AME 561 Examination 2 Prof. J. M. Powers 22 November 1999

1. (25) Given $x \in \mathcal{R}^1$, $f : \mathcal{R}^1 \to \mathcal{R}^1$,

$$f(x) = e^x, \qquad x \in [0,3],$$

find the first two terms in a Fourier-Legendre expansion of f(x). The first two Legendre polynomials are $P_o(s) = 1$, $P_1(s) = s$, $s \in [-1, 1]$.

- 2. (25) Consider the curve on the unit sphere, $x^2 + y^2 + z^2 = 1$ for which $y = x^2$. Find the curvature κ and torsion τ of the curve at the point $(x, y, z) = (\frac{1}{2}, \frac{1}{4}, \frac{\sqrt{11}}{4})$.
- 3. (25) For $\mathbf{A} : \mathcal{R}^3 \to \mathcal{R}^2$, find the vector $\mathbf{x} \in \mathcal{R}^3$ of minimum $||\mathbf{x}||_2$ which minimizes $||\mathbf{A} \cdot \mathbf{x} \mathbf{b}||_2$ when

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 3 & 3 & 6 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

4. (25) Find the Jordan decomposition of **A** where

$$\mathbf{A} = egin{pmatrix} 0 & i & 0 \ i & 0 & 0 \ 0 & 0 & 0 \end{pmatrix},$$

that is find \mathbf{P} and \mathbf{J} such that $\mathbf{A} = \mathbf{P} \cdot \mathbf{J} \cdot \mathbf{P}^{-1}$, where \mathbf{J} is in Jordan canonical form.