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1. The population growth of many kinds of insects is sometimes modeled by the following
ordinary differential equation:

dN

dt
= αN − βN2, N(0) = No,

where N is the population, α is the birth rate coefficient, and β is the death rate
coefficient. If No = 105 insect, α = 0.1 day−1, and β = 8 × 10−7 insect−1day−1, what

is the population of this kind after 20 years?

Solution:

This problem has analytical solution. So, there is no excuse to solve it numerically.
∫

dN

αN − βN2
=

∫

dt,

N

α − βN
= Ceαt,

N(t) =
Cαeαt

1 + Cβeαt
.

where, N(0) = No =⇒ C = 5× 106 day. So, after 20 years, 7300 days, the population
will be 1.25 × 105 insects.
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Figure 1: The evolution of the insect population.
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2. The following ordinary differential equation model a simple one-step chemical reaction:

dλ

dt
= 2500(1 − λ) exp

[−E

T

]

,

where T is the temperature, E is the activation energy, and λ is the reaction progress

variable, 0 ≤ λ ≤ 1. For a specific case E = 50 and T = 12 + 1.9
√

1 − λ − 9(1 − λ),

(a) using any explicit scheme, plot the temperature distribution, for λ(0) = 0, t ∈
[0, 1.5].

(b) perform a convergence study by plotting the norm of the relative error L2 vs. the

grid size h.

Solution:

(a) First order Euler scheme with ∆t = 10−6 will be used to solve this problem

λn+1 − λn

∆t
= 2500(1 − λn) exp

[

−50

12 + 1.9
√

1 − λn − 9(1 − λn)

]

, λo = 0.

0 0.5 1 1.5
4

5

6

7

8

9

10

11

12

13

time

T

Figure 2: The temperature distribution, the solution of problem 2.

(b) To perform a convergence study, the solution from the previous part will be con-
sidered as an “exact” solution for this problem. Also, several solutions are obtained

by utilizing ∆t = [10−2, 10−3, 10−4, and 10−5]. The convergence criteria, the norm of
the relative error L2, is defined as:

L2 =

√

√

√

√

N
∑

i=1

(

T numerical
i − T exact

i

T exact
i

)2

,

where, N represent the number of grid points.
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Figure 3: The convergence study for problem 2.

3. Solve the following ODE:

y′ = t2 y cos(y + t)3, y(0) = 1, t ∈ [0, 3],

(a) using the following schemes:

i. Leapfrog.

ii. Trapezoidal.

iii. Second order Runge-Kutta (RK2).

iv. Fourth order Runge-Kutta (RK4).

(b) Investigate experimentally the order of accuracy of each scheme by performing a

convergence study. Plot the norm of the relative error L∞ vs. the grid size h on
a log-log scale and estimate the order of accuracy. (At least show five solutions.)

(c) Discuss your results.

Solution:

(a) This problem can be solved using the four listed schemes with a grid size ∆t = 10−7.

• The leapfrog scheme,

yn+1 − yn−1

2∆t
= t2nyn cos (yn + tn)3 ,

is a multi-step method. So, to initiate the solution for the first time step, the

RK2 will be used since these two schemes have the same order of accuracy.

• The considered ODE is non-linear, which make it essential to use linearization

technique first in order to employ the trapezoidal scheme

yn+1 − yn

∆t
=

1

2





f(tn+1, yn) + f(tn, yn)

1 − ∆t
2

∂f

∂y

∣

∣

∣

n



 ,

3



yn+1 − yn

∆t
=

1

2





tn+1yn cos (yn + tn+1)
3 + tnyn cos (yn + tn)3

1 − ∆t/2
[

t2n cos (tn + yn)
3 − 3yn(yn + tn)2 sin (tn + yn)3

]



 .

• For the RK2 and the RK4 schemes, no special treatment has to be considered.
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Figure 4: The solution of problem 3.

(b) Also, solutions from the previous part will be considered as “exact” solutions for this
problem, and other solutions will be obtained by utilizing ∆t = [10−2, 10−3, 10−4, 10−5,

and 10−6], except for RK4. Where it can be seen from Fig. (5) that the machine
roundoff limit has been reached at ∆t = 10−4, and utilizing finer grid size will not

improve the accuracy of the solution anymore. The relative error here is O (10−10).
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Figure 5: The convergence study for problem 3.
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The convergence criteria, the norm of the relative error L∞, is defined as:

L∞ = maxto≤t≤tf

∣

∣

∣

∣

∣

ynumerical
i − yexact

i

yexact
i

∣

∣

∣

∣

∣

, i = 1, . . . , N,

where, N represent the number of grid points.

4. The following numerical scheme:

yn+1 = yn−1 +
h

3
[fn−1 + 4fn + fn+1] ,

is proposed. By utilizing the model problem, y′ = λy,

(a) classify this scheme in terms of consistency and order of accuracy.

(b) Derive the characteristic equation and find its roots. Find the order of accuracy
of this scheme by expanding the roots of the characteristic equation in powers of

h.

(c) Investigate the stability of this scheme for:

i. λ purely real.

ii. λ purely imaginary.

(d) Discuss your results.

Solution:

(a) To check for consistency, each term will be expand in terms of Taylor series,

yn+1 = yn + hy′
n +

h2

2!
y′′

n +
h3

3!
y′′′

n +
h4

n

4!
yiv

n +
h5

n

5!
yv

n + . . . ,

yn−1 = yn − hy′
n +

h2

2!
y′′

n − h3

3!
y′′′

n +
h4

n

4!
yiv

n − h5
n

5!
yv

n + . . . ,

fn−1 = fn − hf ′
n +

h2

2!
f ′′

n − h3

3!
f ′′′

n +
h4

n

4!
f iv

n − h5
n

5!
f v

n + . . . ,

fn+1 = fn + hf ′
n +

h2

2!
f ′′

n +
h3

3!
f ′′′

n +
h4

n

4!
f iv

n +
h5

n

5!
f v

n + . . . .

So, be substituting back onto the scheme, we get

2hy′
n +

h3

3
y′′′

n +
2h5

125
yv

n + . . . = 2hfn +
h3

3
f ′′

n +
h5

72
f iv

n + . . . .

We can note that the error leading term is 21

500
h5yv

n. It can be noted that as h → 0 the
error vanish. So, this scheme is consistent and it is 4th order accurate.
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(b) To find the characteristic equation, we use yn = σnyo.

yoσ
n+1 = yoσ

n−1 +
λhyo

3

(

σn−1 + 4σn + σn+1
)

,

by dividing over σn−1,

(

1 − λh

3

)

σ2 −
(

4λh

3

)

σ −
(

1 +
λh

3

)

= 0. (1)

This equation has two roots,

σ1,2 =
−2λh ±

√

3 (λ2h2 + 3)

λh − 3
.

By expanding these two roots in terms of λh,

σ1 = −1 +
λh

3
− λ2h2

18
− λ3h3

54
+ . . . ,

σ2 = 1 + λh +
λ2h2

2
+

λ3h3

6
+

λ4h4

24
+

λ5h5

72
+ . . . ,

we can note that first root is spurious, while the second roots assure, what we found

in the previous part, that this scheme is 4th order accurate.

(c) To investigate the stability of this scheme, lets take σ = eiθ and substitute back

into eq. (1). So, after arrangement it become

λh =
3e2iθ − 3

e2iθ + 4eiθ + 1
.
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Figure 6: The stability region for the scheme in problem 4.
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We can find the region where this scheme is stability by plot the stability boundary. It
is clear from Fig. (6) that this scheme is not stable for any pure real λ. On the other

hand, it is stabile for a pure imaginary λ; Im(λh) ∈ [−1.73205, 1.73205].

5. For the following set of ODEs:

y′ = −4z − 0.1y, y(0) = 1,

z′ = −2 × 104z, z(0) = 1,

where t ∈ [0, 1],

(a) Find the eigenvalues and the stiffness ratio for this system.

(b) Solve this system using any explicit Runge-Kutta scheme. In order to yield a

solution, what is the largest grid size?

(c) Discuss your results.

Solution:

(a) This system of equation in matrix form is

d

dt

[

y
z

]

=

(

−0.1 −4
0 −20000

) [

y
z

]

,

where it is clear that the system eigenvalues are {−0.1,−20000}, and the stiffness ratio

is

S =

∣

∣

∣

∣

∣

λmax

λmin

∣

∣

∣

∣

∣

= 2 × 105.

(b) The largest grid size in order to get a solution is h = 2/ |λmax| = 10−4. Using

RK2 method with a grid size h = 10−8, we where apply to solve this problem. The
multi-scale nature of this problem is clearly noted the evolution of each variable, see

Fig. (7).

6. For the following multi-step numerical scheme:

y∗
n+1 = yn + hfn,

y∗∗
n+1 = yn +

h

2

[

f ∗
n+1 − fn

]

,

yn+1 = yn +
h

2

[

(1 − α)f ∗∗
n+1 + αf ∗

n+1 + fn

]

.

(a) By using the model equation, y′ = λy, what is the maximum order of accuracy of

this scheme?

(b) Plot the stability region for α = [0, 0.5, 0.75, and 1].
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Figure 7: The solution of problem 5.

Solution:

(a) By substituting the model equation in y∗
n+1, y

∗∗
n+1 and yn+1, and then substituting

these equation into each other,

y∗
n+1 = yn + λhyn,

y∗∗
n+1 = yn +

h

2

[

λyn + λ2hyn − λyn

]

,

yn+1 = yn +
h

2

[

λyn + αλyn + αλ2hyn + (1 − α)

(

λyn +
λ3h2yn

2

)]

.

So,

yn+1 = yn

[

1 + λh +
αλ2h2

2
+ (1 − α)

λ3h3

4

]

,

for α = 1 the scheme is second order accurate, which is the maximum order of accuracy.

(b) It is clear from the previous part that the amplification factor is

σ = 1 + λh +
αλ2h2

2
+ (1 − α)

λ3h3

4
.

To plot the stability region, Fig. (8), we take eiθ = σ, θ = 0, . . . , 2π.
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Figure 8: The stability boundary at different values of α.
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