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1. (20) Consider the curve in R3 defined parametrically by

x =
√
t,

y = t,

z = t.

(a) Find the length of the curve from (0, 0, 0) to (1, 1, 1). You
need not numerically evaluate the resulting integral.

(b) Find the unit tangent at the point (1, 1, 1).

Solution

The point (0, 0, 0) corresponds to t = 0. The point (1, 1, 1) corresponds to t = 1.

By the Pythagorean theorem, we have for a differential element of arc length ds that

ds =
√

dx2 + dy2 + dz2.

Scaling by dt, one gets

ds

dt
=

√

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

Then making the substitutions and integrating, one gets

ds

dt
=

√

(

1

2
√
t

)2

+ 12 + 12,

=

√

2 +
1

4t
,

ds =

√

2 +
1

4t
dt,

s =

∫ 1

0

√

2 +
1

4t
dt,

=
1

16

(

8

√

1

t
+ 8t+

√
2 ln

(

4

(

√
2

√

1

t
+ 8 + 4

)

t+ 1

))∣

∣

∣

∣

∣

1

0

,

=
1

16

(

24 +
√
2 ln

(

17 + 12
√
2
))

,

= 1.81161.



The tangent vector is given by

t =
dx
dt i+

dy
dt j+

dz
dtk

√

(

dx
dt

)2
+
(

dy
dt

)2

+
(

dz
dt

)2

,

=

1

2
√

t
i+ 1j+ 1k

√

1

4t + 12 + 12

∣

∣

∣

∣

∣

∣

t=1

,

=
i+ 2j+ 2k

3
.

2. (20) Consider two functions in L2[0, 1]: v1 = 1, v2 = t.

(a) Determine if v1 and v2 are orthonormal.

(b) Project the Heaviside function H(t − 1/2) onto the space spanned by v1
and v2; that is, find the constants α1, α2 that best approximate

α1v1 + α2v2 ≈ H(t− 1/2).

Solution

To test for orthogonality of v1 and v2, one can use the inner product, which is

<v1, v2> =

∫ 1

0

v1(t)v2(t) dt,

=

∫ 1

0

(1)t dt,

=
t2

2

∣

∣

∣

∣

1

0

,

=
1

2
.

The inner product is not zero, so the vectors are not orthogonal, so they cannot be
orthonormal.

Next, let us project H(t− 1/2) onto the space spanned by v1 and v2. So we seek α1 and
α2 such that

α1v1 + α2v2 ≈ H(t− 1/2).

Take two inner products, one with v1 and the other with v2:

<v1, α1v1 + α2v2> = <v1, H(t− 1/2)>,

<v2, α1v1 + α2v2> = <v2, H(t− 1/2)>

Using the properties of the inner product, we find then that

α1<v1, v1>+ α2<v1, v2> = <v1, H(t− 1/2)>,

α1<v2, v1>+ α2<v2, v2> = <v2, H(t− 1/2)>.
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Figure 1: The function H(t− 1/2) and its projection onto the space spanned by the
functions v1 = 1 and v2 = t.

In matrix form, this gives
(

<v1, v1> <v1, v2>
<v2, v1> <v2, v2>

)(

α1

α2

)

=

(

<v1, H(t− 1/2)>
<v2, H(t− 1/2)>

)

.

Now replace the inner product with its integral form to get

(∫ 1

0
v1v1 dt

∫ 1

0
v1v2 dt

∫ 1

0
v2v1 dt

∫

v2v2 dt

)(

α1

α2

)

=

(
∫ 1

1/2
v1 dt

∫ 1

1/2 v2 dt>

)

.

Now substitute for v1 and v2 to get

(∫ 1

0
(1)(1) dt

∫ 1

0
(1)t dt

∫ 1

0
t(1) dt

∫

tt dt

)(

α1

α2

)

=

(
∫ 1

1/2
(1) dt

∫ 1

1/2 t dt>

)

.

Evaluating each of the integrals, we find
(

1 1

2
1

2

1

3

)(

α1

α2

)

=

(

1

2
3

8

)

.

Solving the two equations in two unknowns gives
(

α1

α2

)

=

(

− 1

4
3

2

)

.

So the projection of H(t− 1/2) in the space spanned by 1 and t is

H(t− 1/2) ≈ −1

4
+

3

2
t.

A plot of H(t− 1/2) and its projection is given in Figure 1.

3. (20) For A : C3 → C2, find the vector x ∈ C3 of smallest ||x||2 which minimizes
the error norm ||A · x− b||2 when

A =

(

i 1 1
0 0 0

)

.



and

b =

(

i
1

)

.

Solution

Consider

A · x ≈ b,

AH ·A · x = AH · b,




−i 0
1 0
1 0





(

i 1 1
0 0 0

)





x1
x2
x3



 =





−i 0
1 0
1 0





(

i
1

)

,





1 −i −i
i 1 1
i 1 1









x1
x2
x3



 =





1
i
i



 ,





1 −i −i
0 0 0
0 0 0









x1
x2
x3



 =





1
0
0



 .

Take as free variables x2 = s, x3 = t. Then, solving, one finds

x1 = 1 + is+ it.

So one has




x1
x2
x3



 =





1
0
0



+ s





i
1
0



+ t





i
0
1



 .

The vectors of which s and t are coefficients span the right null space of A. The other
vector has components in both the row space and right null space of A. Let us find the
part of that vector which lies in the row space. Thus, we solve for the constants α1, α2

and α3 in the linear combination of row space and right null space vectors. Note the
row space vector, when cast into a column, requires use of the Hermitian transpose:

α1





−i
1
1



+ α2





i
1
0



 + α3





i
0
1



 =





1
0
0



 .

In matrix form this is




−i i i
1 1 0
1 0 1









α1

α2

α3



 =





1
0
0



 .

Solving, we find




α1

α2

α3



 =





i/3
−i/3
−i/3



 .

So the solution vector is then expressed as





x1
x2
x3



 = (i/3)





−i
1
1



+ (s− i/3)





i
1
0



+ (t− i/3)





i
0
1



 .



The vector x with smallest norm is found by removing the null space components. Doing
so, we find





x1
x2
x3



 = (i/3)





−i
1
1



 =





1/3
i/3
i/3



 .

4. (20) Find a singular value decomposition of the matrix

A =

(

0 1
0 0

)

.

Solution

The singular value decomposition is

A = Q1 ·Σ ·QT
2

The method outlined in the textbook can be used to get Q1, Σ, and Q2.

With

Q1 =

(

1 0
0 1

)

, Σ =

(

1 0
0 0

)

, Q2 =

(

0 1
1 0

)

,

it is seen that

Q1 ·Σ ·QT
2 =

(

1 0
0 1

)(

1 0
0 0

)(

0 1
1 0

)

=

(

0 1
0 0

)

= A.

We note that Q1 is an identity matrix and Q2 is a reflection matrix. The matrix QT
2

reflects vectors about an axis inclined at an angle π/4 to the horizontal axis. The matrix
Σ suppresses the second component of the reflected vector. The matrix Q1 maps vectors
into themselves.

5. (20) Using a collocation method within the method of weighted residuals, find
a one-term approximation to the solution of the following problem:

d2y

dx2
− y = −x3, y(0) = y(1) = 0.

Choose an appropriate polynomial trial function.

Solution

Let us assume that the trial function is φ(x) = x(1 − x); this guarantees satisfaction of
both boundary conditions.

yp = cx(1 − x),
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Figure 2: Exact and approximate solutions to y′′ − y = x3, y(0) = y(1) = 0.

We need to find c. Now we have the residual as

r(x) =
d2yp
dx2

− yp + x3 = −2c− c(1− x)x+ x3.

We need then for the weighted residual to be zero.

∫ 1

0

ψ(x)r(x) dx = 0.

Let us take ψ(x) = δ(x− 1/2) so

∫ 1

0

δ(x− 1/2)
(

−2c− c(1− x)x + x3
)

dx = 0.

Evaluating, this gives

−2c− c(1− (1/2))(1/2) + (1/2)3 = 0.

Simplifying, we get
1

8
− 9c

4
= 0.

Solving gives

c =
1

18
.

Thus

yp =
1

18
x(1− x).

The exact solution can be shown to be

−e
−x
(

exx3 − ex+2x3 + 6exx− 6ex+2x+ 7e2x+1 − 7e
)

e2 − 1
.

A plot is shown in Fig. 2.


