AME 60611
Examination 1
J. M. Powers

2 October 2015

1. (25) Consider the curve $\mathcal{C}$ defined by the intersection of two surfaces: 1) the unit sphere

$$
x^{2}+y^{2}+z^{2}=1
$$

and 2) the plane

$$
x+y+z=1
$$

Find the minimum value of $y$ on $\mathcal{C}$ and the values of $x$ and $z$ on $\mathcal{C}$ where $y$ takes on its minimum value.
2. (25) Consider

$$
x \frac{d y}{d x}-y^{2}+y=0, \quad y(0)=-1
$$

Determine a solution if a solution exists. If it exists, determine whether it is unique.
3. (25) Use the Green's function method to find the general solution on the domain $x \in[0, \infty)$ to

$$
\frac{d y}{d x}+y=f(x), \quad y(0)=1
$$

It can help to transform $y$ to a new dependent variable to render the boundary condition to be homogeneous.
4. (25) If $0<\epsilon \ll 1, x \in[0,1]$, find an appropriate $O(1)$ and $O(\epsilon)$ solution for

$$
x \frac{d y}{d x}-\epsilon y=0, \quad y(1)=1
$$

Compare to the exact solution.

