AME 60611

Examination 1

- J. M. Powers
- 4 October 2013
 - 1. (20) Find the point on the surface x + y + z = 1 that is closest to the point (x, y, z) = (1, 2, 3).
 - 2. (20) Find a solution which satisfies the differential equation and boundary conditions:

$$\frac{dy}{dx}\frac{d^2y}{dx^2} + y = 1,$$
 $\frac{dy}{dx}\Big|_{x=1} = 0,$ $y(1) = 0.$

3. (20) Find a power series solution to the differential equation with boundary conditions

$$\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + y = 0,$$
 $y(0) = 1,$ $\frac{dy}{dx}\Big|_{x=0} = 0.$

4. (20) For $0 < \epsilon << 1$, find all solutions valid at $O(\epsilon)$ to the system of equations

$$x + \epsilon y(x+1) = e^{\epsilon}, \qquad y^2 + \frac{xy}{1 + \epsilon x} = 2.$$

5. (20) Find a solution y(x) for arbitrary f(x) for the following differential equation and initial conditions using the Green's function technique:

$$\frac{d^2y}{dx^2} = f(x);$$
 $y(0) = 0,$ $\frac{dy}{dx}\Big|_{x=1} = 0.$

Take as your domain $x \in [0, 1]$.