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Examination 1: SOLUTION
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30 September 2011

1. (25) Consider the transformation relating Cartesian (£, £2) to a new coordinate
system, (2!, 2?):
é—l — xl
£ = —z' 422
(a) Find the Jacobian matrix, the metric tensor, determine if the mapping is
orthogonal, area- and orientation-preserving.
(b) Sketch lines of constant ! and z? in the (&1, £?) plane.

(c) For a known function, ¢(£',€?), find a representation for d¢/dx' and
d¢/0x* using appropriate transformation rules.

Solution

There were not too many major issues with this problem. A few too many people insisted
the transformation was orthogonal, despite correctly plotting lines of constant 2! and
22 which obviously showed non-orthogonality.

i aet  oet
J= % — gz; gzg _
Oz’ S o

[detJ=1-0=1]

The Jacobian is

We see that

Thus, the mapping is area- and orientation-preserving.
The metric tensor is

c-ama- (3 - (5 03

Because the off-diagonal elements are non-zero, the mapping is non-orthogonal.

A sketch of the mapping is given in Fig. 1.

From the chain rule, we have
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Figure 1: Coordinate transformation

2. (25) Consider on the domain x € [0,00) the differential equation and initial

condtion
dy

eo-ty=7f),  y0)=0

(a) For any €, large or small, use the Green’s function method to find a solution
of the form

y(z) = / " (w5 (s)ds.

(b) Find y(x) via the Green’s function for f(z) = 1 and show from direct
expansion of the Green’s function solution that y(z) — f(z) =1 ase — 0.

(c) Discuss the solution for y(z) when f(z) =1 and 0 < € < 1 in the context
of boundary layer theory.

[
Solution

This problem caused a lot of difficulty and those who became confused should read this
solution carefully. Many people did get it essentially correct.

We break the domain z € [0, 00] into two parts x € [0,s), € (s,00). We then seek a
Green’s function, g(z, s) which satisfies edg/dx + g = §(x — s).

For z < s, this reduces to solving

dg

— =0
ﬁdI‘FQ )
dg 1

—~ 4+ -g=0
da:+eg ’
g=Cre v,

So for = < s,

For x > s, we have



g = Cae™/c,

Now at x = s, we have the jump condition

g|s+5 - g|s—6 = E
SN~ N~
Che—(s+8)/c  Cre—(s—8)/e=0
Thus 1
Coe st/ — —,
€
This gives

Oy = Lels+0)/e.
€

Letting § — 0, we get

1
Co = _es/e7
€
thus .
g = —els™)/e, x> s.

€
Thus, the Green’s function solution is

va) = [ glas) f6)s+ [ s fes
(1/€)els=a)/e 0

So the solution reduces to

z :l ’ s)els=8)/egs
va) =1 [ 1) .

Now when f(z) = 1, the Green’s function solution is

€

y(x) = - /Oz(l)e(s””)/eds.

y(x) = ! (ee(s_m)/e) °

€

0

y(z) = % (Ee(w—w)/ﬁ _ (66(0—@/6))

y(z)=1—e/c

As e — 0 for z > 0, we see

lim y(z) — 1.

e—0

There is a boundary layer near x = 0. Its thickness, by inspection of the exact solution
is €. One could easily use boundary layer theory to show the outer solution is 1 and find
the corresponding inner solution and matching.




3. (25) Find the most general solution to

Py Py L dy
ﬁ—i-?)@—i—?)%j&y—x.

[
Solution

Most people got full credit on this problem. A few did not recognize that the character-
istic polynomial was easily factorizable.

Assuming solutions of the form y = Ce™ leads to the characteristic polynomial
™ +3r +3r+1=0.

The factors as
(r+1)>=0.

This gives three repeated roots of r = —1. Thus, we have complementary functions of
e™® xe”® and 2%e %,

We assume a particular solution of the form
Yp = a + bz.
Substituting into the differential equation, we find
3b+ (a+bx) = .

Regrouping, we get
2°(3b4a) +2'(b—1) =0.

Because 2° and z! are linearly independent, we must have
3b+a=0, b—1=0.
Thus,

So y, =—-3+=.

The total solution is

y(x) = Cre™ + Coze ™™ + Czxe™ — 3 + .

4. (25) Find the general solution to

(dy)2 4y dy
=) - == 22> =0,
dx

[
Solution

This problem was a little tricky and very few saw it through to the end. The errors were
many and disparate, so most students should read through the solution carefully.



If we take v = dy/dx, we recognize this as a first order equation:

9 v

— — —2zv=0.
v T ey
Rearranging, we get

d
£+2IU=U2.

This is recognized to be a Bernoulli equation with P(z) = 2z, Q(z) =1 and n = 2. As
such, we take

u="v =
Thus
v=u""t
and
dv 1 du
de  uw?dz’

So our Bernoulli equation becomes
1 du n 2x 1
wder  u  u?
Multiplying by —u?, we get

— —2zu = —1.

dz
This is a first order linear equation. The integrating factor is

2
67f2z:€717

so multiplying by it, we get

Integrating, we get

2

e T u

2
u=e" (

v =

/efszds.

0

/eszds>.
0

_:E2

Ci —
Ci —
And since v = 1/u, we find

e

Ci — fom e=s%ds’
And since v = dy/dzx, we get

_:E2

dy e
der  C; — Jo e5%ds
Now let w(x) = fom e’ ds. So dw/dx = e~ . Thus, our equation becomes
dw

W _ @
dx C’l—w'



dw

d =
4 Cl—w
Cy +1 -1
= n .
y 2 Cl—w
=Cy+1n _
y="52 —Ci1+w '

y:CQ—lIl(U)—Cl).

y—Cg—ln</ e_s2ds—01>.
0

In terms of the error function, erf(z) = (2/y/7) [y e~ ds, we could say

y(x) = Cy —In (?erf(z) - 01) ,

For C7 = —1, Cy = 0, the solution is plotted in Fig. 2.
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Figure 2: Solution y(z) when C; = —1, Cy, =0




