AME 561
Examination 2
Prof. J. M. Powers
22 November 1999

1. (25) Given $x \in \mathcal{R}^{1}, f: \mathcal{R}^{1} \rightarrow \mathcal{R}^{1}$,

$$
f(x)=e^{x}, \quad x \in[0,3],
$$

find the first two terms in a Fourier-Legendre expansion of $f(x)$. The first two Legendre polynomials are $P_{o}(s)=1, P_{1}(s)=s$, $s \in[-1,1]$.
2. (25) Consider the curve on the unit sphere, $x^{2}+y^{2}+z^{2}=1$ for which $y=x^{2}$. Find the curvature κ and torsion τ of the curve at the point $(x, y, z)=\left(\frac{1}{2}, \frac{1}{4}, \frac{\sqrt{11}}{4}\right)$.
3. (25) For $\mathbf{A}: \mathcal{R}^{3} \rightarrow \mathcal{R}^{2}$, find the vector $\mathbf{x} \in \mathcal{R}^{3}$ of minimum $\|\mathbf{x}\|_{2}$ which minimizes $\|\mathbf{A} \cdot \mathbf{x}-\mathbf{b}\|_{2}$ when

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 2 \\
3 & 3 & 6
\end{array}\right), \quad \mathbf{b}=\binom{2}{3} .
$$

4. (25) Find the Jordan decomposition of \mathbf{A} where

$$
\mathbf{A}=\left(\begin{array}{ccc}
0 & i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

that is find \mathbf{P} and \mathbf{J} such that $\mathbf{A}=\mathbf{P} \cdot \mathbf{J} \cdot \mathbf{P}^{-1}$, where \mathbf{J} is in Jordan canonical form.

