AME 60614: Numerical Methods Fall 2022, Problem Set 2 J. M. Powers Due: Thursday, October 6, 2022

1. The population growth of many kinds of insects is sometimes modeled by the following ordinary differential equation:

$$\frac{dN}{dt} = \alpha N - \beta N^2, \quad N(0) = N_o,$$

where N is the population, α is the birth rate coefficient, and β is the death rate coefficient. If $N_o = 10^5$ insect, $\alpha = 0.1 \ day^{-1}$, and $\beta = 8 \times 10^{-7} \ insect^{-1} \ day^{-1}$, what is the population of this kind after 20 years?

2. The following ordinary differential equation model a simple one-step chemical reaction:

$$\frac{d\lambda}{dt} = 2500(1-\lambda) \exp\left[\frac{-E}{T}\right],$$

where T is the temperature, E is the activation energy, and λ is the reaction progress variable, $0 \le \lambda \le 1$. For a specific case E = 50 and $T = 12 + 1.9\sqrt{1 - \lambda} - 9(1 - \lambda)$,

- (a) using any explicit scheme, plot the temperature distribution, for $\lambda(0) = 0$, $t \in [0, 1.5]$.
- (b) perform a convergence study by plotting the norm of the relative error L_2 vs. the grid size h.
- 3. Solve the following ODE:

$$y' = t^2 y \cos(y+t)^3$$
, $y(0) = 1$, $t \in [0,3]$,

- (a) using the following schemes:
 - i. Leapfrog.
 - ii. Trapezoidal.
 - iii. Second order Runge-Kutta.
 - iv. Fourth order Runge-Kutta.
- (b) Investigate experimentally the order of accuracy of each scheme by performing a convergence study. Plot the norm of the relative error L_{∞} vs. the grid size h on a log-log scale and estimate the order of accuracy. (At least show five solutions.)
- (c) Discuss your results.

4. The following numerical scheme:

$$y_{n+1} = y_{n-1} + \frac{h}{3} \left[f_{n-1} + 4f_n + f_{n+1} \right],$$

is proposed. By utilizing the model problem, $y' = \lambda y$,

- (a) classify this scheme in terms of consistency and order of accuracy.
- (b) Derive the characteristic equation and find its roots. Find the order of accuracy of this scheme by expanding the roots of the characteristic equation in powers of h.
- (c) Investigate the stability of this scheme for:
 - i. λ purely real.
 - ii. λ purely imaginary.
- (d) Discuss your results.
- 5. For the following set of ODEs:

$$y' = -4z - 0.1y, \quad y(0) = 1,$$

 $z' = -2 \times 10^4 z, \quad z(0) = 1,$

where $t \in [0, 1]$,

- (a) Find the eigenvalues and the stiffness ratio for this system.
- (b) Solve this system using any explicit Runge-Kutta scheme. In order to yield a solution, what is the largest grid size?
- (c) Discuss your results.
- 6. For the following multistep numerical scheme:

$$y_{n+1}^* = y_n + hf_n,$$

$$y_{n+1}^{**} = y_n + \frac{h}{2} \left[f_{n+1}^* - f_n \right],$$

$$y_{n+1} = y_n + \frac{h}{2} \left[(1-\alpha) f_{n+1}^{**} + \alpha f_{n+1}^* + f_n \right].$$

- (a) By using the model equation, $y' = \lambda y$, what is the maximum order of accuracy of this scheme?
- (b) Plot the stability region for $\alpha = [0, 0.5, 0.75, \text{ and } 1]$.