\
\xi^{2} & =-x^{1}+x^{2}
\end{aligned}
$$

(a) Find the Jacobian matrix, the metric tensor, determine if the mapping is orthogonal, area- and orientation-preserving.
(b) Sketch lines of constant x^{1} and x^{2} in the $\left(\xi^{1}, \xi^{2}\right)$ plane.
(c) For a known function, $\phi\left(\xi^{1}, \xi^{2}\right)$, find a representation for $\partial \phi / \partial x^{1}$ and $\partial \phi / \partial x^{2}$ using appropriate transformation rules.

Solution

There were not too many major issues with this problem. A few too many people insisted the transformation was orthogonal, despite correctly plotting lines of constant x^{1} and x^{2} which obviously showed non-orthogonality.
The Jacobian is

$$
\mathbf{J}=\frac{\partial \xi^{i}}{\partial x^{j}}=\left(\begin{array}{ll}
\frac{\partial \xi^{1}}{\partial x^{1}} & \frac{\partial \xi^{1}}{\partial x^{2}} \\
\frac{\partial \xi^{2}}{\partial x^{1}} & \frac{\partial \xi^{2}}{\partial x^{2}}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) .
$$

We see that

$$
\operatorname{det} \mathbf{J}=1-0=1
$$

Thus, the mapping is area- and orientation-preserving.
The metric tensor is

$$
\left.\mathbf{G}=\mathbf{J}^{T} \cdot \mathbf{J}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) .
$$

Because the off-diagonal elements are non-zero, the mapping is non-orthogonal.
A sketch of the mapping is given in Fig. 1.
From the chain rule, we have

$$
\underbrace{\binom{\frac{\partial \phi}{\partial x^{1}}}{\frac{\partial \phi}{\partial x^{2}}}}_{\nabla_{\mathbf{x}} \phi}=\underbrace{\left(\begin{array}{cc}
\frac{\partial \xi^{1}}{\partial x^{1}} & \frac{\partial \xi^{2}}{\partial x^{1}} \\
\frac{\partial \xi^{1}}{\partial x^{2}} & \frac{\partial \xi^{2}}{\partial x^{2}}
\end{array}\right)}_{\mathbf{J}^{T}} \cdot \underbrace{\binom{\frac{\partial \phi}{\partial \xi^{1}}}{\frac{\partial \phi}{\partial \xi^{2}}}}_{\nabla_{\boldsymbol{\xi} \phi}}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \cdot\binom{\frac{\partial \phi}{\partial \xi^{1}}}{\frac{\partial \phi}{\partial \xi^{2}}}=\binom{\frac{\partial \phi}{\partial \xi^{1}}-\frac{\partial \phi}{\partial \xi^{2}}}{\frac{\partial \phi}{\partial \xi^{1}}} \cdot]
$$

Figure 1: Coordinate transformation
2. (25) Consider on the domain $x \in[0, \infty)$ the differential equation and initial condtion

$$
\epsilon \frac{d y}{d x}+y=f(x), \quad y(0)=0
$$

(a) For any ϵ, large or small, use the Green's function method to find a solution of the form

$$
y(x)=\int_{0}^{\infty} g(x, s) f(s) d s
$$

(b) Find $y(x)$ via the Green's function for $f(x)=1$ and show from direct expansion of the Green's function solution that $y(x) \rightarrow f(x)=1$ as $\epsilon \rightarrow 0$.
(c) Discuss the solution for $y(x)$ when $f(x)=1$ and $0<\epsilon \ll 1$ in the context of boundary layer theory.

Solution

This problem caused a lot of difficulty and those who became confused should read this solution carefully. Many people did get it essentially correct.
We break the domain $x \in[0, \infty]$ into two parts $x \in[0, s), x \in(s, \infty)$. We then seek a Green's function, $g(x, s)$ which satisfies $\epsilon d g / d x+g=\delta(x-s)$.
For $x<s$, this reduces to solving

$$
\begin{gathered}
\epsilon \frac{d g}{d x}+g=0, \\
\frac{d g}{d x}+\frac{1}{\epsilon} g=0, \\
g=C_{1} e^{-x / \epsilon}, \\
g(0)=0=C_{1} e^{-0 / \epsilon}=C_{1} .
\end{gathered}
$$

So for $x<s$,

$$
g=0
$$

For $x>s$, we have

$$
\frac{d g}{d x}+\frac{1}{\epsilon} g=0
$$

$$
g=C_{2} e^{-x / \epsilon} .
$$

Now at $x=s$, we have the jump condition

$$
\underbrace{\left.g\right|_{s+\delta}}_{C_{2} e^{-(s+\delta) / \epsilon}}-\underbrace{\left.g\right|_{s-\delta}}_{C_{1} e^{-(s-\delta) / \epsilon}=0}=\frac{1}{\epsilon} .
$$

Thus

$$
C_{2} e^{-(s+\delta) / \epsilon}=\frac{1}{\epsilon} .
$$

This gives

$$
C_{2}=\frac{1}{\epsilon} e^{(s+\delta) / \epsilon}
$$

Letting $\delta \rightarrow 0$, we get

$$
C_{2}=\frac{1}{\epsilon} e^{s / \epsilon},
$$

thus

$$
g=\frac{1}{\epsilon} e^{(s-x) / \epsilon}, \quad x>s
$$

Thus, the Green's function solution is

$$
y(x)=\int_{0}^{x} \underbrace{g(x, s)}_{(1 / \epsilon) e^{(s-x) / \epsilon}} f(s) d s+\int_{x}^{\infty} \underbrace{g(x, s)}_{0} f(s) d s
$$

So the solution reduces to

$$
y(x)=\frac{1}{\epsilon} \int_{0}^{x} f(s) e^{(s-x) / \epsilon} d s
$$

Now when $f(x)=1$, the Green's function solution is

$$
\begin{gathered}
y(x)=\frac{1}{\epsilon} \int_{0}^{x}(1) e^{(s-x) / \epsilon} d s \\
y(x)=\left.\frac{1}{\epsilon}\left(\epsilon e^{(s-x) / \epsilon}\right)\right|_{0} ^{x} . \\
y(x)=\frac{1}{\epsilon}\left(\epsilon e^{(x-x) / \epsilon}-\left(\epsilon e^{(0-x) / \epsilon}\right)\right) \\
y(x)=\frac{1}{\epsilon}\left(\epsilon-\epsilon e^{-x / \epsilon}\right) \\
y(x)=1-e^{-x / \epsilon}
\end{gathered}
$$

As $\epsilon \rightarrow 0$ for $x>0$, we see

$$
\lim _{\epsilon \rightarrow 0} y(x) \rightarrow 1
$$

There is a boundary layer near $x=0$. Its thickness, by inspection of the exact solution is ϵ. One could easily use boundary layer theory to show the outer solution is 1 and find the corresponding inner solution and matching.
3. (25) Find the most general solution to

$$
\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+y=x
$$

Solution

Most people got full credit on this problem. A few did not recognize that the characteristic polynomial was easily factorizable.
Assuming solutions of the form $y=C e^{r x}$ leads to the characteristic polynomial

$$
r^{3}+3 r^{2}+3 r+1=0
$$

The factors as

$$
(r+1)^{3}=0 .
$$

This gives three repeated roots of $r=-1$. Thus, we have complementary functions of $e^{-x}, x e^{-x}$ and $x^{2} e^{-x}$.
We assume a particular solution of the form

$$
y_{p}=a+b x .
$$

Substituting into the differential equation, we find

$$
3 b+(a+b x)=x .
$$

Regrouping, we get

$$
x^{0}(3 b+a)+x^{1}(b-1)=0 .
$$

Because x^{0} and x^{1} are linearly independent, we must have

$$
3 b+a=0, \quad b-1=0 .
$$

Thus,

$$
b=1, \quad a=-3 .
$$

So $y_{p}=-3+x$.
The total solution is

$$
y(x)=C_{1} e^{-x}+C_{2} x e^{-x}+C_{3} x^{2} e^{-x}-3+x .
$$

4. (25) Find the general solution to

$$
\left(\frac{d y}{d x}\right)^{2}-\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}=0
$$

Solution

This problem was a little tricky and very few saw it through to the end. The errors were many and disparate, so most students should read through the solution carefully.

If we take $v=d y / d x$, we recognize this as a first order equation:

$$
v^{2}-\frac{d v}{d x}-2 x v=0
$$

Rearranging, we get

$$
\frac{d v}{d x}+2 x v=v^{2}
$$

This is recognized to be a Bernoulli equation with $P(x)=2 x, Q(x)=1$ and $n=2$. As such, we take

$$
u=v^{1-n}=v^{-1}
$$

Thus

$$
v=u^{-1}
$$

and

$$
\frac{d v}{d x}=-\frac{1}{u^{2}} \frac{d u}{d x}
$$

So our Bernoulli equation becomes

$$
-\frac{1}{u^{2}} \frac{d u}{d x}+\frac{2 x}{u}=\frac{1}{u^{2}}
$$

Multiplying by $-u^{2}$, we get

$$
\frac{d u}{d x}-2 x u=-1
$$

This is a first order linear equation. The integrating factor is

$$
e^{-\int 2 x}=e^{-x^{2}}
$$

so multiplying by it, we get

$$
\begin{gathered}
e^{-x^{2}} \frac{d u}{d x}-2 x e^{-x^{2}} u=-e^{-x^{2}} \\
\frac{d}{d x}\left(e^{-x^{2}} u\right)=-e^{-x^{2}}
\end{gathered}
$$

Integrating, we get

$$
\begin{gathered}
e^{-x^{2}} u=C_{1}-\int_{0}^{x} e^{-s^{2}} d s \\
u=e^{x^{2}}\left(C_{1}-\int_{0}^{x} e^{-s^{2}} d s\right)
\end{gathered}
$$

And since $v=1 / u$, we find

$$
v=\frac{e^{-x^{2}}}{C_{1}-\int_{0}^{x} e^{-s^{2}} d s}
$$

And since $v=d y / d x$, we get

$$
\frac{d y}{d x}=\frac{e^{-x^{2}}}{C_{1}-\int_{0}^{x} e^{-s^{2}} d s}
$$

Now let $w(x)=\int_{0}^{x} e^{-s^{2}} d s$. So $d w / d x=e^{-x^{2}}$. Thus, our equation becomes

$$
\frac{d y}{d x}=\frac{\frac{d w}{d x}}{C_{1}-w}
$$

$$
\begin{gathered}
d y=\frac{d w}{C_{1}-w} \\
y=C_{2}+\ln \left(\frac{-1}{C_{1}-w}\right) . \\
y=C_{2}+\ln \left(\frac{1}{-C_{1}+w}\right) . \\
y=C_{2}-\ln \left(w-C_{1}\right) . \\
y=C_{2}-\ln \left(\int_{0}^{x} e^{-s^{2}} d s-C_{1}\right) .
\end{gathered}
$$

In terms of the error function, $\operatorname{erf}(x)=(2 / \sqrt{\pi}) \int_{0}^{x} e^{-s^{2}} d s$, we could say

$$
y(x)=C_{2}-\ln \left(\frac{\sqrt{\pi}}{2} \operatorname{erf}(x)-C_{1}\right) .
$$

For $C_{1}=-1, C_{2}=0$, the solution is plotted in Fig. 2.

Figure 2: Solution $y(x)$ when $C_{1}=-1, C_{2}=0$

