AME 60611
Examination 2
J. M. Powers

21 November 2011

1. (20) Consider the lines in \mathbb{E}^{3} given by

$$
x=y=z
$$

and

$$
x+y=x-y+1=z-1 .
$$

It is straightforward to find the distance from a point on one line to a point on the other. Find the coordinates of the point on each line which minimizes this distance, and find the value of the distance.
2. (25) Find \mathbf{x} of minimum $\|\mathbf{x}\|_{2}$ which minimizes $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & i \\
2 & 2 i \\
0 & 0
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

3. (25) In $\mathbb{L}_{2}[0,1]$, we have the linearly independent functions $u_{1}=t$, $u_{2}=t^{2}$. Project the function $f(t)=t^{3}$ onto the space spanned by u_{1} and u_{2}; thus, find the best α_{1} and α_{2} to approximate $f(t) \simeq$ $\alpha_{1} u_{1}+\alpha_{2} u_{2}$.
4. (25) Use a one-term Galerkin method with a polynomial basis function to estimate the solution to the differential equation

$$
\frac{d^{3} y}{d x^{3}}+y=x, \quad y(0)=0, y(1)=0, y^{\prime}(0)=0
$$

5. (5) Use Cartesian index notation to prove the identity

$$
\nabla^{T} \cdot(\nabla \times \mathbf{u})=0
$$

