AME 60611

Examination 1: Solution
J. M. Powers

2 October 2015

1. (25) Consider the curve \mathcal{C} defined by the intersection of two surfaces: 1) the unit sphere

$$
x^{2}+y^{2}+z^{2}=1,
$$

and 2) the plane

$$
x+y+z=1 \text {. }
$$

Find the minimum value of y on \mathcal{C} and the values of x and z on \mathcal{C} where y takes on its minimum value.

Solution

This can be done via Lagrange multipliers or a more direct approach, and simply eliminate either z or x, get a single equation, and minimize y using the approach of freshman calculus. That is the approach I take here.
The two surfaces are shown in Figure 1. in Figure 2. Eliminating z, one gets

$$
x^{2}+y^{2}+(1-x-y)^{2}=1
$$

Expanding, one finds

$$
x^{2}+y^{2}-x+x y-y=0
$$

Solving for $y(x)$ via the quadratic equation, one gets

$$
y=\frac{1-x \pm \sqrt{1+2 x-3 x^{2}}}{2}
$$

The critical points are found at values of x for which $d y / d x=0$. Taking the derivative, one finds

$$
\frac{d y}{d x}=\frac{1}{2}\left(-1 \pm \frac{1-3 x}{\sqrt{1+2 x-3 x^{2}}}\right)
$$

Setting the derivative to 0 for the critical points, one finds

$$
\begin{aligned}
0 & =\frac{1}{2}\left(-1 \pm \frac{1-3 x}{\sqrt{1+2 x-3 x^{2}}}\right), \\
1 & = \pm \frac{1-3 x}{\sqrt{1+2 x-3 x^{2}}}, \\
\sqrt{1+2 x-3 x^{2}} & = \pm(1-3 x), \\
1+2 x-3 x^{2} & =1-6 x+9 x^{2}, \\
8 x-12 x^{2} & =0 \\
4 x(2-3 x) & =0 .
\end{aligned}
$$

Figure 1: Plot of two intersecting surfaces given by the unit sphere $x^{2}+y^{2}+z^{2}=1$ and the plane $x+y+z=1$.

Figure 2: Plot of $\mathcal{C}: x^{2}+y^{2}-x+x y-y=0$, which is the intersection of the unit sphere $x^{2}+y^{2}+z^{2}=1$ and the plane $x+y+z=1$.

This yields

$$
x=0, \quad x=\frac{2}{3} .
$$

When $x=0, y=0$ or $y=1$. When $x=2 / 3, y=-1 / 3$ or $y=2 / 3$. One could do a second derivative test, which would reveal what seems obvious, that y takes on a mininum value at $x=2 / 3$. For this point, we find

$$
z=1-x-y=1-\frac{2}{3}-\left(-\frac{1}{3}\right)=\frac{2}{3} .
$$

So y is minimized on \mathcal{C} at the point $(x, y, z)=(2 / 3,-1 / 3,2 / 3)$. This is obvious when one plots the curve \mathcal{C}, as done in Figure 2.
The same solution can be achieved with the alternative Lagrange multipliers approach. With this approach, one must remember that y is being minimized. One could then take several approaches. Let us pose the function to be minimized as

$$
y=1-x-z .
$$

The constraint must not contain y. So take the constraint as

$$
0=1-x^{2}-z^{2}-(1-x-z)^{2} .
$$

The constraint can be rewritten as

$$
0=x-x^{2}+z-x z-z^{2} .
$$

So, we can take the Lagrange multiplier formulation as

$$
y=1-x-z+\lambda\left(x-x^{2}+z-x z-z^{2}\right) .
$$

Now take the appropriate partial derivatives

$$
\begin{aligned}
& \frac{\partial y}{\partial x}=-1+\lambda(1-2 x-z)=0, \\
& \frac{\partial y}{\partial z}=-1+\lambda(1-x-2 z)=0 .
\end{aligned}
$$

Combine these with the constraint to form three equations in three unknowns, x, z, and λ.

$$
\begin{aligned}
-1+\lambda(1-2 x-z) & =0 \\
-1+\lambda(1-x-2 z) & =0 \\
x-x^{2}+z-x z-z^{2} & =0
\end{aligned}
$$

Leaving out the solution details, there are two roots for these equations:

$$
(x, z, \lambda)=\left(\frac{2}{3}, \frac{2}{3},-1\right), \quad(0,0,1)
$$

For the first root, we get $y=-1 / 3$. For the second root, we get $y=1$. Obviously, the first root gives the minimum y. So, the solution is the point

$$
(x, y, z)=\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)
$$

The other root corresponds to a maximum value of y on \mathcal{C}.
2. (25) Consider

$$
x \frac{d y}{d x}-y^{2}+y=0, \quad y(0)=-1 .
$$

Determine a solution if a solution exists. If it exists, determine whether it is unique.

Solution

This equation is singular at $x=0$, so we expect some potential troubles, especially since the initial condition is specified at $x=0$. There are two straightforward ways to deal with this problem: 1) as a Bernoulli equation, whose approach I outline in detail in the following paragraphs, or 2) separation of variables, in which one gets

$$
\frac{d y}{y^{2}-y}=\frac{d x}{x}
$$

followed by a partial fraction expansion of $1 /\left(y^{2}-y\right)$ and integration of what remains.
Here is the approach treating the equation as a Bernoulli equation. Rearranging the equation, we get

$$
\frac{d y}{d x}+\frac{1}{x} y=\frac{1}{x} y^{2}
$$

This is a Bernoulli equation. Define then,

$$
\begin{aligned}
u & \equiv \frac{1}{y} \\
y & =\frac{1}{u} \\
\frac{d y}{d x} & =-\frac{1}{u^{2}} \frac{d u}{d x}
\end{aligned}
$$

Replacing y with u in the ODE, we get

$$
\begin{aligned}
-\frac{1}{u^{2}} \frac{d u}{d x}+\frac{1}{x} \frac{1}{u} & =\frac{1}{x} \frac{1}{u^{2}} \\
& \frac{d u}{d x}-\frac{1}{x} u=-\frac{1}{x} .
\end{aligned}
$$

The integrating factor is

$$
\exp \left(\int\left(\frac{-1}{x}\right) d x\right)=\exp (-\ln x)=\frac{1}{x}
$$

Multiplying the ODE by the integrating factor, we get

$$
\begin{aligned}
\frac{1}{x} \frac{d u}{d x}-\frac{1}{x^{2}} u & =-\frac{1}{x^{2}} \\
\frac{d}{d x}\left(\frac{u}{x}\right) & =-\frac{1}{x^{2}} \\
\frac{u}{x} & =\frac{1}{x}+C \\
u & =1+C x \\
\frac{1}{y} & =1+C x \\
y & =\frac{1}{1+C x}
\end{aligned}
$$

Now, when $x=0, y=1$, so the initial condition is not satisfied. Thus, a solution does not exist.

In fact a solution exists only for the initial condition $y(0)=1$. However, in that case, the solution is not unique, since for all $C \in \mathbb{R}^{1}$, the differential equation and initial condition are satisfied.
3. (25) Use the Green's function method to find the general solution on the domain $x \in[0, \infty)$ to

$$
\frac{d y}{d x}+y=f(x), \quad y(0)=1
$$

It can help to transform y to a new dependent variable to render the boundary condition to be homogeneous.

Solution

We need homogeneous boundary conditions, so take

$$
z=y-1
$$

Despite the hint, most students did not understand what was suggested here, and missed this essential step for the Green's function method.

The transformed problem is

$$
\frac{d z}{d x}+(z+1)=f(x), \quad z(0)=0
$$

Take now

$$
h(x)=f(x)-1,
$$

so that

$$
\frac{d z}{d x}+z=h(x), \quad z(0)=0
$$

Here the operator \mathbf{L} is

$$
\mathbf{L}=\frac{d}{d x}+1
$$

Consider first $x<s$. Solving for $\mathbf{L} g=0$, we get

$$
\begin{aligned}
\frac{d g}{d x}+g & =0 \\
g & =A e^{-x}
\end{aligned}
$$

Many students chose the incorrect path (or some permutation) of ignoring terms and solving $d g / d x=0 ; g=C$. This does not work.
Now g must satisfy the boundary conditions on x so

$$
g(0)=0=A e^{0} .
$$

Therefore $A=0$, and

$$
g=0, \quad x<s
$$

Now for $x>s$, we have

$$
\begin{aligned}
\frac{d g}{d x}+g & =0 \\
g & =B e^{-x}
\end{aligned}
$$

The highest order derivative is unity, so g itself must suffer a jump at $x=s$. Most students missed this important point. The jump for an equation of order n occurs at the $n-1$ level. So for this case there is no jump in the first derivative, as there is for second order ODEs; the jump is on g itself. Since the leading coefficient on $d y / d x$ is unity, the jump on g is also unity:

$$
\begin{aligned}
g(s+\epsilon)-g(s-\epsilon) & =1, \\
B e^{-s+\epsilon}-0 & =1 \\
B & =e^{s-\epsilon} \\
\lim _{\epsilon \rightarrow 0} B & =e^{s} .
\end{aligned}
$$

Therefore one gets

$$
g(x, s)=e^{s-x}, \quad x>s
$$

So the general solution is

$$
\begin{aligned}
z & =\int_{0}^{x} g(x, s) h(s) d s+\int_{x}^{\infty} g(x, s) h(s) d s \\
& =\int_{0}^{x} e^{s-x} h(s) d s+\int_{x}^{\infty} 0 h(s) d s \\
& =e^{-x} \int_{0}^{x} e^{s} h(s) d s \\
y-1 & =e^{-x} \int_{0}^{x} e^{s}(f(s)-1) d s \\
y(x) & =1+e^{-x} \int_{0}^{x} e^{s}(f(s)-1) d s
\end{aligned}
$$

This can be simplified to form

$$
y(x)=e^{-x}\left(1+\int_{0}^{x} e^{s} f(s) d s\right)
$$

Let us test our solution in the case where $f(x)=2$. Then

$$
\begin{aligned}
y(x) & =e^{-x}\left(1+\int_{0}^{x} 2 e^{s} d s\right) \\
& =e^{-x}\left(1+\left.2 e^{s}\right|_{0} ^{x}\right) \\
& =e^{-x}\left(1+2\left(e^{x}-1\right)\right) \\
& =2-e^{-x}
\end{aligned}
$$

The boundary condition is satisfied:

$$
y(0)=2-e^{0}=1
$$

The differential equation, $d y / d x+y=2$ is satisfied as it reduces to

$$
e^{-x}+2-e^{-x}=2
$$

4. (25) If $0<\epsilon \ll 1, x \in[0,1]$, find an appropriate $O(1)$ and $O(\epsilon)$ solution for

$$
x \frac{d y}{d x}-\epsilon y=0, \quad y(1)=1
$$

Compare to the exact solution.

Solution

Many students got this right. One surprise was that many students chose to mistakenly expand $x=x_{0}+\epsilon x_{1}+\ldots$. That is a misunderstanding of the approach of the method.
First try a regular expansion

$$
y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots
$$

Substituting into the ODE and IC, we get

$$
x \frac{d}{d x}\left(y_{0}+\epsilon y_{1}+\ldots\right)-\epsilon\left(y_{0}+\ldots\right)=0, \quad y_{0}(1)+\epsilon y_{1}(1)+\ldots=1
$$

At leading order we get then

$$
x \frac{d y_{0}}{d x}=0, \quad y_{0}(1)=1
$$

For $x \neq 0$, the unique solution is

$$
y_{0}=1
$$

A disturbingly large number of students decided to take some permutation of the incorrect step of $d y_{0}=(0 / x) d x ; d y_{0}=d x, y_{0}=x+C$. This leads one far afield.
At $O(\epsilon)$, one gets

$$
\begin{aligned}
x \frac{d y_{1}}{d x} & =y_{0}, \quad y_{1}(1)=0 \\
x \frac{d y_{1}}{d x} & =1 \\
\frac{d y_{1}}{d x} & =\frac{1}{x} \\
y_{1} & =\ln x+C \\
0 & =\ln (1)+C \\
0 & =C \\
y_{1} & =\ln x \\
y & \sim 1+\epsilon \ln x+\ldots
\end{aligned}
$$

Obviously, this solution encounters problems as $x \rightarrow 0$. In fact the first term is as large as the second when

$$
\begin{aligned}
& \epsilon \ln x \sim 1 \\
& x \sim e^{-1 / \epsilon}
\end{aligned}
$$

Try then the stretching

$$
X=\frac{x}{e^{-1 / \epsilon}}
$$

This gives

$$
x=e^{-1 / \epsilon} X, \quad d x=e^{-1 / \epsilon} d X
$$

The ODE becomes then

$$
\begin{aligned}
e^{-1 / \epsilon} X e^{1 / \epsilon} \frac{d y}{d X}-\epsilon y & =0, \quad y(1)=1 \\
X \frac{d y}{d X}-\epsilon y & =0
\end{aligned}
$$

This is unchanged from the orginal, so the stretching does no good!
Let's try to get an exact solution. The equation is first order linear, with an integrating factor of $\exp \left(\int-\epsilon / x d x\right)=\exp (-\epsilon \ln x)=1 / x^{\epsilon}$, and can be solved with standard methods:

$$
\begin{aligned}
\frac{d y}{d x}-\frac{\epsilon}{x} y & =0 \\
\frac{1}{x^{\epsilon}} \frac{d y}{d x}-\frac{\epsilon}{x^{1+\epsilon}} y & =0 \\
\frac{d}{d x}\left(\frac{y}{x^{\epsilon}}\right) & =0, \\
\frac{y}{x^{\epsilon}} & =C, \\
y & =C x^{\epsilon} \\
1 & =C 1^{\epsilon}, \\
1 & =C, \\
y & =x^{\epsilon} .
\end{aligned}
$$

To get a Taylor series of the exact solution, it is helpful to re-express it as

$$
y=e^{\epsilon \ln x}
$$

Figure 3: Exact solution, $y=x^{\epsilon}$, and two-term asymptotic solution $y \sim 1+\epsilon \ln x$ for $\epsilon=0.1$.

Now the Taylor series expansion of the exact solution about $\epsilon=0$ yields

$$
y=1+\epsilon \ln x+\frac{1}{2}(\epsilon \ln x)^{2}+\ldots+\frac{1}{n!}(\epsilon \ln x)^{n}
$$

The ratio test tells us about the convergence of the series and gives the ratio of the n-term to the n-1-term, r, as

$$
r=\frac{\frac{1}{n!}(\epsilon \ln x)^{n}}{\frac{1}{(n-1)!}(\epsilon \ln x)^{n-1}}=\frac{\epsilon}{n} \ln x
$$

For any fixed values of ϵ and x, other than zero, the ratio of terms goes to zero as $n \rightarrow \infty$, thus the series is convergent for $x \neq 0$. So in fact, there is nothing wrong with the outer solution that was found earlier, except for the singularity at $x=0$. Note that the exact solution gives $y(0)=0$, and is well behaved for $x \in[0,1]$.
The exact solution and the two term asymptotic solution are shown in Figure 3.

