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Compressible large-eddy simulations are carried out to study the aero-optical
distortions caused by Mach 0.5 flat-plate turbulent boundary layers at Reynolds
numbers of Reθ = 875, 1770 and 3550, based on momentum thickness. The
fluctuations of refractive index are calculated from the density field, and wavefront
distortions of an optical beam traversing the boundary layer are computed based on
geometric optics. The effects of aperture size, small-scale turbulence, different flow
regions and beam elevation angle are examined and the underlying flow physics is
analysed. It is found that the level of optical distortion decreases with increasing
Reynolds number within the Reynolds-number range considered. The contributions
from the viscous sublayer and buffer layer are small, while the wake region plays a
dominant role, followed by the logarithmic layer. By low-pass filtering the fluctuating
density field, it is shown that small-scale turbulence is optically inactive. Consistent
with previous experimental findings, the distortion magnitude is dependent on the
propagation direction due to anisotropy of the boundary-layer vortical structures.
Density correlations and length scales are analysed to understand the elevation-angle
dependence and its relation to turbulence structures. The applicability of Sutton’s
linking equation to boundary-layer flows is examined, and excellent agreement
between linking equation predictions and directly integrated distortions is obtained
when the density length scale is appropriately defined.
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1. Introduction
The aero-optical phenomenon refers to distortions of optical signals by turbulent

flows adjacent to a projection or viewing aperture. In a compressible turbulent flow,
density fluctuations cause fluctuations in the index-of-refraction field. When an initially
collimated optical wavefront is transmitted through a turbulent flow over the aperture,
it is distorted due to the non-uniform speed of light in the medium. Such distortions
can cause severe problems such as beam jitter, image blur and loss of intensity in the
far field. Aero-optical distortions are detrimental to airborne communication, targeting,
imaging and directed energy systems (Jumper & Fitzgerald 2001).

The optical aberrations induced by turbulent boundary layers have been studied
extensively since the 1950s (Liepmann 1952). Earlier investigations were primarily
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experimental. Limited by experimental techniques, measurements up to 1980 were
focused on time-averaged optical distortions (Geary & Otten 1982). The development
of wavefront sensors at high sampling speed since the late 1980s enabled the dynamic
measurement of optical distortions in time and space, and hence detailed analysis of
distortion structure and mechanisms. The most commonly used wavefront sensors are
Malley probes and Shack–Hartmann sensors. The former measure the wavefront slope
at a single spatial location as a function of time, and a one-dimensional wavefront is
then reconstructed based on Taylor’s hypothesis (Malley, Sutton & Kincheloe 1992). A
two-dimensional Shack–Hartmann wavefront sensor is designed according to Huygens’
principle and utilizes a lenslet array to record two-dimensional wavefronts (Geary
1995).

With Malley probes, Gordeyev et al. (2003), Buckner, Gordeyev & Jumper (2005),
Wittich, Gordeyev & Jumper (2007) and Cress et al. (2008) conducted a series of
experiments to study the optical effects of turbulent boundary layers over the Mach
number range of 0.3–0.95 and Reynolds number range of 34 000–42 500 based on
the momentum thickness. They examined statistical properties of optical distortions
and proposed a scaling law for the magnitude of optical path difference, OPDrms (the
definition of OPD will be given in § 2.2), which was shown to be proportional to the
boundary-layer displacement thickness, the free-stream density and the square of the
free-stream Mach number. Cress et al. (2008) performed measurements of aero-optical
properties of turbulent boundary layers at different beam elevation angles and found
that the beam experienced larger distortions when it was tilted towards the downstream
direction than those when it was tilted upstream. They pointed out that the elevation
angle effect was caused by the large anisotropic coherent structures in boundary layers.
The effects of heated and cooled walls were examined by Cress, Gordeyev & Jumper
(2010). It was found that optical distortions can be significantly reduced when the
upstream wall was cooled appropriately.

Wyckham & Smits (2009) measured optical distortions by transonic and hypersonic
boundary layers with a two-dimensional Shack–Hartmann wavefront sensor. Based on
the strong Reynolds analogy and by assuming negligible pressure fluctuations, they
proposed a new scaling law for OPDrms which depends on the local skin-friction
coefficient and thereby Reynolds number. According to their scaling law, OPDrms

is proportional to the free-stream density, boundary-layer thickness, square of the
free-stream Mach number and the square-root of the local skin-friction coefficient.
The scaling law also involved the ratio of bulk to free-stream temperatures and a
coefficient which was found to have only small variations over the Mach-number range
from 0.8 to 7.8. A similar scaling law was later obtained by Gordeyev, Jumper &
Hayden (2011). The two-dimensional wavefront sensor allowed a direct measurement
of two-point spatial correlations of OPD, from which Wyckham & Smits (2009) found
comparable correlation lengths in the streamwise and spanwise directions for subsonic
boundary layers, in contrast to the streamwise-elongated correlations noted by Wittich
et al. (2007) based on Malley probe measurements at higher Reynolds numbers.

Computations of aero-optics can be traced back to the late 1980s. Early
computational studies involved two-dimensional solutions of the Euler equations
(Tsai & Christiansen 1990) or Reynolds-averaged Navier–Stokes (RANS) equations
(Cassady, Birch & Terry 1989). Recent advances in high-fidelity simulation techniques,
including direct numerical simulation (DNS), large-eddy simulation (LES) and hybrid
RANS/LES methods, have led to a significant growth in numerical investigations
of aero-optical phenomena and improved predictive capabilities. Together with
experiments, these investigations provided new physical understanding of the distortion
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mechanisms of various aero-optical flows including turbulent boundary layers. A
detailed discussion of aero-optical computations can be found in the review article
of Wang, Mani & Gordeyev (2012).

Truman & Lee (1990) and Truman (1992) used incompressible DNS to study the
optical distortions induced by a homogeneous turbulent shear flow with uniform mean
shear and a turbulent channel flow. The fluctuating index of refraction was modelled
as a passive scalar. They observed that optical distortions were significantly dependent
on the propagation direction, and related the distortions to the underlying coherent
vortical structures. It was found that larger distortions occurred when the beam was
propagated at an angle close to the inclination angle of hairpin vortices. Truman
(1992) further pointed out that optical distortions were dominated by large-scale
vortical structures, and thus their directionality was strongly affected by the anisotropy
of the organized vortical structures. Although these studies did not deal with turbulent
boundary layers and were based on incompressible flow equations, the major results
are similar to those found from subsequent boundary-layer experiments (Cress et al.
2008) and the present compressible flow simulation (see § 7).

Mani, Wang & Moin (2006) and Mani, Moin & Wang (2009) simulated flow over
a circular cylinder at Reynolds numbers of 3900 and 10 000 and Mach number of 0.4
with a sixth-order, non-dissipative LES code and investigated the aero-optical effects
of separated shear layers and turbulent wakes. They analysed systematically the far-
field optical statistics and their dependence on optical wavelength, aperture size, and
beam position in the flow field. They also examined the effect of different flow scales
on aero-optics and, based on statistical theory for small-scale turbulence, established a
grid-resolution criterion for accurately capturing the aero-optical effects (Mani, Wang
& Moin 2008). The basic conclusion is that an adequately resolved LES can capture
the aero-optics of highly aberrating flows without requiring additional subgrid-scale
modelling for the optics.

Tromeur et al. (2003) and Tromeur, Garnier & Sagaut (2006b) carried out LES to
study the aero-optical distortions of subsonic (M = 0.9) and supersonic (M = 2.3)
flat-plate turbulent boundary layers. Their result for M = 0.9 was in reasonable
agreement with experimental data in terms of the optical-phase-distortion magnitude.
The convection velocities of optical aberrations for both cases were found to be
approximately 0.8 times the free-stream velocity, which was consistent with the
experimental findings of Buckner et al. (2005). They evaluated the applicability of
Sutton’s statistical model (Sutton 1985), known as the linking equation which relates
the mean square of optical phase distortions to density variance and correlation length
under simplifying assumptions, by comparing the computed results to Sutton’s model
predictions. Significant discrepancies were observed between the two results for both
Mach numbers and, as a result, they questioned the applicability of Sutton’s model for
boundary-layer flows. In a follow-up study, Tromeur, Garnier & Sagaut (2006a) found
satisfactory predictions of OPD by Sutton’s model based on the velocity correlation
length instead of density correlation length. This is, however, difficult to justify from a
theoretical standpoint.

Despite previous experimental and numerical studies on aero-optics of turbulent
boundary layers, the results in the literature are scattered and sometimes contradictory.
A clear understanding of boundary-layer aero-optical phenomena is still lacking. The
objective of the current work is to contribute to a systematic understanding of optical-
distortion mechanisms induced by subsonic turbulent boundary layers. To this end
highly resolved compressible LES is performed for Mach 0.5 turbulent boundary
layers at Reynolds numbers of Reθ = 875, 1770 and 3550 based on the momentum
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thickness at the centre of the optical aperture, and the index-of-refraction field is
computed directly from the fluctuating density field for optical analysis. Important
issues, such as Reynolds-number dependence of OPD, contributions from different
flow regions and flow scales to the wavefront aberrations, and the dependence
on propagation direction are examined. Flow structures, especially structures of
the fluctuating density field, are analysed and related to the optical distortions.
The applicability of Sutton’s linking equation to boundary-layer flows is revisited,
and the appropriate definition of the density length scale in the equation is
clarified. Based on the correct definition, the density correlation lengths at different
elevation angles are calculated, and the elevation-angle dependence of optical
distortions is explained in terms of the correlation length and the underlying flow
structures.

The paper is organized as follows. Section 2 describes the numerical methods
for LES and optical calculations. Section 3 presents the results of flow simulation
and compares basic statistics to available experimental data. Instantaneous wavefront
distortions and time-averaged distortion magnitudes are shown in § 4, which also
discusses their Reynolds-number dependence and contributions from different flow
regions and flow scales. Section 5 presents the structure of wavefront distortions in
terms of two-point correlations and space–time correlations of OPD. The applicability
of Sutton’s linking equation to boundary-layer flows is analysed in § 6, and the
appropriate density correlation length is identified. The effect of elevation angle on
optical distortions is examined in § 7 based on the linking equation and correlation
length distribution. Finally, § 8 summarizes the main conclusions of this work.

2. Numerical approach
The aero-optical study is performed in two steps: first, LES is conducted to provide

a detailed description of the turbulent flow field including the fluctuating density field;
second, the refractive index is obtained from the Gladstone–Dale relation (Gladstone
& Dale 1863) and optical calculations are performed on a beam grid to compute the
optical wavefront distortions.

2.1. Large-eddy simulation

The governing equations for LES are the spatially filtered compressible Navier–Stokes
equations and the continuity and energy equations in the following dimensionless and
conservative form (see, for example, Garnier, Adams & Sagaut 2009):

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= 0, (2.1)

∂ρ̄ũi

∂t
+ ∂

∂xj
(ρ̄ũiũj + p̄δij)= ∂τ̃ij

∂xj
− ∂τ

SGS
ij

∂xj
, (2.2)
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]
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+ ∂
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∂qSGS
j

∂xj
, (2.3)

where ρ, p, T , ui and E denote density, pressure, temperature, the three velocity
components and total energy, respectively, normalized using boundary-layer thickness
δ, free-stream density ρ∞, sound speed c∞, temperature T∞ and dynamic viscosity
µ∞ as reference values. The overbar denotes spatial filtering and the tilde denotes
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Favre filtering,

f̃ = ρf

ρ̄
. (2.4)

The Favre-filtered viscous stress tensor is given by

τ̃ij = µM

Re

(
∂ ũi

∂xj
+ ∂ ũj

∂xi
− 2

3
∂ ũk

∂xk
δij

)
, (2.5)

and the filtered heat flux is

q̄j = µ

(γ − 1)Pr
∂T

∂xj
, (2.6)

where Re = ρ∞u∞δ/µ∞ is the Reynolds number, M = u∞/c∞ is the Mach number,
γ is the ratio of specific heats, and Pr is the Prandtl number. The governing
equations (2.1)–(2.3) are supplemented with the equation of state for ideal gas,
p̄ = ρ̄T̃/γ . The dynamic viscosity µ is a function of T in the form of µ = Tn,
where n is assumed a constant (n = 0.7 in the present work). The quantities τ SGSij and
qSGS

i in (2.1)–(2.3) are the subgrid-scale (SGS) stress tensor and heat flux, respectively:

τ SGSij = ρ̄(ũiuj − ũiũj), (2.7)

qSGS
j = ρ̄(ũjT − ũjT̃), (2.8)

which account for the effects of subgrid-scale motions to be modelled in order to close
the equations.

The simulation code used in the present study is an unstructured-mesh compressible
LES code developed at the Center for Turbulence Research, Stanford University
(Shoeybi et al. 2010). The code solves the spatially filtered compressible
Navier–Stokes equations, (2.1)–(2.3), along with the state equation using low-
dissipative, robust numerical algorithms. It employs a second-order finite-volume
scheme with a summation-by-parts (SBP) property for spatial discretization and a
hybrid implicit/explicit third-order Runge–Kutta method for time advancement. The
SGS terms in (2.1) are modelled using the dynamic Smagorinsky model (Moin et al.
1991) with Lilly’s modification (Lilly 1992).

2.2. Optical calculation
As electromagnetic waves, the propagation of optical beams is governed by the
Maxwell equations. For aero-optical problems, however, the three components of the
electromagnetic field are decoupled because the optical wavelength is much shorter
than the smallest flow scale, and thus the Maxwell equations can be reduced to a
vector wave equation in which each scalar component of the electric field at frequency
ω can be written as

∇2U + ω
2n2

c2
0

U = 0, (2.9)

where c0 is the speed of light in vacuum and n is the index of refraction. Owing to
the small fluctuations in index of refraction and much longer flow scales compared to
the optical wavelength, the propagation direction of an optical beam is predominantly
in the axial (y) direction and the amplitude varies slowly through the turbulence region,
so that the wave equation can be parabolized (Monin & Yaglom 1975; Mani et al.
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2006). The solution of the paraxial wave equation across the aero-optical region (from
y= 0 to y= L) can be expressed as (Monin & Yaglom 1975)

U(x,L, z)= U(x, 0, z) exp
(
−ik0

∫ L

0
n(x, y, z) dy

)
, (2.10)

where k0 = k/n∞ = ω/c0 is the optical wavenumber in vacuum. This equation suggests
that the amplitude of the optical waves remains unchanged after transmission through
the turbulence region, and the dominant effect on the wavefront is a phase distortion.
The integral in (2.10) is called the optical path length (OPL),

OPL(x, z, t)=
∫ L

0
n(x, y, z, t) dy, (2.11)

and is most commonly derived from geometric optics by assuming straight optical
paths. In air flows, the optical index of refraction is related to the fluctuating density
field through the Gladstone–Dale relation (Gladstone & Dale 1863)

n= 1+ KGDρ, (2.12)

where KGD is the Gladstone–Dale constant which is in general weakly dependent
on the optical wavelength. It is nearly independent of the wavelength and is
approximately 2.27× 10−4 m3 kg−1 for air at visible optical wavelengths.

Optical calculations are generally performed on a Cartesian beam grid along the
optical path with its dimensions in the plane perpendicular to the optical path the same
as the aperture size. For the current work, since the LES mesh is Cartesian, the optical
beam grid is the same as the LES grid but covers a smaller region for propagation
normal to the wall. When the beam is at an oblique angle with respect to the wall, the
beam grid does not coincide with the LES grid, and a trilinear interpolation scheme is
employed to interpolate the density field from the LES grid onto the beam grid.

The relative difference in OPL over the aperture is called the optical path difference
(OPD) and is defined as

OPD(x, z, t)= OPL(x, z, t)− 〈OPL(x, z, t)〉, (2.13)

where the angle brackets denote spatial averaging over the aperture. This quantity
is the most frequently used measure of optical distortions. In practice, the spatially
linear component of wavefront distortions, called the unsteady tilt, can be corrected
using adaptive-optic systems (Tyson 1997) and is therefore removed along with
〈OPL(x, z, t)〉 by a least-square surface fitting method. At each time instant, parameters
A, B and C are determined by minimizing

G=
∫ ∫

Ap

[OPL(x, z, t)− (Ax+ Bz+ C)]2 dx dz (2.14)

where Ap denotes the aperture, and then OPD(x, z, t) is computed from

OPD(x, z, t)= OPL(x, z, t)− (Ax+ Bz+ C). (2.15)

3. Flow simulation and validation
Spatially developing flat-plate boundary-layer simulations with an inflow–outflow

configuration at three Reynolds numbers Reθ = 700, 1400 and 2800 based on the
momentum thickness at the inlet are conducted to investigate optical distortions. The
free-stream Mach number is M = 0.5. These simulations employ a computational
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Reθ at inlet Reθ at beam centre Beam centre (x, z) No. of grid cells

700 875 15.4δ0, 1.55δ0 3.8× 106

1400 1770 20.1δ0, 1.55δ0 1.3× 107

2800 3550 21.2δ0, 1.55δ0 4.9× 107

TABLE 1. Flow and optical simulation parameters.

domain of size 31δ0, 6.4δ0 and 3.1δ0 in the streamwise (x), wall normal (y) and
spanwise (z) directions, respectively, where δ0 is the boundary-layer thickness at
the inlet. A Cartesian mesh, uniform in the streamwise and spanwise directions and
stretched in the wall-normal direction, is employed. The grid spacings in viscous wall
units are 1x+ ≈ 30, 1z+ ≈ 10 and 1y+min ≈ 0.6 based on inlet conditions. This grid
resolution is significantly better than the typical LES resolution, and is in fact between
typical LES and DNS values to ensure sufficient numerical accuracy for a fundamental
scientific investigation. The number of grid cells for the three Reynolds numbers
are 3.8 × 106, 1.3 × 107 and 4.9 × 107, respectively. No-slip and adiabatic boundary
conditions are imposed at the bottom wall. A sponge layer (Israeli & Orszag 1981;
Bodony 2006) with thickness of 1.3δ0 is applied to the top and outlet boundaries to
damp out flow structures and acoustic waves. The time-dependent turbulent inflow data
are generated by a separate simulation adopting an extension of the rescale-and-recycle
technique of Lund, Wu & Squires (1998) to compressible flows (Urbin & Knight
2001). A fixed CFL number of 1.0 is employed for time advancement, and variable
time steps are calculated accordingly. The typical time step sizes are approximately
8.3 × 10−4δ0/U∞, 5.4 × 10−4δ0/U∞ and 3.0 × 10−4δ0/U∞ for Reθ = 700, 1400 and
2800, respectively.

A rectangular aperture is employed for optical calculations. The beam centres, listed
in table 1, are selected such that at these locations the boundary-layer thickness δ
has the same value of 1.36δ0 for all three cases to ensure reasonable comparisons
of results at different Reynolds numbers. The Reynolds numbers at the beam centres
are Reθ = 875, 1770 and 3550, respectively, for the three simulations. Hereafter, the
beam-centre Reynolds number will be used to characterize the flow in lieu of the
Reynolds numbers at the inlet. The main simulation parameters are summarized in
table 1. The statistics of flow and optical quantities are calculated over a time period
of approximately 196δ0/U∞ for Reθ = 875, 146δ0/U∞ for Reθ = 1770 and 106δ0/U∞
for Reθ = 3550, respectively.

The mean velocity profiles at the beam centres are shown in figure 1 for the three
Reynolds numbers, where the coordinates are defined as y+ = uτy/ν and U+ = U/uτ
(uτ is the friction velocity). For later reference, the y-coordinate in wall units is related
to that measured by the outer scale through y+ = (y/δ)Reτ , with Reτ = 355, 644 and
1141 for Reθ = 875, 1770 and 3550, respectively. The profiles coincide with U+ = y+

in the viscous sublayer and show very good agreement with the log law, indicating
the high quality of simulation results. The root-mean-square (r.m.s.) values of velocity
fluctuations are plotted in figure 2. For Reθ = 1770 and 3550, the r.m.s. values of u′

and v′ are compared with the experimental measurements of DeGraaff & Eaton (2000)
at Reθ = 1430 and 2900 (the closest match to the current Reynolds numbers found),
respectively, which shows good agreement.

Figure 3 shows profiles of r.m.s. density fluctuations across the boundary layers. The
location of the fluctuation peak in wall units is seen to be insensitive to Reynolds
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FIGURE 1. Mean velocity profiles at the centre of the aperture. ——, Reθ = 875; - - - -,
Reθ = 1770; — ·—, Reθ = 3550; – – –, U+ = y+; – ·· –, U+ = 2.44 ln y+ + 5.2.
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FIGURE 2. Root-mean-square of velocity fluctuations at the centre of the aperture. ——,
Reθ = 875; - - - -, Reθ = 1770; – · –, Reθ = 3550; symbols, from experiment of DeGraaff &
Eaton (2000) at Reθ = 1430 and 2900.
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FIGURE 3. Root-mean-square of density fluctuations at the centre of the aperture. ——,
Reθ = 875; - - - -, Reθ = 1770; – · –, Reθ = 3550.
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FIGURE 4. Root-mean-square of density, temperature and pressure fluctuations at the centre
of the aperture for Reθ = 3550. ——, ρ ′rms/ρ; - - - -, T ′rms/T; – · –, p′rms/p.

number and is near the lower end of the logarithmic layer. As Reynolds number
increases, the peak fluctuation level decreases, and there is a significant growth in
fluctuations in the outer region of the boundary layer. A comparison of the fluctuation
magnitudes of density, temperature and pressure relative to their local mean values is
shown in figure 4 for Reθ = 3550. It confirms that, as generally believed (Wyckham
& Smits 2009), pressure fluctuations are weak in the turbulent boundary layer, and
density fluctuations are primarily caused by temperature fluctuations through the
equation of state. Therefore, temperature variations are the main source of optical
distortions in the boundary layer, in contrast to the distortion mechanism in turbulent
mixing layers where strong pressure variations in coherent vortices play a dominant
role (Fitzgerald & Jumper 2004).
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FIGURE 5. Instantaneous OPD at a time instant for different Reynolds numbers:
(a) Reθ = 875; (b) Reθ = 1770; (c) Reθ = 3550.

4. Magnitude of wavefront distortions
4.1. Basic distortion characteristics

A volume of density field of size approximately 6.7δ in the streamwise direction, 2.9δ
in the wall-normal direction and 2.3δ in the spanwise direction is saved every 4 time
steps in the LES. Optical calculations are performed using these density-field data with
the same grid resolution as the LES. An optical beam with an aperture size 6.7δ× 2.3δ
is shot from the wall in the normal direction. Snapshots of instantaneous wavefront
distortions for the three Reynolds numbers are plotted in figure 5. They show that
the wavefront distortions occur over a wide range of scales. Structures of increasingly
smaller scales appear in the distorted wavefront as Reynolds number increases.

The time-averaged OPDrms is found to be 8.87× 10−7δ for Reθ = 875, 6.82× 10−7δ

for Reθ = 1770 and 5.59 × 10−7δ for Reθ = 3550, which indicates that OPDrms

decreases with increasing Reynolds number. To investigate the influence of aperture
size on OPDrms, the two dimensions of the aperture are varied independently: first,
the aperture size in the spanwise direction is fixed at 2.3δ while it is varied in the
streamwise direction from 0.6δ to 6.7δ; second, the aperture size in the streamwise
direction is fixed at 6.7δ while it is varied in the spanwise direction from 0.2δ to
2.3δ. The results are plotted in figure 6. It shows that OPDrms increases with aperture
size but the growth rate decreases. Owing to limitations in storage and computational
time, it is not feasible to employ a sufficiently large aperture to allow the OPDrms to
fully saturate with respect to the aperture size. However, figure 6 shows a clear trend
toward convergence for large aperture sizes, particularly in the spanwise direction. It
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FIGURE 6. OPDrms as a function of (a) streamwise aperture size and (b) spanwise aperture
size. ——, Reθ = 875; - - - -, Reθ = 1770; – · –, Reθ = 3550.

also shows that OPDrms converges faster at high Reynolds numbers both in streamwise
and spanwise directions due to reduced correlation length scales. The aperture size
required for OPDrms saturation appears to be larger than the correlation lengths of the
underlying index-of-refraction field, or the optical wavefront; see § 5.1. It should be
noted that the aperture size effect shown in figure 6 is based on tilt-removed OPD data.
The unsteady tilt removal can affect the variation of OPDrms with the aperture size as
demonstrated by Cress (2010). In fact, tilt removal acts as a simulated adaptive optical
correction applied to the beam. Calculations without unsteady tilt removal indicate
that OPDrms does not saturate with respect to the streamwise aperture size due to the
growth of the boundary-layer thickness.

The effects of aperture size and Reynolds number on the streamwise tilt are
illustrated in figure 7, where the vertical coordinate, x-tilt , represents the coefficient
A in (2.15). The unsteady tilt decreases significantly with increasing Reynolds number
and aperture size. Hence, the tilt removal as described in § 2.2 affects a small-aperture
beam in low-Reynolds-number flows much more significantly than a large-aperture
beam in high-Reynolds-number flows.

The decreasing OPDrms with increasing Reynolds number is qualitatively supported
by experimental results. Based on boundary-layer aero-optical measurements at high
Reynolds numbers and the strong Reynolds analogy, Wyckham & Smits (2009)
proposed the following scaling law for OPDrms:

OPDrms = CwKGDρ∞δM2
∞
√

Cf r
−3/2
2 , (4.1)

where r2 = 1 + [(γ − 1)/2]M2
∞[1 − r (Uc/U∞)

2] for adiabatic walls and r2 =
(1/2)(Tw/T∞ + 1) for isothermal walls, r(≈ 0.9) is the recovery factor, Tw is the
temperature of the wall, and Cw is a constant independent of Reynolds number and
Mach number. Equation (4.1) clearly shows a Reynolds-number dependence through
the skin friction coefficient Cf , indicating that OPDrms decreases with Reynolds
number. This scaling law is based on experiments for hypersonic flows at Mach
number M = 7.6 ∼ 7.8 and Reynolds number Reθ ≈ 20 000, and subsonic flows at
M = 0.75 ∼ 0.79 and Reθ ≈ 10 000. More recently, Gordeyev et al. (2011) obtained
the same Cf scaling of OPDrms based on the linking equation (Sutton 1985) and
experimental measurements at M = 2 and Reθ ≈ 69 000. The OPDrms computed from
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FIGURE 7. Streamwise tilt as a function of time at (a) Reθ = 875, (b) Reθ = 1770,
and (c) Reθ = 3550 with two different streamwise aperture sizes: ——, Ax = 1.1δ; - - - -,
Ax = 6.6δ.

LES data at the three Reynolds numbers is plotted in figure 8 along with a curve
proportional to

√
Cf with the coefficient in (4.1) adjusted arbitrarily to match the

computed OPDrms at the intermediate Reynolds number. Discrepancies can be observed
between the two curves, especially at the low-Reynolds-number end, indicating that
the scaling law is not accurate for low-Reynolds-number flows. On the other hand,
the figure shows that the difference decreases as Reynolds number increases. Since
Cf varies slowly at high Reynolds numbers, it can be expected that wavefront
distortions are relatively insensitive to Reynolds number for high-Reynolds-number
flows. Numerical simulations at higher Reynolds numbers and/or experiments at lower
Reynolds numbers are needed to fill the gap and further clarify the Reynolds-number
dependence issue.

Given the near-field optical distortion magnitude, the optical system performance is
often characterized in terms of the Strehl ratio, defined as the ratio of the maximum
irradiance for an aberrated beam in the far field, I(t), to the diffraction-limited on-axis
irradiance, I0. The time-averaged Strehl ratio is related to the time-averaged OPDrms by
(Mahajan 1983)

SR= I

I0
= exp

[
−
(

2πOPDrms

λ

)2
]
. (4.2)
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FIGURE 8. OPDrms as a function of Reynolds number. ——, LES; - - - -, 1.11× 10−5
√

Cf .

Reθ 875 1770 3550
δ (cm) 2.5 5.0 2.5 5.0 2.5 5.0

OPDrms/δ × 107 8.87 8.87 6.82 6.82 5.59 5.59
OPDrms/λ× 102 4.44 8.87 3.41 6.82 2.80 5.59
SR (%) 92.5 73.3 95.5 83.2 97.0 88.4

TABLE 2. Strehl ratio at different Reynolds numbers and boundary layer thicknesses for
λ= 0.5 µm.

As an example, suppose that the wavelength of a visible laser beam is 0.5 µm and
the boundary-layer thickness is 2.5 and 5.0 cm for all the three Reynolds numbers,
based on the LES data, then the estimated Strehl ratios are given in table 2. It can be
noticed that for this laser beam, the low-Reynolds-number turbulent boundary layer of
thickness 5.0 cm causes a system-performance reduction by as much as 27 %, while
the performance degradation decreases with increasing Reynolds number. Under flight
conditions, the Reynolds number is much higher than those in the current study and
a performance reduction of less than 10 % can be expected at the same Mach number.
However, due to the M2 scaling of OPDrms, the flight Mach number has a stronger
effect on the system performance than the Reynolds number.

4.2. Contribution from different flow regions
To investigate contributions to wavefront distortions from different flow regions in
the boundary layer, (2.11) is integrated from the wall to different y-locations, and
the resulting OPDrms values are shown in figure 9. The results show that the viscous
sublayer has little effect on the wavefront distortions. For all the cases, the distortions
start to grow in the buffer layer, and most of the growth takes place in the logarithmic
layer (30< y+ < 110 for Reθ = 875, 30< y+ < 160 for Reθ = 1770 and 30< y+ < 250
for Reθ = 3550) and wake region (y+ > 110 for Reθ = 875, y+ > 160 for Reθ = 1770
and y+ > 250 for Reθ = 3550). The percentages of the OPDrms and the mean-square
of OPD (OPDms) caused by different flow regions for the three Reynolds numbers are
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FIGURE 9. OPDrms at different wall-normal locations. ——, Reθ = 875; - - - -, Reθ = 1770;
– · –, Reθ = 3550.

OPDrms OPDms
Reθ 875 1770 3550 875 1770 3550

Viscous sublayer and buffer layer 11.34 7.20 4.09 1.29 0.52 0.17
Log layer 30.16 28.92 26.47 15.93 12.52 9.17
Wake region 58.50 63.88 69.44 82.78 86.96 90.66

TABLE 3. Percentages of OPDrms and OPDms caused by different flow regions.

listed in table 3. Clearly, the wake region is the dominant contributor to the overall
OPD for all three cases. The contribution from the viscous sublayer and buffer layer
(0< y+ < 30) is approximately 11.34 % of the total distortion magnitude (OPDrms) and
1.29 % of the total distortion energy (OPDms) for the lowest Reynolds number, and this
ratio decreases with increasing Reynolds number. At Reθ = 3550, only approximately
4.09 % of the distortion magnitude and 0.17 % of the distortion energy come from the
viscous sublayer and buffer layer, while the wake-region contributions increase to more
than 69 % of the distortion magnitude and more than 90 % of the distortion energy. It
can be expected that when the Reynolds number is sufficiently large, the contribution
from the viscous sublayer and buffer layer will become negligible. More discussions of
the optical importance of different flow regions in the context of the linking equation
will follow in § 6 (see figure 21).

In practical aero-optical problems involving optical turrets at flight conditions, the
Reynolds number is very high (of the order of 106 based on the turret size and free-
stream velocity and 105 based on the attached boundary-layer thickness (Gordeyev &
Jumper 2010)). It is not feasible to perform LES which resolves energetic flow scales
down to the wall. Instead, a hybrid RANS/LES method or LES with a wall-layer
model is required. In LES with a wall model, the first off-wall grid point is generally
in the log layer, and its applicability for aero-optical prediction depends on the relative
contribution from the near-wall region. The present results illustrate that wavefront
distortions are predominantly caused by the wake region, and the relative contribution
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FIGURE 10. Instantaneous OPD obtained with filtered density fields. (a) filter width = 4 grid
spacings; (b) filter width = 8 grid spacings.

from the viscous sublayer and buffer layer decreases with increasing Reynolds number.
This suggests that for high-Reynolds-number flows LES with wall modelling can be an
accurate and efficient technique for aero-optical applications.

4.3. Effect of turbulence scales

The effect of small-scale turbulence on wavefront distortions is of practical importance
for both computational and experimental studies of aero-optics, as it determines the
grid resolution required for computations and the spatial resolution requirement for
wavefront sensors. It is generally understood from previous investigations (Mani et al.
2008, 2009) that small-scale contributions to OPDrms are relatively small, and DNS-
type resolution is not required. In this section, the role of small scales in turbulent
boundary layers is examined in terms of not only OPDrms but also the frequency
spectra of OPD.

To study the small-scale effect, spatial filters of progressively larger filter widths are
used to filter the density field obtained from LES at the highest Reynolds number
Reθ = 3550. The filter is of top-hat type in physical space and is implemented
numerically using Simpson’s rule. Optical calculations are then performed with the
filtered density field. The filter width varied from 2 grid spacings to 4 and then 8 grid
spacings in streamwise and spanwise directions to filter out turbulence structures at
different scales. Based on grid spacings of 1x/δ = 0.025 in the streamwise direction
and 1z/δ = 0.008 in the spanwise direction for Reθ = 3550, the three filter widths in
physical units are given in table 4.

Instantaneous wavefront distortions computed from the filtered density field with
filter width of 4 and 8 grid spacings are shown in figure 10. The original wavefront
distortions calculated from the unfiltered density field at the same time instant can be
found in figure 5(c). From these results, it can be observed that filtering smoothed out
the wavefront distortions by removing the small scales, and larger filter widths resulted
in smoother OPD variations.

The OPDrms computed from the filtered density fields with different filter widths is
plotted in figure 11 as a function of wall-normal distance. It shows that filtering the
density field with filter widths of 2 and 4 grid spacings causes less than 5 % reduction
in OPDrms, whereas the filter with a width of 8 grid spacings reduces OPDrms by 11 %.

The effect of filtering on the power spectral density of OPD at the streamwise
location of the beam centre as a function of frequency is illustrated in figure 12. The
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FIGURE 11. Comparison of OPDrms obtained from filtered density fields with different filter
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FIGURE 12. Frequency spectra of OPD obtained from filtered density fields with different
filter widths for Reθ = 3550. ——, unfiltered; - - - -, 2 grid spacings; – · –, 4 grid spacings;
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Filter width 2 grid spacings 4 grid spacings 8 grid spacings

1x/δ 1z/δ 1x/δ 1z/δ 1x/δ 1z/δ

Reθ = 3550 0.050 0.016 0.100 0.032 0.200 0.064

TABLE 4. Filter widths in physical units.

power spectral density is defined as

ΦOPD(x, f )=
∫ +∞
−∞
〈OPD(x, z, t)OPD(x, z, t +1t)〉e−2πif1t d1t, (4.3)
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FIGURE 13. Two-point spatial correlations of OPD with origin at the beam centre for three
Reynolds numbers: (a) Reθ = 875; (b) Reθ = 1770; (c) Reθ = 3550.

where the angle brackets and overbar denote spanwise and time averages, respectively.
It shows that, as expected, filtering removes primarily the high-frequency content
of OPD which corresponds to small-scale turbulence; the low-frequency end of the
spectrum is essentially intact. The filtering effect is not significant until the filter width
is as large as 8 grid spacings. The findings in this section indicate that small-scale
turbulence structures are relatively inactive from an optical standpoint, and wavefront
distortions are predominantly caused by the energetic, coherent large-scale structures.
This observation is consistent with the findings by Truman (1992), Zubair & Catrakis
(2007) and Mani et al. (2008) for other types of turbulent flows.

5. Structure of wavefront distortions
5.1. Two-point correlations of OPD

In this section, the two-point spatial correlations of OPD are examined to reveal
the structure of wavefront distortions and its dependence on Reynolds number. The
two-point spatial correlation of OPD can be computed from

ROPD(x,1x,1z)= 〈OPD(x, z, t)OPD(x+1x, z+1z, t)〉√
〈OPD2(x)〉

√
〈OPD2(x+1x,1z)〉

. (5.1)

Iso-contours of OPD two-point correlations are shown in figure 13 with the origin
at the centre of aperture. The correlation function is independent of the origins in
z and t because the turbulent flow is homogeneous in the spanwise direction and
stationary in time. The nearly symmetric shapes of the correlations with respect to
1x = 0 suggests that the streamwise inhomogeneity is weak. It is noted that the
shape of the correlation contours changes with Reynolds number. At Reθ = 875, OPD
has a shorter correlation length in the streamwise direction than in the spanwise
direction. As the Reynolds number increases, the correlation length increases in the
streamwise direction but decreases in the spanwise direction. At Reθ = 1770, the
correlation contours are nearly isotropic while at Reθ = 3550, the correlation length
in the streamwise direction exceeds that in the spanwise direction. With this trend, it
appears likely that at even higher Reynolds numbers, the correlation contours will be
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FIGURE 14. Two-point spatial correlations of density fluctuations in four x–z planes with
origin at the beam centre, at Reθ = 3550: (a) y+ = 10; (b) y+ = 50; (c) y+ = 198;
(d) y+ = 807.

elongated in the streamwise direction. This observation agrees qualitatively with the
findings of Wittich et al. (2007) who used a Malley probe and Taylor’s hypothesis
to obtain spatial correlations of OPD. They reported that the streamwise correlation
length is six times longer than the spanwise one at Reθ ≈ 26 000. On the other
hand, with a two-dimensional wavefront sensor, Wyckham & Smits (2009) observed
nearly isotropic two-point correlations of OPD induced by subsonic boundary layers
at Reθ ≈ 10 000. It should be noted that the aperture size employed by Wyckham
& Smits (2009) is approximately 2δ × 2δ, which is much smaller than the aperture
size 6.7δ × 2.3δ employed in the current study. Owing to the unsteady tilt removal,
correlation lengths are affected by the aperture size employed (Cress 2010), which
can be partly responsible for the differences in the two-point spatial correlations
of OPD.

The shape of OPD correlation contours is determined by the structure of density
fluctuations. Figure 14 shows two-point spatial correlations of fluctuating density in
four x–z planes with the origin at the beam centre for the case of Reθ = 3550. It
is noted that the shape of correlation contours changes drastically from bottom to
top of the boundary layer. In the buffer layer (figure 14a), the correlation contours
are elongated in the streamwise direction and very narrow in the spanwise direction,
reflecting the near-wall streaky structures (hairpin vortex legs). These structures can
be seen clearly in the instantaneous density field (figure 15a) and the associated
OPD contours (figure 15b) at the same y-location. The correlation lengths in the two
directions become comparable in the upper log layer (figure 14c) and, eventually in the
wake region, the spanwise correlation length becomes larger than the streamwise one
(figure 14d). By comparing the shapes of correlation contours for OPD (figure 13c)
and fluctuating density (figure 14, note difference in plotted spatial scales), it is
evident that the spatial correlation of OPD is unlike the spatial correlation of
density fluctuations in any single x–z plane; it is an integrated effect of turbulence
structures across the entire boundary-layer thickness. The two-point spatial correlations
of density fluctuations and OPD for the two lower-Reynold-number cases have also
been examined, and the same qualitative relations have been observed.
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FIGURE 15. (a) Instantaneous density field ρ/ρ∞ and (b) corresponding OPD/δ in the x–z
plane with the origin at the beam centre at y+ = 10 for Reθ = 3550.

5.2. Space–time correlations of OPD
The space–time correlation of OPD as a function of streamwise spatial and temporal
separations can be calculated from

ROPD(1x,1t; x)= 〈OPD(x, t)OPD(x+1x, t +1t)〉√
〈OPD2(x)〉

√
〈OPD2(x+1x)〉

. (5.2)

Iso-contours of space–time correlations of OPD at the centre of the aperture for
the case of Reθ = 3550 are plotted in figure 16. The contours are similar to those
for wall-pressure fluctuations underneath a turbulent boundary layer and demonstrate
dominance by convection. From these correlations the convection velocities of OPD as
a function of temporal separation or spatial separation can be computed from (Choi &
Moin 1990):

Uc(1t)= 1xc

1t
,

∂ROPD(1x,1t)

∂1x

∣∣∣∣
1x=1xc

= 0, (5.3)

Uc(1x)= 1x

1tc
,

∂ROPD(1x,1t)

∂1t

∣∣∣∣
1t=1tc

= 0. (5.4)

The convection velocities are important parameters for aero-optical analysis based on
Malley probe data (Jumper & Fitzgerald 2001).

The convection velocities for the three Reynolds numbers are shown in figure 17.
They are approximately 0.8U∞ at the small temporal separation of 1t ≈ 0.05δ/U∞
and 0.84U∞ at the small spatial separation of 1x ≈ 0.06δ for all three Reynolds
numbers. The convection velocity for small spatial separations agrees well with that
measured experimentally by Buckner et al. (2005), who reported a value of 0.81U∞
for a separation of 0.05δ.

The convection velocity for OPD increases with increasing temporal and spatial
separations since the larger flow structures responsible for optical distortions at these
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FIGURE 17. Convection velocities of OPD as a function of (a) temporal separation, and
(b) streamwise spatial separation. ——, Reθ = 875; - - - -, Reθ = 1770; – · –, Reθ = 3550.

scales reside in the outer layer and therefore travel faster. At a temporal separation of
3.3δ/U∞ or a spatial separation of 2.8δ, the convection velocities reach approximately
0.87U∞ for Reθ = 875 and 0.93U∞ for Reθ = 3550. The variation of convection
velocities for OPD from small to large separations is significantly smaller than that for
wall-pressure fluctuations (Choi & Moin 1990). This is because the OPD convection
velocity is predominantly determined by the outer region of the boundary layer,
whereas in the case of wall-pressure fluctuations, small eddies in the near-wall region,
which have lower convection velocities, contribute directly to small-scale wall-pressure
fluctuations.
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At large temporal or spatial separations, the convection velocities increase with
Reynolds number. This again shows dominance of the outer region of the boundary
layer which grows in size relative to the inner layer as Reynolds number increases.
As demonstrated in § 4.2, the relative contribution of the log layer and wake region to
OPDrms increases with Reynolds number.

6. The linking equation
In aero-optics, the linking equation derived by Sutton (1985) is widely used to relate

wavefront-distortion statistics to statistics of the aberrating flow field:

〈φ2〉 = 2K2
GDk2

∫ L

0
〈ρ ′2〉Λ(y) dy, (6.1)

where 〈φ2〉 = 4π2〈OPD2〉/λ2 is the wavefront phase distortion, Λ is the correlation
length of the fluctuating density field in the direction of propagation, and k = 2π/λ
is the optical wavenumber. This equation was derived for locally homogeneous
turbulence (statistics do not vary greatly over a correlation length) with a Gaussian
temporal distribution, and its applicability to inhomogeneous turbulent flows has been
questioned. A more general form of the linking equation takes the form (Steinmetz
1982; Havener 1992)

〈φ2〉 = K2
GDk2

∫ L

0

∫ L

0
Rρρ(y, y′) dy′ dy, (6.2)

where Rρρ(y, y′) is the two-point density correlation along the optical path.
Equation (6.2) can also be derived following an earlier analysis of Liepmann (1952)
for the mean-square deflection angle of a small aperture beam coupled with Taylor’s
hypothesis (Jumper & Fitzgerald 2001).

Based on LES data, Tromeur et al. (2006a,b) evaluated Sutton’s linking
equation (6.1) for a Mach 0.9 turbulent boundary layer and noticed large discrepancies
between the results obtained by directly integrating the index-of-refraction field, (2.11)
and (2.13), and by using Sutton’s linking equation, (6.1). Consequently, they
questioned the applicability of Sutton’s model to boundary-layer flows and suggested
that results could be improved by using the velocity integral scale instead of the
density integral scale in the model. Hugo & Jumper (2000) examined the applicability
of Sutton’s linking equation to a heated two-dimensional jet using density correlations
obtained from hot-wire measurements. They found that the oscillatory nature of the
correlation coefficient in the shear-layer regions made the evaluation of the length
scale difficult. It was concluded that if the length scale was based on integrating
the correlation coefficient between the first zero-crossings at negative and positive
separations, Sutton’s equation gave reasonable results.

The equilibrium turbulent boundary layers considered here are homogeneous in
the spanwise direction, vary slowly in the streamwise direction, and are highly
inhomogeneous in the wall-normal direction. In this section, the validity and
accuracy of the linking equation for boundary-layer flows are evaluated using the
simulation data. The derivation leading to Sutton’s linking equation and the underlying
assumptions are examined first, and the appropriate form of the correlation length
in (6.1) is identified for accurate aero-optical predictions of boundary-layer flows.

To facilitate the analysis, the density is decomposed as ρ(x, y, z, t) = ρ0(y) +
ρ ′(x, y, z, t), where ρ0(y) = 〈ρ(x, y, z, t)〉 is the density averaged in time and over the
x–z plane, and ρ ′ is the density fluctuation relative to the mean. Based on (2.12), the
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optical index of refraction can then be expressed as n(x, y, z, t) = n0(y) + n′(x, y, z, t),
with n0 = 1 + KGDρ0 and n′ = KGDρ

′. Substituting this decomposition into (2.11)
and (2.13) leads to

OPD(x, z, t)=
∫ L

0
n′(x, y, z, t) dy−

∫ L

0
〈n′(x, y, z, t)〉 dy. (6.3)

Consequently, the time average of the OPD mean-square in the aperture plane is

〈OPD2〉 =
〈[∫ L

0
n′(x, y, z, t) dy

]2
〉
−
[∫ L

0
〈n′(x, y, z, t)〉 dy

]2

. (6.4)

If turbulence is assumed homogeneous in both x- and z-directions, and the aperture
size is much larger than the correlation length, then 〈n′〉 ≈ 0, and (6.4) takes the form

〈OPD2〉 = K2
GD

∫ L

0

∫ L

0
〈ρ ′(x, y, z, t)ρ ′(x, y′, z, t)〉 dy′ dy (6.5)

upon substitution of n′ = KGDρ
′. This is the general form of the linking equation (6.2).

With a change of variable 1y= y′ − y, (6.5) becomes

〈OPD2〉 = K2
GD

∫ L

0

∫ L−y

−y
〈ρ ′(x, y, z, t)ρ ′(x, y+1y, z, t)〉 d1y dy. (6.6)

By defining

Rρρ(y,1y)= 〈ρ
′(x, y, z, t)ρ ′(x, y+1y, z, t)〉

〈ρ ′2(x, y, z, t)〉
(6.7)

and

Λ(y)= 1
2

∫ L−y

−y
Rρρ(y,1y) d1y, (6.8)

(6.6) becomes the same as Sutton’s linking equation (6.1).
The above results illustrate that the general form of the linking equation is valid

for large-aperture beams through turbulent flows which are statistically homogeneous
in directions parallel to the aperture. There is no restriction imposed in the
direction of optical propagation. Sutton’s original linking equation (6.1) is formally
more restrictive, requiring turbulence to be quasi-homogeneous in the direction
of propagation. Nonetheless, it is still applicable for beams traversing strongly
inhomogeneous turbulence, as in the case of a boundary layer, if the length scale
Λ is defined according to (6.7) and (6.8). Note that the correlation coefficient Rρρ
in (6.7) is based on the definition for homogeneous turbulence. The standard definition
for inhomogeneous turbulence

Rρρ(y,1y)= 〈ρ ′(x, y, z, t)ρ ′(x, y+1y, z, t)〉√
〈ρ ′2(x, y, z, t)〉

√
〈ρ ′2(x, y+1y, z, t)〉

(6.9)

will not lead to Sutton’s equation. Furthermore, the integration bounds in (6.8) are not
from −∞ to ∞ as in the standard definition; they must be modified to accommodate
the finite thickness of the aberrating field.

Figure 18 shows the density correlation function calculated using (6.7) in the wall-
normal direction at four different wall-normal locations for Reθ = 3550. The density
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FIGURE 19. Density correlation length as a function of wall-normal locations calculated
using (6.7) and (6.8) for three Reynolds numbers: ——, Reθ = 875; - - - -, Reθ = 1770; – · –,
Reθ = 3550.

correlation length calculated from (6.8) is plotted in figure 19 for all three Reynolds
numbers as a function of wall-normal locations. It can be noticed that the correlation
length increases from the near-wall region to the edge of the boundary layer. At the
same wall-normal location, the correlation length decreases with increasing Reynolds
number. Based on these results, Sutton’s linking equation is used to estimate OPDrms

and the results are shown in figure 20 together with the OPDrms calculated by
direct integration of the index-of-refraction field. Sutton’s linking equation with the
correlation length defined in (6.8) shows very good agreement with the directly
integrated values. This is because the approximations involved in the derivation of
the linking equation, namely the large aperture size and statistical homogeneity in the
streamwise and spanwise directions, are largely satisfied. The weak inhomogeneity in
the streamwise direction is mainly responsible for the small discrepancies observed.

The derivation of the linking equation for boundary-layer flows and the agreement
between the results from the linking equation and direct integration confirm the
comments by Hugo & Jumper (2000) that Sutton’s linking equation can be applied
to inhomogeneous and anisotropic flows if the density length scales are ‘appropriately’
calculated. The key to the appropriate calculation is to use the correlation length



Aero-optics of subsonic turbulent boundary layers 145

0

2

4

6

8

10

0.5 1.51.0

O
PD

rm
s

(×
10

–7
)

FIGURE 20. Comparison of OPDrms calculated by direct integration and Sutton’s linking
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FIGURE 21. Contribution to 〈OPD2〉/δ2 from unit length of the optical path across the
boundary layer for Reθ = 3550: ——, calculated from 2K2

GDρ
′
ms(y)Λ(y); - - - -, calculated

from dOPDms/dy based on directly integrated OPD.

defined by (6.8) along with the correlation function given by (6.7), or their reasonable
approximations. An examination of Tromeur et al. (2006a,b) indicates that the poor
prediction of Sutton’s model in their calculation is caused by the use of a correlation
length that is inconsistent with the derivation of Sutton’s equation; their correlation
length is twice that given by (6.8). Hugo & Jumper (2000) employed the correct
correlation-length definition in their heated-jet investigation. The difficulty encountered
by them is due to the oscillatory nature of the correlation function with large negative
values and limited experimental data, which prevented an accurate evaluation of the
correlation length according to the definition.

From the linking equation (6.1), since the integral of 2K2
GDρ

′
ms(y)Λ(y) over the

optical path is 〈OPD2〉, the former quantity can be interpreted as the contribution to
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error bars, experimental data of Cress et al. (2008) for Reθ ≈ 28 800.

the overall 〈OPD2〉 from unit distance of propagation along the optical path. Likewise,
the inner integral in (6.6) times 2K2

GD can also be interpreted as such. In figure 21 this
‘aberration density’ calculated from 2K2

GDρ
′
ms(y)Λ(y) is plotted as the solid line across

the boundary layer, which clearly shows the relative optical importance of different
positions in the boundary layer. Alternatively, the aberration density can be interpreted
as the y-derivative of the 〈OPD2〉 computed from direct integration, which is shown
as the dashed line in the figure. Although the two curves differ quantitatively, they
display a consistent trend and show that the peak contribution comes from the region
0.5δ–0.7δ from the wall. The result based on the linking equation shows increased
contributions from the near-wall region at the expense of the outer region because it
accounts for the effect of not only the density fluctuation level but also the correlation
length, which is affected by the region above a given y-location.

7. Effect of elevation angle
In practical applications it is often required to shoot an optical beam through a

turbulent boundary layer in directions other than normal to the wall. To investigate the
directional dependence of wavefront distortions, beams with different elevation angles
β are examined. The elevation angle is defined as the angle between the optical path
and the upstream direction. For β < 90◦, the beam is tilted towards the upstream
direction, while for β > 90◦ it is tilted towards the downstream direction. Given the
limited computational domain size, to allow an investigation at elevation angles from
45◦ to 135◦, a small aperture of size 0.6δ in the streamwise direction and 2.3δ in the
spanwise direction is adopted. All beams propagate to the same height of 2.9δ above
the wall.

The values of OPDrms as a function of elevation angle are plotted in figure 22 for
the three Reynolds numbers. In figure 22(a) the distortion magnitude is normalized
by the local boundary-layer thickness. It is seen to be significantly dependent on the
direction of propagation, and is asymmetric with respect to the normal angle β = 90◦;
a beam tilted toward downstream experiences more distortions than one that is tilted
toward upstream at the same angle relative to the normal direction. The curves for
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the three Reynolds numbers differ in magnitude but not the overall shape. When
normalized by their respective values at 90◦, the three curves nearly collapse as shown
in figure 22(b), indicating that Reynolds number has little effect on the elevation-angle
dependence of OPD.

The asymmetry of optical aberrations was noted earlier in the numerical
investigation of Truman & Lee (1990), who studied phase distortions in an optical
beam through a homogeneous turbulent flow with constant mean shear, based on
DNS of incompressible flow with passive scalar transport. Sensitivity to propagation
direction was shown in their results and explained in terms of the orientation of
hairpin vortices. Similar phenomena were observed experimentally in boundary layers
by Cress et al. (2008). Their experimental data, obtained for Reθ ≈ 28 800, are plotted
in figure 22 along with the numerical results and show the same trend as the latter.
Cress et al. (2008) also pointed out that the asymmetry is due to the well-known,
highly anisotropic vortical structures in the boundary layer (Robinson 1991; Adrian
2007). In quantitative terms, the experimental results are close to the LES results at the
highest Reynolds number. It should, however, be noted that there are some differences
between the numerical and experimental conditions. On the one hand, the aperture
size in the streamwise direction is 0.6δ in the current study, which is much smaller
than the aperture size of 10δ employed in the experiment. As discussed in § 4.1, a
larger aperture size increases the value of OPDrms. On the other hand, the Reynolds
number in the numerical investigation is much lower than that in the experiment. A
higher Reynolds number leads to smaller values of OPDrms. Taking both factors into
consideration, a reasonable agreement between LES and experimental values can be
expected at the same conditions.

The directionality of the OPD is best explained based on the linking equation (6.1),
which shows an explicit dependence of OPD on the density fluctuation magnitude,
correlation length and distance of propagation. In the flat-plate boundary layer,
both the propagation distance within the boundary layer and the correlation length
contribute to the elevation-angle dependence, but the asymmetry with respect to the
normal direction is predominantly due to the correlation-length difference since the
growth in boundary-layer thickness is small within the β-angle range considered.
The correlation length is longer along an optical path tilted toward the downstream
direction than toward the upstream direction, because the former is more aligned with
the oblique vortical structures whereas the latter traverses those structures. To illustrate
this, the two-point spatial correlations of fluctuating density are depicted in figure 23
as a function of 1x and 1y at the streamwise location of the beam centre and three
y-positions for Reθ = 3550. Strong anisotropy of the correlation contours, particularly
at large spatial separations, are evident, and the characteristics of these structures vary
across the boundary layer. The angular position of the maximum correlation length
relative to the flow direction increases away from the wall, which is consistent with
the orientation of hairpin vortices.

A more detailed description of the density correlation length as defined in (6.8)
is shown in the polar diagram in figure 24 as a function of elevation angle at four
wall-normal locations. It is observed that in the near-wall region, where the bottom
portions of hairpin vortex legs reside, the fluctuating density has a large correlation
length in both the upstream and downstream directions at shallow angles. Away from
the wall, the correlation length in the downstream region is significantly longer than
in the upstream region, which directly accounts for the larger optical aberrations
for downstream-tilted beams. The angle of maximum correlation length decreases
(increases if measured from downstream direction) with wall-normal distance and is
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FIGURE 24. Density correlation length defined by (6.8) as a function of elevation angle
for Reθ = 3550 at four y-locations: ——, y+ = 50; - - - -, y+ = 198; –· –, y+ = 396; –· · –,
y+ = 807.

approximately 135◦ (45◦ from the downstream wall) at y+ = 807. These observations
are again consistent with the well-known characteristics of coherent vortical structures
in boundary layers.

8. Conclusion
Compressible large-eddy simulations have been performed to investigate the aero-

optical effects of Mach 0.5 turbulent boundary layers at Reynolds numbers Reθ = 875,
1770 and 3550 based on the momentum thickness at the centre of the optical
aperture. Highly resolved density-field data are obtained, from which the fluctuating
index-of-refraction field is computed through the Gladstone–Dale relation, and
wavefront distortions in terms of the optical path difference are calculated. The
magnitude and structures of wavefront distortions are investigated, and their
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dependence on Reynolds number, flow region, flow scale and elevation angle are
examined. The physical mechanisms for optical distortions are analysed in terms of
their relations with temperature and pressure fluctuations and turbulence structures in
the boundary layer.

The results show that wavefront distortions are dependent on Reynolds number
within the Reynolds-number range considered in the current numerical simulations.
The OPDrms is found to decrease with increasing Reynolds number, but the rate
of decrease slows down as the Reynolds number increases, which suggests that
wavefront distortions may be insensitive to Reynolds number for sufficiently high
Reynolds numbers. Reynolds-number dependence is also observed in the spatial
structure of OPD; the spanwise correlation length of OPD decreases with Reynolds
number, whereas its streamwise correlation length increases with Reynolds number. An
examination of the two-point correlations of density fluctuations in planes parallel
to the wall demonstrates that OPD structures reflect the integrated effect of the
fluctuating-density structures, which evolve from being streamwise elongated in the
near-wall region to nearly isotropic in the outer layer.

By integrating the index-of-refraction field to various wall-normal positions and
applying statistical analysis, the relative optical importance of different flow regions
is compared. It is found that wavefront distortions are predominantly caused by the
logarithmic layer and wake region, with the contribution peak located in the wake
region due to both large density fluctuation magnitude and large correlation length
there. Contributions from the viscous sublayer and buffer layer are small, especially
for high-Reynolds-number flows. To investigate the flow-scale effect, low-pass filters
with various filter widths are applied to the density field for the highest Reynolds-
number case, and the optical distortions are calculated using the filtered density field.
A comparison of time-averaged r.m.s. and power spectral density of OPD with and
without density filtering show that small-scale turbulence contributes to the high-
frequency content of OPD but has little effect on the low-frequency content and the
overall magnitude. Therefore, small-scale turbulence is optically inactive, in agreement
with previous numerical and experimental results for other types of aero-optical flows.

The elevation-angle dependence has been investigated by calculating OPDrms along
optical paths at different angles through the boundary layer. The anisotropic property
of the turbulent boundary layer renders the optical distortions dependent on the
direction of propagation. An optical beam is distorted more severely when its
propagation path is tilted toward downstream than upstream at the same angle with
respect to the wall-normal direction, in agreement with previous experimental findings
(Cress et al. 2008) and numerical solutions for homogeneous turbulent flows with
uniform mean shear (Truman & Lee 1990). A correlation analysis of the fluctuating
density field confirms that the correlation length is larger along downstream-tilted
optical paths than upstream-tilted ones, which accounts for the difference in distortion
levels.

As the most important statistical model for aero-optics, Sutton’s linking equation
is examined regarding its applicability to boundary-layer flows. Based on a rigorous
derivation, the approximations involved in the linking equation are identified, and the
proper density length scale to be used in the equation is clarified. It should be defined
in the form for homogeneous turbulent flows and account for the finite integration
bounds. With the proper definition of correlation length scale, the linking equation
predicts boundary-layer aero-optics in excellent agreement with directly integrated
results.
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