
AME 60614: Numerical Methods
Fall 2022, Problem Set 4

J. M. Powers

Due: Thursday, December 8, 2022

1. The cross section of a rectangular bar with aspect ratio β has temperature distribution
T (x, y, t). The bar is sufficiently long, and has uniformity along its z-dimension, so it can
be idealized as a two-dimensional problem. Three sides of the bar are kept at a uniform
temperature T0. The fourth side of the bar is subject to a temperature profile f(x).
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This temperature profile is governed by the partial differential equation
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where α is the coefficient of thermal diffusivity. This equation has the analytical solution for
T ∗(x, y, t) = T (x, y, t)− T0 of
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where the coefficients for f(x) = 1+T0 are An = 2(1−(−1)n)
nπ sinh(nπβ) andBn,m = m(exp(nπβ)−exp(−nπβ))

π(n2β2+m2) .

Set up the finite difference equation using the second order central difference method in the
spatial dimensions and the explicit Euler method in the temporal dimension. Solve the
equation with ∆x = 1

100 m, ∆y = 1
400 m, L = 1 m, β = 1

4 , α = 294m2

s , and the initial tem-
perature profile of T (x, y) = T0. Compare the numerical solution to the analytical solution
at t = 1.79 × 10−6 s, 3.06 × 10−6 s, 1.770 × 10−5 s, 2.2520 × 10−4 s, and 4.5845 × 10−4 s.

2. Take the finite difference equation from problem 1 and set ∆x = ∆y = h. Show that by sub-
stituting in the formula for maximum time step allowed for stability, the difference equation
is equivalent to the Jacobi method. Investigate the convergence of the Jacobi method; using
the PDE, calculate what the residual of the Jacobi method is equal to in terms of α, h, and
∂T
∂t
. Now, estimate the number of iterations, nitr, necessary to converge to a residual with a

norm of 10−10 for each mode (i.e. f(x) = sin(nπx)) from n = 1 up to the largest allowable
n by Nyquist sampling. Use the analytic solution, An = (sinh (nπβ))−1, t = nitr∆t, and
h = 1

100 , then check your estimations numerically. What norm are you estimating? Plot your
estimated and actual iterations against the mode n on one graph. Describe how well your
estimation matches and why. Now, use the weighted Jacobi method with ω = 1

2 ,
2
3 , and

3
4

and plot the number of iterations that each of these methods takes to converge to the same
norm.
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3. Solve for the steady state temperature profile of the bar from problems 1 and 2, now with
f(x) = sin(πx), using the Jacobi method (using the optimum ω found in problem 2), Gauss-
Seidel method, and a direct method (i.e. using matrix inversion) on varying grid sizes. Start
with a course grid and work your way up to a fine grid (I recommend using h = 1

2n ). Obtain
the maximum convergence possible for each method on each grid (the direct method may not
be feasible for the finer grids) and record the norm of the residual. Compare the results to
the analytical steady state temperature, which is

T (x, y) =
sin(πx) sinh
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Plot the norms of the difference between the numerical results and the analytical result and
the norms of the residual against the number of grid points. Contrast the two types of
convergence.

4. Consider the following hyperbolic PDE:

∂u

∂t
−

∂xu

∂x
= 0, x ∈ [0, 5], t ∈ [0,∞].

(a) Find the the slope of the characteristic lines, and plot three of them in the (x, t) plane.

(b) Solve this equation for the following initial distribution and boundary condition:

u(x, 0) = exp[−100π(0.5 − x)2],

u(0, t) = 0,

i. using Crank-Nicolson scheme,

ii. using Lax-Wendroff scheme.

(c) Plot the solution at t = 0.1, 0.5 and 1.

5. In 1978, Leonard1 proposed a modification to the well-known upwind scheme. With this
modification the truncation error of this explicit method become O(∆x2).

(a) By utilizing the model convection-diffusion problem, ∂f
∂t

+u∂f
∂x

= D ∂2f
∂x2 , find the modified

differential equation (MDE)?

(b) Using von Neumann analysis, check the stability of Leonard scheme.

(c) Use Leonard’s scheme to solve the following partial differential equation,
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u(x, 0) = 1− sin
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, x ∈ [0, 10],

which represent the viscous Burger’s equation. Plot the solution at t = 0.005, 0.05, 0.5,
and 5.

1B. P. Leonard, M. A. Leschziner, M. McGuirk, Num. Meth. Laminar Turbulent Flow, 1978, p. 807.
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