NAME:

AME 561
Examination 1
Prof. J. M. Powers
3 October 1997

1. (25) Given that

$$
\begin{gathered}
u^{6}+u v+1=x+y+z \\
u^{3}+u v=x y z u-2
\end{gathered}
$$

find an expression for $\left.\frac{\partial u}{\partial x}\right|_{y, z}$.
2. (25) Solve

$$
x \frac{d y}{d x}+(x y)^{3}=y, \quad y(1)=1
$$

3. (25) Find a solution valid at $O(\epsilon)$ to

$$
\epsilon\left(\frac{d y}{d x}\right)^{2}+y \frac{d y}{d x}=x, \quad y(0)=e^{2 \epsilon}
$$

4. (25) Consider

$$
x^{2}+2 y^{2}+z^{2}=1
$$

(a) Formulate a set of non-linear algebraic equations which can be used to find x and y which maximize z subject to the constraint

$$
x+y+\sin (x y)=1
$$

(b) Sketch the surface described described by the original equation in (x, y, z) space and the curve describing the constraint in (x, y) space.
(c) From your sketch, make a rough estimate of x and y which maximize z subject to the above constraint.

