Problem 1

Kaplan, p. 436: 2c, i
Find the first three nonzero terms of the following Taylor series:
c) $\ln (1+x)^{2}$ about $x=0$
i) $\operatorname{arctanh} x$ about $x=0$

The definition of a Taylor Series is:

$$
\begin{equation*}
f(x)=\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^{n} f}{\partial x^{n}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

Part c

Using the definition from Equation 1 for (2c), the summary in Table 1 below is produced.

n	$\frac{\partial^{n} f}{\partial x^{n}}$	$\left.\frac{\partial^{n} f}{\partial x^{n}}\right\|_{x=x_{0}}$	$\left.\frac{1}{n!} \frac{\partial^{n} f}{\partial x^{n}}\right\|_{x=x_{0}}$	$\left.\frac{1}{n!} \frac{\partial^{n} f}{\partial x^{n}}\right\|_{x=x_{0}}\left(x-x_{o}\right)^{n}$
0	$\log (1+x)^{2}$	0	0	0
1	$\frac{2 \log (1+x)}{1+x}$	0	0	0
2	$\frac{2}{(1+x)^{2}}-\frac{2 \log (1+x)}{(1+x)^{2}}$	2	1	x^{2}
3	$-\frac{6}{(1+x)^{3}}+\frac{4 \log (1+x)}{(1+x)^{3}}$	-6	-1	$-x^{3}$
4	$\frac{22}{(1+x)^{4}}-\frac{12 \log (1+x)}{(1+x)^{4}}$	22	$\frac{11}{12}$	$\frac{11}{12} x^{4}$

Table 1: Development of Taylor Series for $\ln (x+1)^{2}$

Summing the elements of the final column, the three term approximation is:

$$
f \approx x^{2}-x^{3}+\frac{11}{12} x^{4}
$$

Part i

Using the definition from Equation 1 for (2c), the summary in Table 2 below is produced.

n	$\frac{\partial^{n} f}{\partial x^{n}}$	$\left.\frac{\partial^{n} f}{\partial x^{n}}\right\|_{x=x_{0}}$	$\left.\frac{1}{n!} \frac{\partial^{n} f}{\partial x^{n}}\right\|_{x=x_{0}}$	$\left.\frac{1}{n!} \frac{\partial^{n} f}{\partial x^{n}}\right\|_{x=x_{0}}\left(x-x_{o}\right)^{n}$
0	$\operatorname{arctanh} x$	0	0	0
1	$\frac{1}{1-x^{2}}$	1	1	x
2	$\frac{2 x}{\left(1-x^{2}\right)^{2}}$	0	0	0
3	$\frac{8 x^{2}}{\left(1-x^{2}\right)^{3}}+\frac{2}{\left(1-x^{2}\right)^{2}}$	2	$\frac{1}{3}$	$\frac{x^{3}}{3}$
4	$\frac{48 x^{3}}{\left(1-x^{2}\right)^{4}}+\frac{24 x}{\left(1-x^{2}\right)^{3}}$	0	0	0
5	$\frac{384 x^{4}}{\left(1-x^{2}\right)^{5}}+\frac{288 x^{2}}{\left(1-x^{2}\right)^{4}}+\frac{24}{\left(1-x^{2}\right)^{3}}$	24	$\frac{1}{5}$	$\frac{x^{5}}{5}$

Table 2: Development of Taylor Series for $\operatorname{arctanh} x$

Summing the elements of the final column, the three term approximation is:

$$
f \approx x+\frac{x^{3}}{3}+\frac{x^{5}}{5}
$$

Problem 2

Kaplan, p. 649: 5
Show that

$$
\begin{equation*}
J_{0}(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} \frac{x^{2 n}}{(n!)^{2}} \tag{2}
\end{equation*}
$$

Satisfies Bessel's equation of order 0 in the form

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}+x y=0 \tag{3}
\end{equation*}
$$

Computing the fist and second derivatives of Equation 2 as

$$
\begin{aligned}
& J_{0}^{\prime}(x)=\sum_{n=1}^{\infty} 2 n\left(-\frac{1}{4}\right)^{n} x^{2 n-1} /(n!)^{2} \\
& J_{0}^{\prime \prime}(x)=\sum_{n=1}^{\infty} 2 n(2 n-1)\left(-\frac{1}{4}\right)^{n} x^{2 n-2} /(n!)^{2}
\end{aligned}
$$

Remapping these indices of the summation to $n=0$

$$
\begin{array}{r}
J_{0}^{\prime}(x)=\sum_{n=0}^{\infty} 2(n+1)\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)^{n} x^{2 n+1} /((n+1)!)^{2} \\
J_{0}^{\prime \prime}(x)=\sum_{n=0}^{\infty} 2(n+2)(2 n+1)\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)^{n} x^{2 n} /((n+1)!)^{2} \tag{4}
\end{array}
$$

Placing the definitions from Equations 2 and 4, into Equation 3 and combining like terms,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[\left\{(2 n+2)(2 n+1)\left(-\frac{1}{4}\right)+2(n+1)\left(-\frac{1}{4}\right)+(n+1)^{2}\right\}\left(-\frac{1}{4}\right)^{n} x^{2 n+1} /(n+1)!\right]=0 \tag{5}
\end{equation*}
$$

For this to be true for the summation it must hold for all values of x and n, therefore

$$
\begin{equation*}
(2 n+2)(2 n+1)\left(-\frac{1}{4}\right)+2(n+1)\left(-\frac{1}{4}\right)+(n+1)^{2}=0 \tag{6}
\end{equation*}
$$

And upon expanding Equation 6, we see that this is true and therefore the series from Equation 2 satisfies Equation 3.

Problem 3

Course notes, 4.1a
Solve as a series in x for $x>0$ about the point $x=0$:

$$
\begin{align*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+(x+1) y & =0 \\
y(1) & =1 \tag{7}\\
y(4) & =0
\end{align*}
$$

Examining Equation 7, and recognizing that is of the form

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

Since $P(0)=0$, is not an ordinary point. Examining $x Q(x) / P(x)=-2$ and $x^{2} Q(x) / P(x)=x+1$ are both analytic at $x=0$ therefore, this is a regular singular point problem. Therefore there exist a solution for y is of the form:

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{8}
\end{equation*}
$$

Plugging this assumed form into the differential equation and simplifying yields,

$$
\left[\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}\right]+\left[\sum_{n=0}^{\infty}-2 a_{n}(n+r) x^{n+r}\right]+\left[\sum_{n=0}^{\infty} a_{n} x^{n+r+1}\right]+\left[\sum_{n=0}^{\infty} a_{n} x^{n+r}\right]=0
$$

Combining like powers of x into a single summation and simplifying the result

$$
\left[\sum_{n=0}^{\infty} a_{n}\left[(n+r)^{2}-3(n+r)+1\right] x^{n+r}\right]+\left[\sum_{n=0}^{\infty} a_{n} x^{n+r+1}\right]=0
$$

Removing the $n=0$ term from the first summation and remapping the index back to zero,

$$
a_{0}\left(r^{2}-3 r+1\right) x^{r}+\left[\sum_{n=0}^{\infty} a_{n+1}\left[(n+r+1)^{2}-3(n+r+1)+1\right] x^{n+r+1}\right]+\left[\sum_{n=0}^{\infty} a_{n} x^{n+r+1}\right]=0
$$

Combining the two summations

$$
a_{0}\left(r^{2}-3 r+1\right) x^{r}+\sum_{n=0}^{\infty}\left[a_{n}+a_{n+1}\left\{(n+r+1)^{2}-3(n+r+1)+1\right\}\right] x^{n+r+1}=0
$$

The term outside the summation gives us the indicial equation

$$
r^{2}-3 r+1=0
$$

Therefore $r=\frac{3 \pm \sqrt{5}}{2}$. Using one of these values, the term outside of the summation is zero and therefore the coefficient of x^{n+r+1} inside the summation must be zero for all values of x and n. Therefore,

$$
\begin{gathered}
a_{n}+a_{n+1}\left((n+r+1)^{2}-3(n+r+1)+1\right)=0 \\
a_{n+1}=-\frac{a_{n}}{(n+r+1)^{2}-3(n+r+1)+1}
\end{gathered}
$$

For $r=\frac{3+\sqrt{5}}{2}$

$$
a_{n+1}=-\frac{a_{n}}{(n+1+\sqrt{5})(n+1)}=-\frac{a_{0}}{(n+1)!\prod_{i=1}^{n+1}(i+\sqrt{5})}
$$

Therefore, the first solution to Equation 7 is,

$$
y_{1}=a_{0} x^{\frac{1}{2}(3+\sqrt{5})}\left(1-\frac{1}{1+\sqrt{5}} x+\frac{1}{14+6 \sqrt{5}} x^{2}+\frac{1}{24}(4 \sqrt{5}-9) x^{3}+\ldots\right)
$$

For $r=\frac{3-\sqrt{5}}{2}$

$$
b_{n+1}=-\frac{b_{n}}{(n+1-\sqrt{5})(n+1)}=-\frac{b_{0}}{(n+1)!\prod_{i=1}^{n+1}(i-\sqrt{5})}
$$

Therefore, the second solution to Equation 7 is,

$$
y_{2}=b_{0} x^{\frac{1}{2}(3-\sqrt{5})}\left(1+\frac{1}{\sqrt{5}-1} x+\frac{1}{8}(7+3 \sqrt{5}) x^{2}+\frac{(7+3 \sqrt{5})}{24(\sqrt{5}-3)} x^{3}+\ldots\right)
$$

Combining the two solutions, $y=y_{1}+y_{2}$, then considering the boundary conditions $a_{0}=0.675038$ and $b_{0}=0.183975$. Therefore, we can plot the solution below.

Figure 1: Exact and approximate solution to $x^{2} y^{\prime \prime}-2 x y^{\prime}+(x+1) y=0$

Problem 4

Course notes, 4.2
Find two-term expansions for each of the roots of:

$$
(x-1)(x+3)(x-3 \lambda)+1=0
$$

where λ is large.
Multiplying out the terms:

$$
x^{3}+(2-3 \lambda) x^{2}-(6 \lambda+3) x+(1+9 \lambda)=0
$$

Dividing through by λ, and substituting in a small number ϵ for $\frac{1}{\lambda}$,

$$
\begin{equation*}
\epsilon x^{3}+(2 \epsilon-3) x^{2}-(6+3 \epsilon) x+(\epsilon+9)=0 \tag{9}
\end{equation*}
$$

Examining this problem, we see that as $\epsilon \rightarrow 0$, a solution is lost. Therefore, we must change variables, we can perform the transformation,

$$
\begin{equation*}
X=\frac{x}{\epsilon^{\alpha}} \tag{10}
\end{equation*}
$$

Using the transformation from Equation 10 on Equation 9,

$$
\begin{equation*}
X^{3} \epsilon^{3 \alpha+1}-3 X^{2} \epsilon^{2 \alpha}+2 X^{2} \epsilon^{2 \alpha+1}-3 X(\epsilon+2) \epsilon^{\alpha}+\epsilon+9=0 \tag{11}
\end{equation*}
$$

The two highest order terms of X are in the same order of ϵ if $1+3 \alpha=2 \alpha$, Therefore, we demand that $\alpha=-1$. With this, Equation 11 becomes,

$$
\begin{equation*}
X^{3}+X^{2}(2 \epsilon-3)-3 X \epsilon(\epsilon+2)+\epsilon^{2}(\epsilon+9)=0 \tag{12}
\end{equation*}
$$

Let x be expressed as a sum in ϵ,

$$
\begin{equation*}
X=\sum_{n=0}^{\infty} X_{n} \epsilon^{n} \approx X_{0}+X_{1} \epsilon+X_{2} \epsilon^{2}+X_{3} \epsilon^{3} \tag{13}
\end{equation*}
$$

Therefore, separating on orders of ϵ and recognizing that since the expansion is 0 each term must also equal 0 , the equations become

$$
\begin{array}{r}
X_{0}^{3}-3 X_{0}^{2}=0 \\
3 X_{1} X_{0}^{2}+2 X_{0}^{2}-6 X_{1} X_{0}-6 X_{0}=0 \\
3 X_{2} X_{0}^{2}+3 X_{1}^{2} X_{0}+4 X_{1} X_{0}-6 X_{2} X_{0}-3 X_{0}-3 X_{1}^{2}-6 X_{1}+9=0 \\
X_{1}^{3}+2 X_{1}^{2}+6 X_{0} X_{2} X_{1}-6 X_{2} X_{1}-3 X_{1}+4 X_{0} X_{2}-6 X_{2}+3 X_{0}^{2} X_{3}-6 X_{0} X_{3}+1=0
\end{array}
$$

Sequentially solving these equations until we have two terms for each solution, we find

$$
\begin{align*}
\left(X_{0}, X_{1}, X_{2}\right) & =\left(0,-3,-\frac{1}{12}\right) \tag{14}\\
\left(X_{0}, X_{1}, X_{2}\right) & =\left(0,1, \frac{1}{12}\right) \\
\left(X_{0}, X_{1}, X_{2}, X_{3}\right) & =\left(3,0,0,-\frac{1}{9}\right)
\end{align*}
$$

Then combining the values from Equation 14 and the initial approximation from Equation 13, we find,

$$
X \approx-\frac{\epsilon^{2}}{12}-3 \epsilon, \frac{\epsilon^{2}}{12}+\epsilon \text { or } 3-\frac{\epsilon^{3}}{9}
$$

Therefore

$$
\begin{aligned}
& x \approx-\frac{\epsilon}{12}-3, \frac{\epsilon}{12}+1, \text { or } \frac{3}{\epsilon}-\frac{\epsilon^{2}}{9} \\
& x \approx-\frac{1}{12 \lambda}-3, \frac{1}{12 \lambda}+1, \text { or } 3 \lambda-\frac{1}{9 \lambda^{2}}
\end{aligned}
$$

Problem 5

Course notes, 4.11b
Find all solutions through $O\left(\epsilon^{2}\right)$, where ϵ is a small parameter, and compare with the exact result for $\epsilon=0.01$.

$$
\begin{equation*}
2 \epsilon x^{4}+2(2 \epsilon+1) x^{3}+(7-2 \epsilon) x^{2}-5 x-4=0 \tag{15}
\end{equation*}
$$

Starting this problem, we see that as $\epsilon \rightarrow 0$, a solution is lost. Therefore, we must change variables, we can perform the transformation,

$$
\begin{equation*}
X=\frac{x}{\epsilon^{\alpha}} \tag{16}
\end{equation*}
$$

Using the transformation from Equation 16 on Equation 15,

$$
\begin{equation*}
2 \epsilon^{4 \alpha+1} X^{4}+2\left(2 \epsilon^{3 \alpha+1}+\epsilon^{3 \alpha}\right) X^{3}+\left(7 \epsilon^{2 \alpha}-2 \epsilon^{2 \alpha+1}\right) X^{2}-5 \epsilon^{\alpha} X-4=0 \tag{17}
\end{equation*}
$$

The two highest order terms of X are in the same order of ϵ if $4 \alpha+1=3 \alpha$, Therefore, we demand that $\alpha=-1$. With this, Equation 17 becomes,

$$
\begin{equation*}
2 \epsilon^{-3} X^{4}+2\left(2 \epsilon^{-2}+\epsilon^{-3}\right) X^{3}+\left(7 \epsilon^{-2}-2 \epsilon^{-1}\right) X^{2}-5 \epsilon^{-1} X-4=0 \tag{18}
\end{equation*}
$$

In order to solve this problem, we start by assuming that X can be written in the form,

$$
\begin{equation*}
X=\sum_{n=0}^{\infty} X_{n} \epsilon^{n}=X_{0}+X_{1} \epsilon+X_{2} \epsilon^{2}+X_{3} \epsilon^{3}+\ldots \tag{19}
\end{equation*}
$$

Then placing the expansion from Equation 19 into Equation 18, we find,

$$
\begin{align*}
& 2 \epsilon^{-3}\left(X_{0}+X_{1} \epsilon+X_{2} \epsilon^{2}+X_{3} \epsilon^{3}+\ldots\right)^{4}+2\left(2 \epsilon^{-2}+\epsilon^{-3}\right)\left(X_{0}+X_{1} \epsilon+X_{2} \epsilon^{2}+X_{3} \epsilon^{3}+\ldots\right)^{3}+ \tag{20}\\
& \quad\left(7 \epsilon^{-2}-2 \epsilon^{-1}\right)\left(X_{0}+X_{1} \epsilon+X_{2} \epsilon^{2}+X_{3} \epsilon^{3}+\ldots\right)^{2}-5 \epsilon^{-1}\left(X_{0}+X_{1} \epsilon+X_{2} \epsilon^{2}+X_{3} \epsilon^{3}+\ldots\right)-4=0
\end{align*}
$$

Expanding this and separating by powers of ϵ and recognizing that if the sum of all terms is 0 then each order of ϵ must be 0 as well. Examining these equations,

$$
\begin{array}{rrr}
\epsilon^{0} & -2 X_{0}^{4}-2 X_{0}^{3}=0 \tag{21}\\
\epsilon^{1} & -8 X_{1} X_{0}^{3}-4 X_{0}^{3}-6 X_{1} X_{0}^{2}-7 X_{0}^{2}=0 \\
\epsilon^{2} & -8 X_{2} X_{0}^{3}-12 X_{1}^{2} X_{0}^{2}-12 X_{1} X_{0}^{2}-6 X_{2} X_{0}^{2}+2 X_{0}^{2}-6 X_{1}^{2} X_{0}-14 X_{1} X_{0}+5 X_{0}=0 \\
\epsilon^{3} & -8 X_{3} X_{0}^{3}-24 X_{1} X_{2} X_{0}^{2}-12 X_{2} X_{0}^{2}-6 X_{3} X_{0}^{2}-8 X_{1}^{3} X_{0}-12 X_{1}^{2} X_{0}+4 X_{1} X_{0} \\
& -12 X_{1} X_{2} X_{0}-14 X_{2} X_{0}-2 X_{1}^{3}-7 X_{1}^{2}+5 X_{1}+4 & =0
\end{array}
$$

Solving Equations 21 we see,

$$
\begin{equation*}
\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=\left(0,-4,-\frac{32}{5},-\frac{31232}{875}\right),\left(0,-\frac{1}{2},-\frac{1}{12},-\frac{11}{378}\right),\left(0,1,-\frac{4}{15}, \frac{752}{3375}\right),\left(-1, \frac{3}{2}, \frac{27}{4}, \frac{71}{2}\right) \tag{22}
\end{equation*}
$$

Therefore using the definition from Equation 19, the data from Equation 22 and the transformation defined in Equation 16, the $O\left(\epsilon^{2}\right)$ solutions are,

$$
\begin{array}{llrl}
X=-4 \epsilon-\frac{32}{5} \epsilon^{2}-\frac{31232}{875} \epsilon^{3} & & \rightarrow & x=-\frac{31232}{875} \epsilon^{2}-\frac{32}{5} \epsilon-4 \\
X=-\frac{1}{2} \epsilon-\frac{1}{12} \epsilon^{2}-\frac{11}{378} \epsilon^{3} & & \rightarrow & x=-\frac{11}{378} \epsilon^{2}-\frac{1}{12} \epsilon-\frac{1}{2} \\
X=\epsilon-\frac{4}{15} \epsilon^{2}+\frac{752}{3375} \epsilon^{3} & & \rightarrow & x=\frac{752}{3375} \epsilon^{2}-\frac{4}{15} \epsilon+1 \\
X=-1+\frac{3}{2} \epsilon+\frac{27}{4} \epsilon^{2}+\frac{71}{2} \epsilon^{3} & & \rightarrow & x=\frac{71}{2} \epsilon^{2}+\frac{27}{4} \epsilon+\frac{3}{2}-\frac{1}{\epsilon}
\end{array}
$$

Now, in the case of $\epsilon=0.01$, our estimate of the roots of Equation 15 would be

$$
x=-4.06757,-0.500836,0.997356,-98.429
$$

While the exact solution is,

$$
x=-4.06783,-0.500836,0.997355,-98.4287
$$

The $O\left(\epsilon^{2}\right)$ approximation provides an excellent approximation of the roots, the maximum relative error is 6.5×10^{-5}.

Problem 6

Course notes, 4.12
Find three terms of a solution of

$$
\begin{equation*}
x+\epsilon \cos (x+2 \epsilon)=\frac{\pi}{2} \tag{23}
\end{equation*}
$$

where ϵ is a small parameter. For $\epsilon=0.2$, compare the best asymptotic solution with the exact solution. In order to solve this problem, we start by assuming that x can be written in the form,

$$
\begin{equation*}
x=\sum_{n=0}^{\infty} x_{n} \epsilon^{n}=x_{0}+x_{1} \epsilon+x_{2} \epsilon^{2}+x_{3} \epsilon^{3}+\ldots \tag{24}
\end{equation*}
$$

Then placing the approximation from 24 into Equation 23, we find,

$$
\begin{equation*}
\left(x_{0}+x_{1} \epsilon+x_{2} \epsilon^{2}+x_{3} \epsilon^{3}+\ldots\right)+\epsilon \cos \left(\left(x_{0}+x_{1} \epsilon+x_{2} \epsilon^{2}+x_{3} \epsilon^{3}+\ldots\right)+2 \epsilon\right)=\frac{\pi}{2} \tag{25}
\end{equation*}
$$

Performing a Taylor series expansion in ϵ about $\epsilon=0$, splitting this up by powers of ϵ,

$$
\begin{aligned}
& \epsilon^{0}: x_{0}-\frac{\pi}{2} \\
&=0 \\
& \epsilon^{1}: x_{1}+\cos \left(x_{0}\right) \\
&=0 \\
& \epsilon^{2}: x_{2}-\left(x_{1}+2\right) \sin \left(x_{0}\right)=0 \\
& \epsilon^{3}: x_{3}-x_{2} \sin \left(x_{0}\right)-\frac{1}{2}\left(x_{1}+2\right)^{2} \cos \left(x_{0}\right)=0 \\
& \vdots \vdots
\end{aligned}
$$

Solving for the terms in Equation 26, we find $x_{0}=\frac{\pi}{2}, x_{1}=0, x_{2}=2, x_{3}=2$. Therefore the three term asymptotic solution of Equation 23 is,

$$
x=\frac{\pi}{2}+2 \epsilon^{2}+2 \epsilon^{3}
$$

In the case of $\epsilon=0.2$, this yields $x_{A p p x}=1.6668$, while the exact solution is $x_{\text {Exact }}=1.6658$.

Problem 7

Course notes, 4.16
The solution of the matrix equation $\mathbf{A} \cdot \mathbf{x}=\mathbf{y}$ can be written as $\mathbf{x}=\mathbf{A}^{-1} \cdot \mathbf{y}$. Find the perturbation solution of

$$
\begin{equation*}
(\mathbf{A}+\epsilon \mathbf{B}) \cdot \mathbf{x}=\mathbf{y} \tag{27}
\end{equation*}
$$

where ϵ is a small parameter.
Assuming x is of the form

$$
\begin{equation*}
\mathbf{x}=\sum_{n=0}^{\infty} \epsilon^{n} \mathbf{x}_{n}=\mathbf{x}_{0}+\epsilon \mathbf{x}_{1}+\epsilon^{2} \mathbf{x}_{2}+\ldots \tag{28}
\end{equation*}
$$

This means that Equation 27 can be written as,

$$
\begin{equation*}
(\mathbf{A}+\epsilon \mathbf{B}) \cdot\left(\mathbf{x}_{0}+\epsilon \mathbf{x}_{1}+\epsilon^{2} \mathbf{x}_{2}+\ldots\right)=\mathbf{y} \tag{29}
\end{equation*}
$$

Distributing through the dot product and grouping by powers of ϵ, Equation 29 becomes,

$$
\begin{equation*}
\left(\mathbf{A} \cdot \mathbf{x}_{0}-\mathbf{y}\right)+\epsilon\left(\mathbf{B} \cdot \mathbf{x}_{0}+\mathbf{A} \cdot \mathbf{x}_{1}\right)+\epsilon^{2}\left(\mathbf{B} \cdot \mathbf{x}_{1}+\mathbf{A} \cdot \mathbf{x}_{2}\right)+\cdots=0 \tag{30}
\end{equation*}
$$

Since the summation of the terms is zero, each power of ϵ must be as well therefore,

$$
\begin{array}{r}
\mathbf{A} \cdot \mathbf{x}_{0}=\mathbf{y} \\
\mathbf{B} \cdot \mathbf{x}_{0}+\mathbf{A} \cdot \mathbf{x}_{1}=\mathbf{0} \\
\mathbf{B} \cdot \mathbf{x}_{1}+\mathbf{A} \cdot \mathbf{x}_{2}=\mathbf{0}
\end{array}
$$

Solving each line for the unknown \mathbf{x},

$$
\begin{aligned}
\mathbf{x}_{0} & =\mathbf{A}^{-1} \cdot \mathbf{y} \\
\mathbf{x}_{1} & =-\mathbf{A}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{0} \\
\mathbf{x}_{2} & =-\mathbf{A}^{-1} \cdot \mathbf{B} \cdot \mathbf{x}_{1} \\
& \vdots
\end{aligned}
$$

Back substituting, we find that in general,

$$
\begin{equation*}
\mathbf{x}_{n}=\mathbf{A}^{-1} \cdot\left(-\mathbf{B} \cdot \mathbf{A}^{-1}\right)^{n} \cdot \mathbf{y} \tag{31}
\end{equation*}
$$

Therefore using the definition of \mathbf{x} from Equation 28 and the values of \mathbf{x}_{n} from Equation 31, the perturbation solution of Equation 27 is,

$$
\mathbf{x}=\mathbf{A}^{-1} \cdot\left[\sum_{n=0}^{\infty}\left(-\epsilon \mathbf{B} \cdot \mathbf{A}^{-1}\right)^{n}\right] \cdot \mathbf{y}
$$

Problem 8

Course notes, 4.17
Find all solutions of

$$
\begin{equation*}
\epsilon x^{4}+x-2=0 \tag{32}
\end{equation*}
$$

approximately, if ϵ is small and positive. If $\epsilon=0.001$, compare the exact solution obtained numerically with the asymptotic solution.
Note as $\epsilon \rightarrow 0$, the equation becomes singular. Let

$$
\begin{equation*}
X=\frac{x}{\epsilon^{\alpha}} \tag{33}
\end{equation*}
$$

Using the transformation from Equation 33 on Equation 32,

$$
\begin{equation*}
\epsilon^{4 \alpha+1} X^{4}+\epsilon^{\alpha} X-2=0 \tag{34}
\end{equation*}
$$

The two highest order terms of X are in the same order of ϵ if $4 \alpha+1=\alpha$, Therefore, we demand that $\alpha=-\frac{1}{3}$. With this, Equation 34 becomes,

$$
\begin{equation*}
\epsilon^{-\frac{1}{3}} X^{4}+\epsilon^{-\frac{1}{3}} X-2=0 \tag{35}
\end{equation*}
$$

In order to solve this problem, we start by assuming that X can be written in the form,

$$
\begin{equation*}
X=\sum_{n=0}^{\infty} X_{n} \epsilon^{\frac{n}{3}}=X_{0}+X_{1} \epsilon^{\frac{1}{3}}+X_{2} \epsilon^{\frac{2}{3}}+X_{3} \epsilon+\ldots \tag{36}
\end{equation*}
$$

Then placing the expansion from Equation 36 into Equation 35, we find,

$$
\begin{equation*}
\left(X_{0}+X_{1} \epsilon^{\frac{1}{3}}+X_{2} \epsilon^{\frac{2}{3}}+X_{3} \epsilon+\ldots\right)^{4}+\left(X_{0}+X_{1} \epsilon^{\frac{1}{3}}+X_{2} \epsilon^{\frac{2}{3}}+X_{3} \epsilon+\ldots\right)-2 \epsilon^{\frac{1}{3}}=0 \tag{37}
\end{equation*}
$$

Expanding this and separating by powers of ϵ and recognizing that if the sum of all terms is 0 then each order of ϵ must be 0 as well. Examining these equations,

$$
\begin{array}{rr}
\epsilon^{0} & X_{0}^{4}+X_{0} \tag{38}\\
=0 \\
\epsilon^{\frac{1}{3}} & 4 X_{1} X_{0}^{3}+X_{1}-2=0 \\
\epsilon^{\frac{2}{3}} & 4 X_{2} X_{0}^{3}+6 X_{1}^{2} X_{0}^{2}+X_{2}=0 \\
\epsilon^{1} & 4 X_{3} X_{0}^{3}+12 X_{1} X_{2} X_{0}^{2}+4 X_{1}^{3} X_{0}+X_{3}=0
\end{array}
$$

Solving Equations 38 we see,

$$
\begin{align*}
\left(X_{0}, X_{1}, X_{2}, X_{3}\right)= & \left(-1,-\frac{2}{3}, \frac{8}{9},-\frac{160}{81}\right) \tag{39}\\
& (0,2,0,0) \\
& \left(\sqrt[3]{-1},-\frac{2}{3}, \frac{8}{9}(\sqrt[3]{-1}-1), \frac{160 \sqrt[3]{-1}}{81}\right) \\
& \left(-(-1)^{2 / 3},-\frac{2}{3}, \frac{8}{9}\left(-1-(-1)^{2 / 3}\right), \frac{1}{81}(-160)(-1)^{2 / 3}\right)
\end{align*}
$$

Therefore using the definition from Equation 36, the data from Equation 39 and the transformation defined in Equation 33, the $O(\epsilon)$ solutions are,

$$
\begin{aligned}
& X=\frac{8 \epsilon^{2 / 3}}{9}-\frac{1}{3} 2 \sqrt[3]{\epsilon}-\frac{160 \epsilon}{81}-1 \\
& X=2 \sqrt[3]{\epsilon} \\
& X=\frac{8}{9}(\sqrt[3]{-1}-1) \epsilon^{2 / 3}-\frac{1}{3} 2 \sqrt[3]{\epsilon}+\frac{1}{81} \sqrt[3]{-1} 160 \epsilon+\sqrt[3]{-1} \\
& X=\frac{8}{9}\left(-1-(-1)^{2 / 3}\right) \epsilon^{2 / 3}-\frac{1}{3} 2 \sqrt[3]{\epsilon}-\frac{160}{81}(-1)^{2 / 3} \epsilon-(-1)^{2 / 3}
\end{aligned}
$$

Performing the inverse transformation to convert X to x,

$$
\begin{aligned}
& x=-\frac{160 \epsilon^{2 / 3}}{81}+\frac{8 \sqrt[3]{\epsilon}}{9}-\frac{1}{\sqrt[3]{\epsilon}}-\frac{2}{3} \\
& x=2 \\
& x=\frac{\frac{8}{9}(\sqrt[3]{-1}-1) \epsilon^{2 / 3}-\frac{1}{3} 2 \sqrt[3]{\epsilon}+\frac{1}{81} \sqrt[3]{-1} 160 \epsilon+\sqrt[3]{-1}}{\sqrt[3]{\epsilon}} \\
& x=\frac{-72\left(1+(-1)^{2 / 3}\right) \epsilon^{2 / 3}-54 \sqrt[3]{\epsilon}-160(-1)^{2 / 3} \epsilon-81(-1)^{2 / 3}}{81 \sqrt[3]{\epsilon}}
\end{aligned}
$$

Using this approximation when $\epsilon=0.001$, we find the approximate roots are

$$
\begin{aligned}
& x_{1}=-10.5975 \\
& x_{2}=2 \\
& x_{3}=4.29877+8.75434 i \\
& x_{4}=4.29877-8.75434 i
\end{aligned}
$$

and the exact roots are

$$
\begin{aligned}
& x_{1}=-10.5934 \\
& x_{2}=1.98449 \\
& x_{3}=4.30446-8.75258 i \\
& x_{4}=4.30446+8.75258 i
\end{aligned}
$$

Problem 9

Course notes, 4.18
Obtain the first two terms of an approximate solution to

$$
\begin{align*}
\ddot{x}+3(1+\epsilon) \dot{x}+2 x & =0, \text { with } \tag{40}\\
x(0) & =2(1+\epsilon), \\
\dot{x}(0) & =-3(1+2 \epsilon),
\end{align*}
$$

for small ϵ. Compare with the exact solution graphically in the range $0 \leq t \leq 1$ for (a) $\epsilon=0.1,(\mathrm{~b}) \epsilon=0.25$ and (c) $\epsilon=0.5$.
Letting x be of the form $x=x_{0}+\epsilon x_{1}+\ldots$ Therefore the second derivative takes the form, $\ddot{x}=\dot{x}_{0}+\epsilon \dot{x}_{1}+\ldots$ and the second derivative takes the form, $\ddot{x}=\ddot{x}_{0}+\epsilon \ddot{x}_{1}+\ldots$. Equation 40 then becomes,

$$
\left(\ddot{x}_{0}+\epsilon \ddot{x}_{1}+\ldots\right)+3(1+\epsilon)\left(\dot{x}_{0}+\epsilon \dot{x}_{1}+\ldots\right)+2\left(x_{0}+\epsilon x_{1}+\ldots\right)=0, \text { with } x(0)=2(1+\epsilon), \dot{x}(0)=-3(1+2 \epsilon)
$$

Combining the sums with the same power of ϵ, and recognizing that all orders of ϵ are linearly independent, since the of all powers of ϵ must be zero, each order of ϵ sums to zero, ie,

$$
\begin{array}{rrrr}
\epsilon^{0}: & x_{0}^{\prime \prime}(t)+3 x_{0}^{\prime}(t)+2 x_{0}(t)=0, & x_{0}(0)=2, & x_{0}^{\prime}(1)=-3 \\
\epsilon^{1}: & x_{1}^{\prime \prime}(t)+3 x_{1}^{\prime}(t)+2 x_{1}(t)+3 x_{0}^{\prime}=0, & x_{1}(0)=2, & x_{1}^{\prime}(t)=-6
\end{array}
$$

Solving these sequentially (note that since the initial conditions are of mixed order of ϵ they are separated as well),

$$
\begin{aligned}
& x_{0}=e^{-2 t}\left(e^{t}+1\right) \\
& x_{1}=e^{-2 t}\left(-6 t+e^{t}(3 t+1)+1\right)
\end{aligned}
$$

We find the exact and the two term approximate solution to Equation 40 to be,

$$
x_{A p p x}=e^{-2 t}\left(-6 t \epsilon+e^{t}(3 t \epsilon+\epsilon+1)+\epsilon+1\right)
$$

Plotting the cases of $\epsilon=0.1, \epsilon=0.25$ and $\epsilon=0.5$.

Figure 2: $\epsilon=0.1$

Figure 3: $\epsilon=0.25$

- Exact
- Approximation

Figure 4: $\epsilon=0.5$

Problem 10

Course notes, 4.58
Find the solution of the transcendental equation

$$
\begin{equation*}
\sin x=\epsilon \cos 2 x \tag{41}
\end{equation*}
$$

near $x=\pi$ for small positive ϵ.
If we substitute $x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots$ into Equation 41, we find

$$
\begin{equation*}
\sin \left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots\right)=\epsilon \cos 2\left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots\right) \tag{42}
\end{equation*}
$$

Performing a Taylor Series on Equation 42 about $\epsilon=0$ and collecting by powers of ϵ,

$$
\begin{aligned}
\epsilon^{0}: & \sin \left(x_{0}\right) \\
\epsilon^{1}: & =0 \\
\epsilon^{2}: & -\frac{1}{2} \sin \left(x_{0}\right) x_{1}^{2}+2 \sin \left(2 x_{0}\right) x_{1}+\cos \left(x_{0}\right) x_{2}
\end{aligned}=0
$$

Solving Equation 43, we see $x_{0}=\pi, x_{1}=-1, x_{2}=0, x_{3}=\frac{11}{6}$. Therefore

$$
x=\pi-\epsilon+\frac{11}{6} \epsilon^{3}+\ldots
$$

