AME 60611

Examination 2: SOLUTION
Prof. J. M. Powers
25 November 2013

1. (20) Given $x \in \mathbb{R}^{1}, f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$,

$$
f(x)=\sin x, \quad x \in[-1,1],
$$

find the first two terms in a Fourier-Legendre expansion of $f(x)$. The first two Legendre polynomials are $P_{o}(s)=1, P_{1}(s)=s$, $s \in[-1,1]$.

Solution

$$
f(x)=\sin x=0+3 x(\sin 1-\cos 1)+\ldots
$$

If one finds the first two non-zero terms, one would get

$$
f(x)=\sin x=3 x(\sin 1-\cos 1)+\frac{7}{2}\left(5 x^{3}-3 x\right)(14 \cos 1-9 \sin 1)+\ldots
$$

2. (20) If $\mathbf{u}=x \mathbf{i}+y \mathbf{j}$, evaluate

$$
I=\oint_{C} \mathbf{u}^{T} \cdot d \mathbf{r}
$$

where C is a single loop around the closed contour described by the ellipse, $x^{2}+4 y^{2}=1$.
Γ
Solution
Here we happen to have

$$
\mathbf{u}=\nabla \phi
$$

where the potential ϕ is

$$
\phi=\frac{1}{2}\left(x^{2}+y^{2}\right)
$$

So the integral becomes

$$
\begin{aligned}
& I=\oint_{C} \nabla \phi \cdot d \mathbf{r} . \\
& I=\oint_{C} d \phi=0 .
\end{aligned}
$$

Green's theorem can also be used to achieve the same result.
3. (20) For $x \in \overline{\mathbb{L}}_{2}[0,1], y \in \overline{\mathbb{L}}_{2}[0,1], t \in \mathbb{R}^{1}$, find the angle between the two functions

$$
\begin{gathered}
x(t)=i t \\
y(t)=t .
\end{gathered}
$$

Solution

$$
\begin{gathered}
\|x\|_{2}=\frac{1}{\sqrt{3}} . \\
\|y\|_{2}=\frac{1}{\sqrt{3}} . \\
<x, y>=-\frac{i}{3} . \\
\cos \theta=\frac{<x, y>}{\|x\|_{2}\|y\|_{2}} . \\
\cos \theta=\frac{-i / 3}{(1 / \sqrt{3})(1 / \sqrt{3})}=-i . \\
\theta=\cos ^{-1}(-i)=\frac{\pi}{2}+2 n \pi+i \ln (1+\sqrt{2}), \quad n=0,1,2, \ldots
\end{gathered}
$$

4. (20) For $\mathbf{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, find the vector $\mathbf{x} \in \mathbb{R}^{3}$ of minimum $\|\mathbf{x}\|_{2}$ which minimizes $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 6 & 3
\end{array}\right), \quad \mathbf{b}=\binom{2}{4}
$$

Solution

$$
\mathbf{x}=\frac{7}{30}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

5. (20) Find the singular value decomposition of \mathbf{A} where

$$
\mathbf{A}=\left(\begin{array}{lll}
3 i & 4 & 0
\end{array}\right)
$$

Γ
 Solution

One decomposition is

$$
\mathbf{A}=(1)\left(\begin{array}{lll}
5 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
3 i / 5 & 4 / 5 & 0 \\
0 & 0 & 1 \\
-4 i / 5 & 3 / 5 & 0
\end{array}\right)
$$

The decomposition is not unique.

