AME 60611

Examination 2: Solution
J. M. Powers

23 November 2015

1. (20) Consider the curve in \mathbb{R}^{3} defined parametrically by

$$
\begin{aligned}
& x=\sqrt{t} \\
& y=t \\
& z=t
\end{aligned}
$$

(a) Find the length of the curve from $(0,0,0)$ to $(1,1,1)$. You need not numerically evaluate the resulting integral.
(b) Find the unit tangent at the point ($1,1,1$).

Solution

The point $(0,0,0)$ corresponds to $t=0$. The point $(1,1,1)$ corresponds to $t=1$.
By the Pythagorean theorem, we have for a differential element of arc length $d s$ that

$$
d s=\sqrt{d x^{2}+d y^{2}+d z^{2}} .
$$

Scaling by $d t$, one gets

$$
\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}
$$

Then making the substitutions and integrating, one gets

$$
\begin{aligned}
\frac{d s}{d t} & =\sqrt{\left(\frac{1}{2 \sqrt{t}}\right)^{2}+1^{2}+1^{2}}, \\
& =\sqrt{2+\frac{1}{4 t}}, \\
d s & =\sqrt{2+\frac{1}{4 t}} d t, \\
s & =\int_{0}^{1} \sqrt{2+\frac{1}{4 t}} d t, \\
& =\left.\frac{1}{16}\left(8 \sqrt{\frac{1}{t}+8 t}+\sqrt{2} \ln \left(4\left(\sqrt{2} \sqrt{\frac{1}{t}+8}+4\right) t+1\right)\right)\right|_{0} ^{1}, \\
& =\frac{1}{16}(24+\sqrt{2} \ln (17+12 \sqrt{2})), \\
& =1.81161 .
\end{aligned}
$$

The tangent vector is given by

$$
\begin{aligned}
\mathbf{t} & =\frac{\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}}{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}} \\
& =\left.\frac{\frac{1}{2 \sqrt{t}} \mathbf{i}+1 \mathbf{j}+1 \mathbf{k}}{\sqrt{\frac{1}{4 t}+1^{2}+1^{2}}}\right|_{t=1} \\
& =\frac{\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}}{3}
\end{aligned}
$$

2. (20) Consider two functions in $\mathbb{L}_{2}[0,1]: v_{1}=1, v_{2}=t$.
(a) Determine if v_{1} and v_{2} are orthonormal.
(b) Project the Heaviside function $H(t-1 / 2)$ onto the space spanned by v_{1} and v_{2}; that is, find the constants α_{1}, α_{2} that best approximate

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2} \approx H(t-1 / 2)
$$

Solution

To test for orthogonality of v_{1} and v_{2}, one can use the inner product, which is

$$
\begin{aligned}
\left.<v_{1}, v_{2}\right\rangle & =\int_{0}^{1} v_{1}(t) v_{2}(t) d t \\
& =\int_{0}^{1}(1) t d t \\
& =\left.\frac{t^{2}}{2}\right|_{0} ^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

The inner product is not zero, so the vectors are not orthogonal, so they cannot be orthonormal.
Next, let us project $H(t-1 / 2)$ onto the space spanned by v_{1} and v_{2}. So we seek α_{1} and α_{2} such that

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2} \approx H(t-1 / 2) .
$$

Take two inner products, one with v_{1} and the other with v_{2} :

$$
\begin{aligned}
& <v_{1}, \alpha_{1} v_{1}+\alpha_{2} v_{2}>=<v_{1}, H(t-1 / 2)> \\
& <v_{2}, \alpha_{1} v_{1}+\alpha_{2} v_{2}>=<v_{2}, H(t-1 / 2)>
\end{aligned}
$$

Using the properties of the inner product, we find then that

$$
\begin{aligned}
& \alpha_{1}<v_{1}, v_{1}>+\alpha_{2}<v_{1}, v_{2}>=<v_{1}, H(t-1 / 2)>, \\
& \alpha_{1}<v_{2}, v_{1}>+\alpha_{2}<v_{2}, v_{2}>=<v_{2}, H(t-1 / 2)>.
\end{aligned}
$$

Figure 1: The function $H(t-1 / 2)$ and its projection onto the space spanned by the functions $v_{1}=1$ and $v_{2}=t$.

In matrix form, this gives

$$
\left(\begin{array}{cc}
<v_{1}, v_{1}> & <v_{1}, v_{2}> \\
<v_{2}, v_{1}> & <v_{2}, v_{2}>
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{<v_{1}, H(t-1 / 2)>}{<v_{2}, H(t-1 / 2)>} .
$$

Now replace the inner product with its integral form to get

$$
\left(\begin{array}{cc}
\int_{0}^{1} v_{1} v_{1} d t & \int_{0}^{1} v_{1} v_{2} d t \\
\int_{0}^{1} v_{2} v_{1} d t & \int v_{2} v_{2} d t
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{\int_{1 / 2}^{1} v_{1} d t}{\int_{1 / 2}^{1} v_{2} d t>} .
$$

Now substitute for v_{1} and v_{2} to get

$$
\left(\begin{array}{cc}
\int_{0}^{1}(1)(1) d t & \int_{0}^{1}(1) t d t \\
\int_{0}^{1} t(1) d t & \int t t d t
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{\int_{1 / 2}^{1}(1) d t}{\int_{1 / 2}^{1} t d t>} .
$$

Evaluating each of the integrals, we find

$$
\left(\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{1}{2}}{\frac{3}{8}} .
$$

Solving the two equations in two unknowns gives

$$
\binom{\alpha_{1}}{\alpha_{2}}=\binom{-\frac{1}{4}}{\frac{3}{2}} .
$$

So the projection of $H(t-1 / 2)$ in the space spanned by 1 and t is

$$
H(t-1 / 2) \approx-\frac{1}{4}+\frac{3}{2} t .
$$

A plot of $H(t-1 / 2)$ and its projection is given in Figure 1.
3. (20) For $\mathbf{A}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$, find the vector $\mathbf{x} \in \mathbb{C}^{3}$ of smallest $\|\mathbf{x}\|_{2}$ which minimizes the error norm $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{lll}
i & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
\mathbf{b}=\binom{i}{1}
$$

Solution

Consider

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{x} & \approx \mathbf{b}, \\
\left(\begin{array}{cc}
-i & 0 \\
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ccc}
i & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{cc}
-i & 0 \\
1 & 0 \\
1 & 0
\end{array}\right)\binom{i}{1}, \\
\left(\begin{array}{ccc}
1 & -i & -i \\
i & 1 & 1 \\
i & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{c}
1 \\
i \\
i
\end{array}\right), \\
\left(\begin{array}{ccc}
1 & -i & -i \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) .
\end{aligned}
$$

Take as free variables $x_{2}=s, x_{3}=t$. Then, solving, one finds

$$
x_{1}=1+i s+i t .
$$

So one has

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{l}
i \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{l}
i \\
0 \\
1
\end{array}\right) .
$$

The vectors of which s and t are coefficients span the right null space of \mathbf{A}. The other vector has components in both the row space and right null space of \mathbf{A}. Let us find the part of that vector which lies in the row space. Thus, we solve for the constants α_{1}, α_{2} and α_{3} in the linear combination of row space and right null space vectors. Note the row space vector, when cast into a column, requires use of the Hermitian transpose:

$$
\alpha_{1}\left(\begin{array}{c}
-i \\
1 \\
1
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
i \\
1 \\
0
\end{array}\right)+\alpha_{3}\left(\begin{array}{l}
i \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

In matrix form this is

$$
\left(\begin{array}{ccc}
-i & i & i \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

Solving, we find

$$
\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{c}
i / 3 \\
-i / 3 \\
-i / 3
\end{array}\right) .
$$

So the solution vector is then expressed as

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=(i / 3)\left(\begin{array}{c}
-i \\
1 \\
1
\end{array}\right)+(s-i / 3)\left(\begin{array}{l}
i \\
1 \\
0
\end{array}\right)+(t-i / 3)\left(\begin{array}{l}
i \\
0 \\
1
\end{array}\right) .
$$

The vector \mathbf{x} with smallest norm is found by removing the null space components. Doing so, we find

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=(i / 3)\left(\begin{array}{c}
-i \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
i / 3 \\
i / 3
\end{array}\right)
$$

4. (20) Find a singular value decomposition of the matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Solution

The singular value decomposition is

$$
\mathbf{A}=\mathbf{Q}_{1} \cdot \boldsymbol{\Sigma} \cdot \mathbf{Q}_{2}^{T}
$$

The method outlined in the textbook can be used to get $\mathbf{Q}_{1}, \boldsymbol{\Sigma}$, and \mathbf{Q}_{2}.
With

$$
\mathbf{Q}_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), \quad \mathbf{Q}_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

it is seen that

$$
\mathbf{Q}_{1} \cdot \boldsymbol{\Sigma} \cdot \mathbf{Q}_{2}^{T}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\mathbf{A}
$$

We note that \mathbf{Q}_{1} is an identity matrix and \mathbf{Q}_{2} is a reflection matrix. The matrix \mathbf{Q}_{2}^{T} reflects vectors about an axis inclined at an angle $\pi / 4$ to the horizontal axis. The matrix $\boldsymbol{\Sigma}$ suppresses the second component of the reflected vector. The matrix \mathbf{Q}_{1} maps vectors into themselves.
5. (20) Using a collocation method within the method of weighted residuals, find a one-term approximation to the solution of the following problem:

$$
\frac{d^{2} y}{d x^{2}}-y=-x^{3}, \quad y(0)=y(1)=0
$$

Choose an appropriate polynomial trial function.

Solution

Let us assume that the trial function is $\phi(x)=x(1-x)$; this guarantees satisfaction of both boundary conditions.

$$
y_{p}=c x(1-x)
$$

Figure 2: Exact and approximate solutions to $y^{\prime \prime}-y=x^{3}, y(0)=y(1)=0$.

We need to find c. Now we have the residual as

$$
r(x)=\frac{d^{2} y_{p}}{d x^{2}}-y_{p}+x^{3}=-2 c-c(1-x) x+x^{3}
$$

We need then for the weighted residual to be zero.

$$
\int_{0}^{1} \psi(x) r(x) d x=0
$$

Let us take $\psi(x)=\delta(x-1 / 2)$ so

$$
\int_{0}^{1} \delta(x-1 / 2)\left(-2 c-c(1-x) x+x^{3}\right) d x=0
$$

Evaluating, this gives

$$
-2 c-c(1-(1 / 2))(1 / 2)+(1 / 2)^{3}=0
$$

Simplifying, we get

$$
\frac{1}{8}-\frac{9 c}{4}=0
$$

Solving gives

$$
c=\frac{1}{18} .
$$

Thus

$$
y_{p}=\frac{1}{18} x(1-x)
$$

The exact solution can be shown to be

$$
-\frac{e^{-x}\left(e^{x} x^{3}-e^{x+2} x^{3}+6 e^{x} x-6 e^{x+2} x+7 e^{2 x+1}-7 e\right)}{e^{2}-1} .
$$

A plot is shown in Fig. 2.

