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1. (20) Consider the lines in E? given by
r=y=2z
and
r+y=z—-—y+1l=2—-1

It is straightforward to find the distance from a point on one line to
a point on the other. Find the coordinates of the point on each line
which minimizes this distance, and find the value of the distance.

|
Solution

Let us first give a parametric description of each line. The first is simply z =y =z = ¢,
which yields

r=t
y=t
z=1t

The secondisx+y =2 —y+1=2—1=s, which yields
r+y=s

r—y+1=s
z=s5+1

Solve for x and y in the second set. In parametric form, the second line is given by

T = —54—3,
B 1

y - 27

z = s+1.

Now the square of the Euclidean distance from generic point on the first line to a generic
point on the second is

C=t+1/2—8)2+(t—1/2)>+(t—s—1)%

Now if ¢ is minimized, ¢? is as well, so we will seek values of s and ¢ which drive ¢2 to
a minimum. At such minima, we must have 902/t = 9¢?/3s = 0. Forming the partial
derivatives, we find

or?

o7 =200+1/2-5)+2(t-1/2) +2(t -5~ 1) =0.



o = 2(t+1/2—s)—2(t—s—1)=0.

ds
Expanding, we get
6t —4s =2
4t —4s =1
which has solution 1 1
ST 2

So the square of the distance between these two points is

P =(1/2+1/2-1/4)* + (1/2-1/2)* + (1/2 — 1 /4 — 1)? = (3/4)* + 0> + (=3 /4)

And the distance is thus

3
= ——|
2v/2
The coordinates of the points on the two lines are thus
1 1 1
p 3t Bt
= il and % = 2
5 s+1 1

2. (25) Find x of minimum ||x||2 which minimizes ||A - x — b||2 when

1 1 1
0 0 1

Solution

2_9
g

All 2 x 2 sub-determinants of A are singular. However, many 1 x 1 sub-determinants are
non-singular. Thus, the rank of A is one; that is, it is not a full rank matrix. Therefore,
this is likely a simultaneously over- and under- constrained system. Let us operate on

both sides of the “equation” by the conjugate transpose of A:

AP A . x=AF b
12 o\ ([} ¢ 1 12 o\ (!
e o) 2 2 =5 55 ol ?
1 1 0 0 T2 1 1 1

5 5\ [z [ 3

5 5)\az) ~ \=3i)"

Use Gaussian elimination to find

(0 5)()-6)



Thus z2 is a free variable, which we will take to be zo = s. The first equation then
becomes

5r1 = 3 — bis.
Solving, we get
3
T = 5 8.

Thus,
3 .
X o 5 —1
()= () ()
The vector (1 i)H: (_12> is in the row space of A. The vector (El) is in the right

3

null space of A. The vector (5) lies in a linear combination of the row space and right

null space of A. Let us decompose that vector into
% _ 1 —1 (5]
0 —1 1 a9 ’
(o) - (¥)
(65 % ’
% — 3 1 + ﬁ —i
0) 10\-i) 10\1)°
) = i L + | s+ ﬁ X
z2) 10 \~1 /\1)"

The x with the minimum [|x||2 occurs when s = —3i/10; this gives

@)

The residual itself in satisfying the original equation is

We invert and find

SO

Thus,

; 3 2

1 Z' 11 1 g 1 —15
r=A-x—-b=[2 2i ) -1l =1=zl-11]=1 3

0 O 10 1 0 1 -1

The magnitude of the residual is

||r||2—\/<—§)2+(§)2+<_1>2_ ‘.

The norm of the vector x is

) 3 3
x||lo = 3 _3 <19> — .
[Ix[]2 \/(10 10) f_o 5\/5

As an alternative approach to finding the x with the smallest norm, we can consider

3 .
3 _4s
x=|(52 .
s




Now s could be complex, so we allow
s = sg +isy,

where sp and sy are both real. So

%—i8R+81
X = . .
Sp + 181

Taking the norm, we get

3 .
2 3 . . 2 — 1SR+ Sr1
||X||2 = (5 +1Sp + 81 SR—’LSI) (5 sp ot isy ) ,
9 6
= 2—5+531+3%+s§+3%+s§,
9 6
Now, we need to choose s so as to minimize ||x||2, which is equivalent to minimizing
1|13
0
EHXH% =4sp =0,
0 s 6
— =—+4s;=0
S|l = £ + 450 =0,
Solving, we get
3
=0, -
SR ST 10
So we have 5
s = —EZ.
So we get

. (25) In Ly[0,1], we have the linearly independent functions u; = t, uy = t*.
Project the function f(t) = t3 onto the space spanned by u; and uy; thus, find
the best ay and s to approximate f(t) ~ ayu; + agus.

[
Solution

Start with
a1Uq + g = f(t)

Take the inner product with u; and us to get
<up, aqur> + <ui, qous> = <ug, f(t)>.

<ug, ayu1> + <ug, Qous> = <ug, f(t)>.
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Figure 1: Plot of f(t) = 3 (blue curve) and its approximation, —(2/5)t + (4/3)t? (red

curve).

Regroup to get
ap<uy, ur> + ag<ug, uz> = <ug, f(t)>.

ay<ug, u1> + ap<ug, uz> = <ug, f(t)>.

In matrix form, we have
<up,ur>  <up,ug>\ (ar) _ (<u, f(t)>
<ug,u1> <ug,us>) \as ) \<us, f(t)>
In terms of our functions
1.2 1.3 1.4
<f01 £ fy dt) (al) _ <f01 u dt)
Jo t2dt [yttt dt) \a2 Jo t° dt

Evaluating, we get

7N\
EN[EVE

Inverting, we find

So

2 4
) =3~ — 2t + —¢2.
o o

See Figure 1 for a comparison of f(¢) with its approximation.

4. (25) Use a one-term Galerkin method with a polynomial basis function to esti-
mate the solution to the differential equation

d3y /
wjty:l“’ y(o):0> y(l):O,y(O):O.



Solution

Assume, for the one term expansion, that the Galerkin-projected approximate solution
is

Yp = ch(z).

where ¢(z) is a polynomial which satisfies the boundary conditions. Let as assume a
third order polynomial.

é(z) = ap + a1 + asx? + aza®.
Now ¢(z) must satisfy the same boundary conditions as y(x). So at x = 0, we have
#(0) = 0 = ag + a1(0) + a20? + a30°.
Thus ag = 0. The first derivative is then
¢ () = a1 + 2a0x + 3azr>.
At x = 0 one must satisfy the derivative boundary condition
#'(0) = 0 = a; + 2a2(0) + 3az0%.

Thus a1 = 0. So we have
() = azx® + azz®.

At z = 1, we must have
¢(1) =0=as+ as.

Take as = 1, thus ag = —1, and
o(z) = 2*(1 — ).

Now, we have
yp = cx?(1 — ).

The residual with this approximation is

d>y,
Tzw—pr—fE,

which evaluates to
r=—6c+cr’(l—x)—x

Now for the Galerkin method we need
<¢p,r>=0.
Thus, we ¢ such that

/ o(z)r(z) de = 0.
0
/1 22(1 — 2)(—6¢ + cx*(1 — 2) — x) dz = 0.
0
/1(—60;102 + (6c — 1)z + (1 + ¢)z* — 2ca® + cab) dx = 0.
0

3c 1 1+c cx® el !
—2cx3+(———)x4+—:v5——+— =0.
2 4 5 3 7
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Figure 2: Plot of exact and Galerkin approximation solutions.
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Solve for ¢ and get

So

The exact solution can be obtained from computer algebra, but is lengthy. It can,
however, easily be plotted and compared with the Galerkin approximation. See Figure
2.

. (5) Use Cartesian index notation to prove the identity

Vi (Vxu)=0.

Solution

Consider the equation in Cartesian index notation:

0
— €k~ UL = 0?
8:@» * al'j ’



For a given k, we have that €;;;, is an anti-symmetric tensor in ¢ and j. And for a given k,
the term 0%uy/0z;0x; is a symmetric tensor in 4 and j. Since the tensor inner product
of an anti-symmetric tensor and a symmetric tensor is zero, the identity is proved.




