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Problem 1
Kaplan, p. 436: 2c,i

Find the first three nonzero terms of the following Taylor series:

¢) In(1+4 z)* about = = 0

i) arctanhz about x =0

The definition of a Taylor Series is:

Part ¢

Using the definition from Equation 1 for (2¢), the summary in Table 1 below is produced.

8’71 an 1 371 1 8’71
n 617{ 81’7{ _ n! 8&07{ _ n! 8@7{ _ (iC - ‘ro)n
T=T( T=TQ T=TQ
0 log(1 4 z)? 0 0 0
2log(1+x)
1 2log(14m) 0 0 0
2 2log(1+x) 2
2| oz~ Three 2 1 .
6 4log(l+x) 3
22 12log(14x) 11 11 .4
4 (I4=)* ((1):gi-r)‘lz 22 12 2%

Summing the elements of the final column, the three term approximation is:

Part 1

Table 1: Development of Taylor Series for In (z + 1)

11
o2+ —a

frw 12

4

Using the definition from Equation 1 for (2¢), the summary in Table 2 below is produced.

" f af 1 9"f 1 9"f

n oz ozn | n! dzm | n! dzm | (LL’ - :CO)TL
T=TQ T=TQ T=T(
0 arctanh x 0 0 0
1 Lz 1 1 x
2 (1_2%)2 0 0 0
8> 2 1 3
3 (1—1;2)3 + (1—x2)2 2 3 %

.3

4 Tyt + (st 0 0 0
3842 28822 24 1 5
5| fzery T foeryr T e 24 5 5

Summing the elements of the final column, the three term approximation is:

Table 2: Development of Taylor Series for arctanh x

3 x°
f~l+§+€
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Problem 2
Kaplan, p. 649: 5
Show that
nw) =3 (1) 2 ®)
R 4/ (n!)?
n=0
Satisfies Bessel’s equation of order 0 in the form
zy" +y +ay=0 (3)
Computing the fist and second derivatives of Equation 2 as
oo 1 n
T () — on [~ 2n—1/(,1\2
EEOWACHIE T
oo n
Ji(z) = Z 2n(2n — 1) (—) 272 /(n!)?
n=1
Remapping these indices of the summation to n =0
Ji(x) = i2(n+1) Ly (2l nx2"+1/((n+1)!)2
= 4 4
" — 1 1 " 2n 2
Jy (J:):Z2(n+2)(2n+1) - (== z/((n+ 1)) (4)
— 4 4
Placing the definitions from Equations 2 and 4, into Equation 3 and combining like terms,
- 1 1 2 IN" ot
> R @n+2)2n+1) —1) 2+ (=7 )+ )P (=5 ) 2P+ 1) =0 (5)
n=0
For this to be true for the summation it must hold for all values of x and n, therefore
1 1 9
(2n+2)(2n+1) ~1 +2(n+1) ~1 +(n+1)*=0 (6)

And upon expanding Equation 6, we see that this is true and therefore the series from Equation 2 satisfies Equation

3.
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Problem 3

Course notes, 4.1a

Solve as a series in x for x > 0 about the point = 0:

2,11 /

Examining Equation 7, and recognizing that is of the form
P(z)y" + Qx)y' + R(x)y =0

Since P(0) = 0, is not an ordinary point. Examining 2Q(z)/P(z) = —2 and 22Q(z)/P(z) = = + 1 are both analytic
at x = 0 therefore, this is a regular singular point problem. Therefore there exist a solution for y is of the form:

y = Z anz"t" (8)
n=0

Plugging this assumed form into the differential equation and simplifying yields,

li an(n+r)(n+r—1)z""| + i —2ap(n + 1)zt Z a, "t i anxmﬂ} _0
n=0 n—0 !

Combining like powers of x into a single summation and simplifying the result

oo

Z anw””H] =0

n=0

[i an[(n+1)? = 3(n+r)+1a"*"| +

Removing the n = 0 term from the first summation and remapping the index back to zero,

Z a x"““] =0

ao(r* —3r 4+ 1)z

ZanH (n+r+1)2=3n+r+1)+ 1zt
n=0

Combining the two summations
ao(r? — 3r + 1)z + Z [an + ani1{(n+7+1)2=3n+r+1)+ 12" =0
n=0

The term outside the summation gives us the indicial equation

r*=3r+1=0

Therefore r = % Using one of these values, the term outside of the summation is zero and therefore the coefficient

of 2"+ inside the summation must be zero for all values of z and n. Therefore,

an+ anp((n+r+1)2%=3n+r+1)+1)=0
an
m+r+1)2-3n+r+1)+1

Ap+1 = —

For r = 345

Qp, Qg

(n+1++v5)(n+1) :7(77,—5-1)!"11_[1(7;—5-\/5)

i=1

Anp4+1 = —

Therefore, the first solution to Equation 7 is,

n —a0x2(3+f)( 1+1\/5x 14+16\f (4f ) )
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For r = 3*2‘@
b _ bn o b(]
ntl = = _ - n+1
(n+1—+5)(n+1) mn+ DUTT G- V)
i=1

Therefore, the second solution to Equation 7 is,

1 1

Combining the two solutions, y = y1 +y2, then considering the boundary conditions ag = 0.675038 and by = 0.183975.
Therefore, we can plot the solution below.

Yy = box?(3=V5) (1 + (7+3V5) +>

30F
25F
20F — Exact

15 L — 4 TermApproximation

05

1 2 3 4

Figure 1: Exact and approximate solution to z2y” — 2zy’ + (z + 1)y = 0
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Problem 4

Course notes, 4.2

Find two-term expansions for each of the roots of:
(x—1)(xz+3)(x—3N)+1=0

where A is large.
Multiplying out the terms:
2% 4+ (2= 3\)z% — (6A+3)z+ (1 +9)) =0
Dividing through by A, and substituting in a small number € for %,
ex® + (2 —3)2? — (6 +3e)r +(e+9)=0 (9)

Examining this problem, we see that as e — 0, a solution is lost. Therefore, we must change variables, we can
perform the transformation,

X=2 (10)
6(1
Using the transformation from Equation 10 on Equation 9,

X33t _3x2e2 12X 22T _3X(e4+2)e* +e4+9=0 (11)
The two highest order terms of X are in the same order of € if 1 4+ 3a = 2a, Therefore, we demand that « = —1.

With this, Equation 11 becomes,
X34+ X%(2¢—3) —3Xe(e +2) +2(e+9) =0 (12)

Let x be expressed as a sum in e,
X = Z X" &~ Xo 4+ Xie + Xo€? + X5¢° (13)

n=0

Therefore, separating on orders of € and recognizing that since the expansion is 0 each term must also equal 0, the
equations become

X3 -3X3=0

3X1 X3 +2X2 —6X,Xg—6X9=0

3Xo X3 +3X7 X +4X1Xg — 6X2X9 —3X0—3X7 —6X;+9=0

X3 42X +6X0XoX) — 6XoX; —3X) +4X0Xo —6Xo +3X2X3 —6X0X3+1=0

Sequentially solving these equations until we have two terms for each solution, we find
1
(XO7X17X2) = (07_37_12) (14)
(X0, X1,X2)=1{0,1 1
0, A1, A2) — s Ly 12

1
(X03X17X25X3) = (35 0707 9>

Then combining the values from Equation 14 and the initial approximation from Equation 13, we find,

€2 €2 €3
X~ —3e,— 3-—
2 "Rty
Therefore
2
€ € €
X —E—g,ﬁ‘,—l, Or*—g
1 1 1
~—— -3, — +1 A— —
TRy ST T h AT g
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Problem 5

Course notes, 4.11b

Find all solutions through O(e?), where € is a small parameter, and compare with the exact result for e = 0.01.
2ext +2(2e 4+ 1)a® + (7T —2€)a? =50 —4=0 (15)

Starting this problem, we see that as e — 0, a solution is lost. Therefore, we must change variables, we can perform
the transformation,

X = 6% (16)
Using the transformation from Equation 16 on Equation 15,
2et T x4 9(2e30! 1 B3 X3 4 (T2 — 2629 X2 — 562X —4 =0 (17)
The two highest order terms of X are in the same order of € if 4o + 1 = 3a, Therefore, we demand that a = —1.
With this, Equation 17 becomes,
263X 4222+ e HX3 4+ (Te? =2 HX2 - 571X —4=0 (18)
In order to solve this problem, we start by assuming that X can be written in the form,
X:anEn:X0+X16+X262+X363+... (19)
n=0

Then placing the expansion from Equation 19 into Equation 18, we find,
2e73(Xo + X1e + Xoe? + X3 +...) +2(2672 +€73)(Xo + Xie + Xoe? + X33 +...)3+ (20)
(T2 =26 (Xo + X1e+ Xoe? + X33 +...)% =5 H(Xog+ Xje + Xoe? + X363 +...)—4=0

Expanding this and separating by powers of € and recognizing that if the sum of all terms is 0 then each order of €
must be 0 as well. Examining these equations,

e —2X5 —2X3 =0 (21)
e —8X1 X§ —4X5 - 6X,1 X5 —7X3 =0

€ —8Xo Xy — 12X X3 — 12X, X§ — 6X2 X3 +2X5 — 6X7 X — 14X, X0 +5X0 =0

e —8X3X3 — 24X, Xo X7 — 12X X7 — 6X3X5 — 8X$ X — 12X7 X, + 4X, X,

—12X1 X5 Xo — 14X, Xy — 2X7 —7X2 +5X, +4=0

Solving Equations 21 we see,
32 31232 1 1 11 4 752 327 171
Xo, X1, X5, X3) = -4, —— —— —_—— =, = 1, ——, — -1,=,—, = 22
( 0y A1y A2, 3) <Oa ) 57 ]75 >7(O7 27 12’ 378)7(07 ) 1573375>7( 727 47 2> ( )
Therefore using the definition from Equation 19, the data from Equation 22 and the transformation defined in
Equation 16, the O(e?) solutions are,

32 31232 4 31232 , 32

X=—46—€€2 =7 € — = WG_EE_LL
Xze—%g—i—%e?’ — x:%g—%e—kl

Now, in the case of € = 0.01, our estimate of the roots of Equation 15 would be
x = —4.06757,—0.500836, 0.997356, —98.429

While the exact solution is,
x = —4.06783, —0.500836, 0.997355, —98.4287

The O(e?) approximation provides an excellent approximation of the roots, the maximum relative error is 6.5 x 1075,
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Problem 6
Course notes, 4.12
Find three terms of a solution of -
x + ecos (z+ 2€) = 3 (23)
where € is a small parameter. For € = 0.2, compare the best asymptotic solution with the exact solution.
In order to solve this problem, we start by assuming that x can be written in the form,
.T:Z(Enﬁn:$0+$16+{E262+.’L’363+... (24)
n=0
Then placing the approximation from 24 into Equation 23, we find,
(w0 + 1€ + x0€® + 236> +...) +ecos (g + 1€ + xo€® + 236> +...) +2€) = g (25)
Performing a Taylor series expansion in € about € = 0, splitting this up by powers of ¢,
¢ o — g =0 (26)
el x1 + cos(zp) =0
e 22 — (x1 + 2)sin(zg) =0
e r3 — Tosin(zg) — = (a1 4+ 2)? cos(zg) =0

Solving for the terms in Equation 26, we find xg = 5,21 = 0,22 = 2,23 = 2. Therefore the three term asymptotic

solution of Equation 23 is,

$=g+262+263

In the case of € = 0.2, this yields z app, = 1.6668, while the exact solution is £ggqc = 1.6658.
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Problem 7

Course notes, 4.16

The solution of the matrix equation A - x =y can be written as x = A~! - y. Find the perturbation solution of

(A+eB) -x=y, (27)
where € is a small parameter.
Assuming x is of the form .
x:Ze"xn:xo—i—exl—i—esz—i—... (28)
n=0
This means that Equation 27 can be written as,
(A+eB)-(xo+ex; +€xo+...) =y (29)

Distributing through the dot product and grouping by powers of ¢, Equation 29 becomes,
(A x)—y)+eB-x0+A-x)+B-x1 +A -x3)+---=0 (30)
Since the summation of the terms is zero, each power of ¢ must be as well therefore,

A-xo=y
B’X0+A'X1:O
B~X1+A'X2:0

Solving each line for the unknown x,

xo=A"1.y
X]_:—A_l-B-XO
X2:7A71'B'X1

Back substituting, we find that in general,
X, = A_l . (—B . A_l)n 'y (31)

Therefore using the definition of x from Equation 28 and the values of x,, from Equation 31, the perturbation solution
of Equation 27 is,
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Problem 8

Course notes, 4.17
Find all solutions of
e+ -2=0 (32)

approximately, if € is small and positive. If € = 0.001, compare the exact solution obtained numerically with the
asymptotic solution.
Note as € — 0, the equation becomes singular. Let

x=2=L (33)

60&

Using the transformation from Equation 33 on Equation 32,

otIxt L X —2=0 (34)
The two highest order terms of X are in the same order of € if 4o + 1 = a, Therefore, we demand that o = —%.
With this, Equation 34 becomes, ) )

€ IX e 3X —2=0 (35)

In order to solve this problem, we start by assuming that X can be written in the form,
X =3 Xne¥ = X+ Xie¥ + Xoeh + Xge+ ... (36)
n=0

Then placing the expansion from Equation 36 into Equation 35, we find,
(Xo + X165 + Xo€3 + Xse+ ... ) + (Xo + X165 + Xoe5 + Xge+...) — 2635 =0 (37)

Expanding this and separating by powers of € and recognizing that if the sum of all terms is 0 then each order of €
must be 0 as well. Examining these equations,

e X3 +Xo=0 (38)
4X1X3+X1-2=0
€ AXo X3 +6X7X3 + Xo =0
€ 4X3X3 + 12X Xo X3 +4X7 X0+ X3 =0

ol

€

ol

=

Solving Equations 38 we see,

(X0, X1, X2, X3) = <—17 160) (39)
(0,27070),
\ 2 8 160¢/—1
<F’3 g (Vo1-1), —— >

(- 0755 (1= ) g ooy (-7

Therefore using the definition from Equation 36, the data from Equation 39 and the transformation defined in
Equation 33, the O(e) solutions are,

8e2/3 1 160e
= — =23 — -1
5~ 32V 4
X =2V

8 1 1
X=3 (V-1-1)€¥3 g2\3/E+ —/—1160¢ + /1

X = % (_1 _ (_1)2/3) 62/3 2\[ 160( )2/3 (_1)2/3
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Performing the inverse transformation to convert X to x,

C160e2/% 8Ye 1 2

81 9 Je 3
=2
z = S(V-1—-1) 3 — 32Ye+ & V/—1160¢ + /-1
e
T2 (14 (—1)?/3) /3 — 54Y/e — 160(—1)%/3¢ — 81(—1)2/3
e 81/e
Using this approximation when € = 0.001, we find the approximate roots are
x1 = —10.5975
To = 2

x3 = 4.29877 4 8.754341
T4 = 4.29877 — 8.754341

and the exact roots are

1 = —10.5934

o = 1.98449

3 = 4.30446 — 8.75258:
x4 = 4.30446 + 8.75258¢
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Problem 9

Course notes, 4.18

Obtain the first two terms of an approximate solution to

&+ 3(1+ €)i + 22 = 0, with (40)
z(0) =2(1+¢),
#(0) = —3(1 + 2¢),

for small e. Compare with the exact solution graphically in the range 0 < ¢ < 1 for (a) e = 0.1, (b) e = 0.25 and (c)
e =0.5.

Letting x be of the form z = xg + €x1 + .... Therefore the second derivative takes the form, & = 2o + ety + ... and
the second derivative takes the form, & = &g 4 €Z; + .... Equation 40 then becomes,

(Fo+etr+...)+3(1+€)(do+eir+...)+2(xg+€exy +...) =0, with £(0) = 2(1 +¢€), ©(0) = —3(1 + 2¢)

Combining the sums with the same power of €, and recognizing that all orders of e are linearly independent, since
the of all powers of ¢ must be zero, each order of € sums to zero, ie,

e xg () + 3z (t) + 220 (t) = 0, zo(0) =
1

2,
el o (t) + 32 (t) + 21 () + 3x( = 0, 71(0) = 2,
Solving these sequentially (note that since the initial conditions are of mixed order of € they are separated as well),

Ty = e (et + 1)
zy=e 2" (=6t +e'(3t+1)+1)

We find the exact and the two term approximate solution to Equation 40 to be,
Tapps =€ 2" (—6te +e'(3te+e+ 1) +e+1)

Plotting the cases of e = 0.1, e = 0.25 and € = 0.5.
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— Exact
— Approximation

1 L L L 1 L L — t

0.2 0.4

0.6 0.8 10

Figure 2: ¢ =0.1

— Exact

—— Approximation

1 L L L 1 L L T t

3.0

25

20

15

1.0

0.2 0.4

0.6 0.8 10

Figure 3: € =0.25

— Exact

—— Approximation

0.2 0.4

L L L L L L L L t
0.6 0.8 1.0

Figure 4: € =0.5
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Problem 10

Course notes, 4.58

Find the solution of the transcendental equation

sinx = e cos 2z, (41)

near x = 7 for small positive e.
If we substitute © = zg + ex; + €2z + ... into Equation 41, we find

sin (zo + exy + €2xo +...) = ecos2(xo + €xy + xy +...) (42)

Performing a Taylor Series on Equation 42 about € = 0 and collecting by powers of €,

e sin(zg) = 0 (43)
el cos(zg)z1 — cos(2x0) =0
1
€ —3 sin(wo)z? 4 2sin(22¢)x1 + cos(xg)ry = 0
. 1
e ~6 cos(x0) s + 2 cos(2x0)x? — sin(xg)war1 + 2sin(2x0)ws + cos(zg)rz = 0
Solving Equation 43, we see xg =, 1 = —1, 2o =0, x3 = %. Therefore

ey
r=T—E¢€ —€
6



