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1. (20) Consider the lines in E
3 given by

x = y = z

and
x + y = x − y + 1 = z − 1.

It is straightforward to find the distance from a point on one line to
a point on the other. Find the coordinates of the point on each line

which minimizes this distance, and find the value of the distance.

Solution

Let us first give a parametric description of each line. The first is simply x = y = z = t,
which yields

x = t

y = t

z = t.

The second is x + y = x − y + 1 = z − 1 = s, which yields

x + y = s

x − y + 1 = s

z = s + 1

Solve for x and y in the second set. In parametric form, the second line is given by

x = −1

2
+ s,

y =
1

2
,

z = s + 1.

Now the square of the Euclidean distance from generic point on the first line to a generic
point on the second is

ℓ2 = (t + 1/2 − s)2 + (t − 1/2)2 + (t − s − 1)2.

Now if ℓ is minimized, ℓ2 is as well, so we will seek values of s and t which drive ℓ2 to
a minimum. At such minima, we must have ∂ℓ2/∂t = ∂ℓ2/∂s = 0. Forming the partial
derivatives, we find

∂ℓ2

∂t
= 2(t + 1/2 − s) + 2(t − 1/2) + 2(t − s − 1) = 0.



∂ℓ2

∂s
= −2(t + 1/2 − s) − 2(t − s − 1) = 0.

Expanding, we get
6t − 4s = 2

4t − 4s = 1

which has solution

s =
1

4
; t =

1

2

So the square of the distance between these two points is

ℓ2 = (1/2 + 1/2 − 1/4)2 + (1/2 − 1/2)2 + (1/2 − 1/4 − 1)2 = (3/4)2 + 02 + (−3/4)2 =
9

8
.

And the distance is thus

ℓ =
3

2
√

2
.

The coordinates of the points on the two lines are thus





t
t
t



 =





1

2
1

2
1

2



 , and





− 1

2
+ s

1

2

s + 1



 =





− 1

4
1

2
5

4





2. (25) Find x of minimum ||x||2 which minimizes ||A · x − b||2 when

A =





1 i
2 2i
0 0



 , b =





1
1
1



 .

Solution

All 2×2 sub-determinants of A are singular. However, many 1×1 sub-determinants are
non-singular. Thus, the rank of A is one; that is, it is not a full rank matrix. Therefore,
this is likely a simultaneously over- and under- constrained system. Let us operate on
both sides of the “equation” by the conjugate transpose of A:

A
H ·A · x = A

H · b.

(

1 2 0
−i −2i 0

)





1 i
2 2i
0 0





(

x1

x2

)

=

(

1 2 0
−i −2i 0

)





1
1
1





(

5 5i
−5i 5

)(

x1

x2

)

=

(

3
−3i

)

.

Use Gaussian elimination to find
(

5 5i
0 0

)(

x1

x2

)

=

(

3
0

)

.



Thus x2 is a free variable, which we will take to be x2 = s. The first equation then
becomes

5x1 = 3 − 5is.

Solving, we get

x1 =
3

5
− is.

Thus,
(

x1

x2

)

=

(

3

5

0

)

+ s

(

−i
1

)

.

The vector
(

1 i
)H

=

(

1
−i

)

is in the row space of A. The vector

(

−i
1

)

is in the right

null space of A. The vector

(

3

5

0

)

lies in a linear combination of the row space and right

null space of A. Let us decompose that vector into

(

3

5

0

)

=

(

1 −i
−i 1

)(

α1

α2

)

.

We invert and find
(

α1

α2

)

=

(

3

10
3i
10

)

,

so
(

3

5

0

)

=
3

10

(

1
−i

)

+
3i

10

(

−i
1

)

.

Thus,
(

x1

x2

)

=
3

10

(

1
−i

)

+

(

s +
3i

10

)(

−i
1

)

.

The x with the minimum ||x||2 occurs when s = −3i/10; this gives

x =

(

3

10
−3i
10

)

.

The residual itself in satisfying the original equation is

r = A · x − b =





1 i
2 2i
0 0





(

3

10

− 3i
10

)

−





1
1
1



 =





3

5
6

5

0



−





1
1
1



 =





− 2

5
1

5

−1



 .

The magnitude of the residual is

||r||2 =

√

(

−2

5

)2

+

(

1

5

)2

+ (−1)2 =

√

6

5
.

The norm of the vector x is

||x||2 =

√

(

3

10
− 3i

10

)

(

3

10
3i
10

)

=
3

5
√

2
.

As an alternative approach to finding the x with the smallest norm, we can consider

x =

(

3

5
− is
s

)

.



Now s could be complex, so we allow

s = sR + isI ,

where sR and sI are both real. So

x =

(

3

5
− isR + sI

sR + isI

)

.

Taking the norm, we get

||x||22 =
(

3

5
+ isR + sI sR − isI

)

(

3

5
− isR + sI

sR + isI

)

,

=
9

25
+

6

5
sI + s2

R + s2

I + s2

R + s2

I ,

=
9

25
+

6

5
sI + 2s2

R + 2s2

I .

Now, we need to choose s so as to minimize ||x||2, which is equivalent to minimizing
||x||2

2
.

∂

∂sR

||x||2
2

= 4sR = 0,

∂

∂sI

||x||22 =
6

5
+ 4sI = 0,

Solving, we get

sR = 0, sI = − 3

10
.

So we have

s = − 3

10
i.

So we get

x =

(

3

5
− is
s

)

=

(

3

5
− i
(

− 3

10
i
)

− 3

10
i

)

=

(

3

10

− 3

10
i

)

.

3. (25) In L2[0, 1], we have the linearly independent functions u1 = t, u2 = t2.
Project the function f(t) = t3 onto the space spanned by u1 and u2; thus, find
the best α1 and α2 to approximate f(t) ≃ α1u1 + α2u2.

Solution

Start with
α1u1 + α2 = f(t)

Take the inner product with u1 and u2 to get

<u1, α1u1> + <u1, α2u2> = <u1, f(t)>.

<u2, α1u1> + <u2, α2u2> = <u2, f(t)>.
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Figure 1: Plot of f(t) = t3 (blue curve) and its approximation, −(2/5)t+(4/3)t2 (red
curve).

Regroup to get
α1<u1, u1> + α2<u1, u2> = <u1, f(t)>.

α1<u2, u1> + α2<u2, u2> = <u2, f(t)>.

In matrix form, we have

(

<u1, u1> <u1, u2>
<u2, u1> <u2, u2>

)(

α1

α2

)

=

(

<u1, f(t)>
<u2, f(t)>

)

In terms of our functions
(

∫ 1

0
t2 dt

∫ 1

0
t3 dt

∫ 1

0
t3 dt

∫ 1

0
t4 dt

)

(

α1

α2

)

=

(

∫ 1

0
t4 dt

∫ 1

0
t5 dt

)

Evaluating, we get
(

1

3

1

4
1

4

1

5

)(

α1

α2

)

=

(

1

5
1

6

)

Inverting, we find

α1 = −2

5
, α2 =

4

3
.

So

f(t) = t3 ≃ −2

5
t +

4

3
t2.

See Figure 1 for a comparison of f(t) with its approximation.

4. (25) Use a one-term Galerkin method with a polynomial basis function to esti-
mate the solution to the differential equation

d3y

dx3
+ y = x, y(0) = 0, y(1) = 0, y′(0) = 0.



Solution

Assume, for the one term expansion, that the Galerkin-projected approximate solution
is

yp = cφ(x).

where φ(x) is a polynomial which satisfies the boundary conditions. Let as assume a
third order polynomial.

φ(x) = a0 + a1x + a2x
2 + a3x

3.

Now φ(x) must satisfy the same boundary conditions as y(x). So at x = 0, we have

φ(0) = 0 = a0 + a1(0) + a20
2 + a30

3.

Thus a0 = 0. The first derivative is then

φ′(x) = a1 + 2a2x + 3a3x
2.

At x = 0 one must satisfy the derivative boundary condition

φ′(0) = 0 = a1 + 2a2(0) + 3a30
2.

Thus a1 = 0. So we have
φ(x) = a2x

2 + a3x
3.

At x = 1, we must have
φ(1) = 0 = a2 + a3.

Take a2 = 1, thus a3 = −1, and

φ(x) = x2(1 − x).

Now, we have
yp = cx2(1 − x).

The residual with this approximation is

r =
d3yp

dx3
+ yp − x,

which evaluates to
r = −6c + cx2(1 − x) − x

Now for the Galerkin method we need

<φ, r> = 0.

Thus, we c such that
∫ 1

0

φ(x)r(x) dx = 0.

∫ 1

0

x2(1 − x)(−6c + cx2(1 − x) − x) dx = 0.

∫ 1

0

(−6cx2 + (6c − 1)x3 + (1 + c)x4 − 2cx5 + cx6) dx = 0.

−2cx3 +

(

3c

2
− 1

4

)

x4 +
1 + c

5
x5 − cx6

3
+

cx6

7

∣

∣

∣

∣

1

0

= 0.
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Figure 2: Plot of exact and Galerkin approximation solutions.

−2c +
3c

2
− 1

4
+

1 + c

5
− c

3
+

c

7
= 0.

Solve for c and get

c = − 21

206
.

So

yp = − 21

206
x2(1 − x).

The exact solution can be obtained from computer algebra, but is lengthy. It can,
however, easily be plotted and compared with the Galerkin approximation. See Figure
2.

5. (5) Use Cartesian index notation to prove the identity

∇T · (∇× u) = 0.

Solution

Consider the equation in Cartesian index notation:

∂

∂xi

ǫijk

∂

∂xj

uk = 0?,

ǫijk

∂

∂xi

∂

∂xj

uk = 0?,



For a given k, we have that ǫijk is an anti-symmetric tensor in i and j. And for a given k,
the term ∂2uk/∂xi∂xj is a symmetric tensor in i and j. Since the tensor inner product
of an anti-symmetric tensor and a symmetric tensor is zero, the identity is proved.


