AME 561
Examination 2
Prof. J. M. Powers
21 November 1997

1. (25) Given $x \in \mathcal{R}^{1}, f: \mathcal{R}^{1} \rightarrow \mathcal{R}^{1}$,

$$
f(x)=\sin x \quad x \in[0,2],
$$

find the first two terms in a Fourier-Legendre expansion of $f(x)$. The first two Legendre polynomials are $P_{o}(s)=1, P_{1}(s)=s, s \in$ $[-1,1]$.
2. (25) Consider $x, u_{1}, u_{2} \in \mathcal{C}^{2}$. The vectors u_{1} and u_{2} below form a basis in \mathcal{C}^{2} :

$$
u_{1}=\binom{i}{1}, \quad u_{2}=\binom{i}{3 i} .
$$

If

$$
x=\binom{3}{4}
$$

express x as a linear combination of the basis vectors.
3. (25) If

$$
\frac{d^{2} y}{d x^{2}}+y^{2}=1, \quad y(0)=0, y(2)=0
$$

choose an appropriate basis function and find all approximations to solutions for $y(x), x \in[0,2]$ available from a one term collocation method.
4. (25) For $\mathbf{x} \in \mathcal{C}^{3}, \mathbf{b} \in \mathcal{C}^{2}, \mathbf{A}: \mathcal{C}^{3} \rightarrow \mathcal{C}^{2}$, find the most general value of \mathbf{x} that minimizes $\|\mathbf{A x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 1 & i \\
6 & 3 & 3 i
\end{array}\right), \quad \mathbf{b}=\binom{i}{0} .
$$

