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1. (30) Consider the following data

x f(x)
0 1
1 3
3 6

Generate a global Lagrange interpolating polynomial to fit the data. Estimate
df/dx|x=0 with a first order method and then do the same for the highest order
estimate that employs the global Lagrange interpolating polynomial.

Solution

For the data given

L0(x) =
(x− 1)(x− 3)

(0− 1)(0− 3)
=

1

3
(x− 1)(x− 3),

L1(x) =
x(x− 1)

(1− 0)(1− 3)
=

1

2
x(3− x),

L2(x) =
x(x− 1)

(3− 0)(3− 1)
=

1

6
x(x− 1).

Our Lagrange interpolating polynomial is then

fa(x) = f0L0(x) + f1L1(x) + f2L2(x),

= (1)
1

3
(x− 1)(x− 3) + (3)

1

2
x(3− x) + (6)

1

6
x(x− 1),

= 1 +
x

6
(13− x).

The simple first order estimate for the derivative is

df

dx
∼ f(1) − f(0)

1− 0
=

3− 1

1− 0
= 2.

Now differentiate the Lagrange interpolating polynomial:

dfa
dx

=
1

6
(13− 2x).

At x = 0, we get
dfa
dx

∣

∣

∣

∣

x=0

=
13

6
= 2.16667.



2. (40) Consider the system

dy1
dt

= −2y1 + y2, y1(0) = 1,

dy2
dt

= y1 − 2y2, y2(0) = 0.

Determine if the exact solution is stable. With y = (y1, y2)
T , and taking the step size

∆t = h, cast the forward Euler approximation to the solution in the form

y(n+1) = B · y(n).

Find B. Determine a condition on h for the method to be stable.

Solution

With y = (y1, y2)
T , we have

dy

dt
= A · y, y(0) = yo.

Here

A =

(

−2 1
1 −2

)

, yo =

(

1
0

)

.

The eigenvalues of A are found by insisting that
∣

∣

∣

∣

−2− λ 1
1 −2− λ

∣

∣

∣

∣

= 0.

So

(−2− λ)2 − 1 = 0,

−2− λ = ±1,

−2∓ 1 = λ.

Thus
λ = −1, λ = −3.

The exact solution is stable. Calculation reveals the exact solution that satisfies the initial
conditions to be

y1(t) =
1

2
e−3t +

1

2
e−t,

y2(t) = −1

2
e−3t +

1

2
e−t.

The forward Euler method gives

y
(n+1) = y

(n) + hA · y(n),

= (I+ hA) · y(n).

With

B = I+ hA =

(

1− 2h h
h 1− 2h

)

,

we have
y
(n+1) = B · y(n).

The eigenvalues of B are 1 + hλi, where λi are the eigenvalues of A. So they are 1 − h and
1−3h. The method is stable if ||B|| < 1. The norm is given by the largest of the singular values
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Figure 1: Plot of y1(t) for h = 1, 2/3, 1/10.

of B. The singular values are the positive square roots of the eigenvalues of BT ·B. Because B

is symmetric, these simply become the magnitudes of the eigenvalues of B:

σ1 = |1− h|, σ2 = |1− 3h|.

By inspection σ1 < 1 if 0 < h < 2 and σ2 < 1 if 0 < h < 2/3. The most restrictive requirement
for stability is

0 < h ≤ 2

3
=

2

|λmax|
,

where |λmax| = 3. Plots of approximations to y1(t) for various h are shown in Fig. 1. One sees
how the numerical approximation is either unstable, neutrally stable, or stable, depending on
h.

3. (30) Consider the model problem dy/dt = λy, y(0) = 1. One can apply the leapfrog
method to estimate an approximate soltuion:

yn+1 − yn−1

2h
= λyn.

Through use of Taylor series, a) find the modified equation for which the leapfrog
method provides a better approximation, b) show the leapfrog method is a consistent
method, c) prepare an exact solution to the modified equation and find the algebraic
equation whose solution is required to ascertain the stability of the leapfrog method.

Solution

Let us do a Taylor series expansion

y + h dy

dt
+ h2

2
d2y

dt2
+ h3

6
d3y

dt3
· · · −

(

y − h dy

dt
+ h2

2
d2y

dt2
− h3

6
d3y

dt3
+ . . .

)

2h
= λy,

2h dy

dt
+ h3

3
d3y

dt3
+ . . .

2h
= λy,

dy

dt
+

h2

6

d3y

dt3
+ . . . = λy.

As h → 0, the modified equation approaches the exact equation, dy/dt = λy, so the approxi-
mation is consistent. If we assume y = cert, we are led to the characteristic polynomial

r +
h2

6
r3 = λ.



For small h, one root is obviously r ∼ λ. This is stable for ℜ(λ) < 0, But there are two other
roots as well. Solving the general cubic is hard. If we solve it for λ = −1, h = 1, we get

r = −0.884622, r = 0.442311 ± 2.5665i.

The first mode is stable, but the oscillatory mode is unstable as it has a positive real part. If
we let h shrink to h = 1/1000, and keep λ = −1, we find

r = −1, r = 0.5± 2449.49i.

For h = 1/100000, we get

r = −1, r = 0.5± 244949i.

The frequency of oscillation increases, and those modes remain unstable. Detailed Taylor series
analysis for λ = −1 gives the three roots in the limit as h → 0 as

r = −1 +
h2

6
− h4

12
+ . . . , r =

1

2
− h2

12
+ · · · ± i

(√
6

h
+

1

8

√

3

2
h− 35

256
√
6
h3 + . . .

)

.

The first root is associated with the original ordinary differential equation. The second two are
spurious and a consequence of the numerical scheme only. Worse, the presence of a positive real
part shows they induce instabilities that persist as h → 0.

One might also examine the amplification factor, but this was not the suggested method. As
shown in lecture, the leapfrog method leads to

yn+1 = yn−1 + 2λhyn.

With yn = σnc, this leads to
σ2 − 2λhσ − 1 = 0.

There are two roots to this
σ = λh±

√

λ2h2 + 1.

Taylor series of the positive root gives

σ1 = 1 + λh+
1

2
λ2h2 − 1

8
λ4h4 + . . . .

This is the physical root, and indicates this mode has second order accuracy. For λ real and
negative, we see |σ| < 1, and this is stable. However, there is a spurious root

σ = −1 + λh− 1

2
λ2h2 +

1

8
λ4h4 − . . . .

For λ real and negative, this mode has |σ| > 1, so it is an unstable mode.


