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1. (25) Consider the transformation relating Cartesian (ξ1, ξ2) to a new coordinate
system, (x1, x2):

ξ1 = x1,

ξ2 = −x1 + x2.

(a) Find the Jacobian matrix, the metric tensor, determine if the mapping is
orthogonal, area- and orientation-preserving.

(b) Sketch lines of constant x1 and x2 in the (ξ1, ξ2) plane.

(c) For a known function, φ(ξ1, ξ2), find a representation for ∂φ/∂x1 and
∂φ/∂x2 using appropriate transformation rules.

Solution

There were not too many major issues with this problem. A few too many people insisted
the transformation was orthogonal, despite correctly plotting lines of constant x1 and
x2 which obviously showed non-orthogonality.

The Jacobian is

J =
∂ξi

∂xj
=

(
∂ξ1

∂x1
∂ξ1

∂x2

∂ξ2

∂x1
∂ξ2

∂x2

)

=

(
1 0
−1 1

)

.

We see that
detJ = 1 − 0 = 1.

Thus, the mapping is area- and orientation-preserving.

The metric tensor is

G = J
T · J =

(
1 −1
0 1

)

·
(

1 0
−1 1

)

=

(
2 −1
−1 1

)

.

Because the off-diagonal elements are non-zero, the mapping is non-orthogonal.

A sketch of the mapping is given in Fig. 1.

From the chain rule, we have

(
∂φ
∂x1

∂φ
∂x2

)

︸ ︷︷ ︸

∇xφ

=

(
∂ξ1

∂x1
∂ξ2

∂x1

∂ξ1

∂x2
∂ξ2

∂x2

)

︸ ︷︷ ︸

JT

·
(

∂φ
∂ξ1

∂φ
∂ξ2

)

︸ ︷︷ ︸

∇ξφ

=

(
1 −1
0 1

)

·
(

∂φ
∂ξ1

∂φ
∂ξ2

)

=

(
∂φ
∂ξ1 − ∂φ

∂ξ2

∂φ
∂ξ1

)

.
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Figure 1: Coordinate transformation

2. (25) Consider on the domain x ∈ [0,∞) the differential equation and initial
condtion

ǫ
dy

dx
+ y = f(x), y(0) = 0.

(a) For any ǫ, large or small, use the Green’s function method to find a solution
of the form

y(x) =

∫
∞

0

g(x, s)f(s)ds.

(b) Find y(x) via the Green’s function for f(x) = 1 and show from direct
expansion of the Green’s function solution that y(x) → f(x) = 1 as ǫ → 0.

(c) Discuss the solution for y(x) when f(x) = 1 and 0 < ǫ ≪ 1 in the context
of boundary layer theory.

Solution

This problem caused a lot of difficulty and those who became confused should read this
solution carefully. Many people did get it essentially correct.

We break the domain x ∈ [0,∞] into two parts x ∈ [0, s), x ∈ (s,∞). We then seek a
Green’s function, g(x, s) which satisfies ǫdg/dx + g = δ(x − s).

For x < s, this reduces to solving

ǫ
dg

dx
+ g = 0,

dg

dx
+

1

ǫ
g = 0,

g = C1e
−x/ǫ,

g(0) = 0 = C1e
−0/ǫ = C1.

So for x < s,
g = 0.

For x > s, we have
dg

dx
+

1

ǫ
g = 0,



g = C2e
−x/ǫ.

Now at x = s, we have the jump condition

g|s+δ
︸ ︷︷ ︸

C2e−(s+δ)/ǫ

− g|s−δ
︸ ︷︷ ︸

C1e−(s−δ)/ǫ=0

=
1

ǫ
.

Thus

C2e
−(s+δ)/ǫ =

1

ǫ
.

This gives

C2 =
1

ǫ
e(s+δ)/ǫ.

Letting δ → 0, we get

C2 =
1

ǫ
es/ǫ,

thus

g =
1

ǫ
e(s−x)/ǫ, x > s.

Thus, the Green’s function solution is

y(x) =

∫ x

0

g(x, s)
︸ ︷︷ ︸

(1/ǫ)e(s−x)/ǫ

f(s)ds +

∫
∞

x

g(x, s)
︸ ︷︷ ︸

0

f(s)ds.

So the solution reduces to

y(x) =
1

ǫ

∫ x

0

f(s)e(s−x)/ǫds.

Now when f(x) = 1, the Green’s function solution is

y(x) =
1

ǫ

∫ x

0

(1)e(s−x)/ǫds.

y(x) =
1

ǫ

(

ǫe(s−x)/ǫ
)∣
∣
∣

x

0
.

y(x) =
1

ǫ

(

ǫe(x−x)/ǫ −
(

ǫe(0−x)/ǫ
))

y(x) =
1

ǫ

(

ǫ − ǫe−x/ǫ
)

y(x) = 1 − e−x/ǫ.

As ǫ → 0 for x > 0, we see

lim
ǫ→0

y(x) → 1.

There is a boundary layer near x = 0. Its thickness, by inspection of the exact solution
is ǫ. One could easily use boundary layer theory to show the outer solution is 1 and find
the corresponding inner solution and matching.



3. (25) Find the most general solution to

d3y

dx3
+ 3

d2y

dx2
+ 3

dy

dx
+ y = x.

Solution

Most people got full credit on this problem. A few did not recognize that the character-
istic polynomial was easily factorizable.

Assuming solutions of the form y = Cerx leads to the characteristic polynomial

r3 + 3r2 + 3r + 1 = 0.

The factors as
(r + 1)3 = 0.

This gives three repeated roots of r = −1. Thus, we have complementary functions of
e−x, xe−x and x2e−x.

We assume a particular solution of the form

yp = a + bx.

Substituting into the differential equation, we find

3b + (a + bx) = x.

Regrouping, we get
x0(3b + a) + x1(b − 1) = 0.

Because x0 and x1 are linearly independent, we must have

3b + a = 0, b − 1 = 0.

Thus,
b = 1, a = −3.

So yp = −3 + x.

The total solution is

y(x) = C1e
−x + C2xe−x + C3x

2e−x − 3 + x.

4. (25) Find the general solution to

(
dy

dx

)2

− d2y

dx2
− 2x

dy

dx
= 0.

Solution

This problem was a little tricky and very few saw it through to the end. The errors were
many and disparate, so most students should read through the solution carefully.



If we take v = dy/dx, we recognize this as a first order equation:

v2 − dv

dx
− 2xv = 0.

Rearranging, we get
dv

dx
+ 2xv = v2.

This is recognized to be a Bernoulli equation with P (x) = 2x, Q(x) = 1 and n = 2. As
such, we take

u = v1−n = v−1.

Thus
v = u−1

and
dv

dx
= − 1

u2

du

dx
.

So our Bernoulli equation becomes

− 1

u2

du

dx
+

2x

u
=

1

u2
.

Multiplying by −u2, we get
du

dx
− 2xu = −1.

This is a first order linear equation. The integrating factor is

e−
R

2x = e−x2

,

so multiplying by it, we get

e−x2 du

dx
− 2xe−x2

u = −e−x2

,

d

dx

(

e−x2

u
)

= −e−x2

.

Integrating, we get

e−x2

u = C1 −
∫ x

0

e−s2

ds.

u = ex2

(

C1 −
∫ x

0

e−s2

ds

)

.

And since v = 1/u, we find

v =
e−x2

C1 −
∫ x

0
e−s2ds

.

And since v = dy/dx, we get

dy

dx
=

e−x2

C1 −
∫ x

0 e−s2ds
.

Now let w(x) =
∫ x

0
e−s2

ds. So dw/dx = e−x2

. Thus, our equation becomes

dy

dx
=

dw
dx

C1 − w
.



dy =
dw

C1 − w

y = C2 + ln

( −1

C1 − w

)

.

y = C2 + ln

(
1

−C1 + w

)

.

y = C2 − ln (w − C1) .

y = C2 − ln

(∫ x

0

e−s2

ds − C1

)

.

In terms of the error function, erf(x) = (2/
√

π)
∫ x

0 e−s2

ds, we could say

y(x) = C2 − ln

(√
π

2
erf(x) − C1

)

.

For C1 = −1, C2 = 0, the solution is plotted in Fig. 2.
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Figure 2: Solution y(x) when C1 = −1, C2 = 0


