AME 538
Prof. J. M. Powers
Due: December 5, 1994
Consider the Blasius problem, flow over a flat plate.

- Plot the dimensionless velocity u_{*} as a function of the similarity variable η_{*}.
- For $\operatorname{Pr}=1$, plot the dimensionless temperature T_{*} as a function of the similarity variable η_{*} for $E c=0,1 / 4,1 / 2,3 / 4,1$. Put all of the temperature profiles on a single plot.
- If the fluid is air, initially at atmospheric conditions, and the freestream velocity is $50 \mathrm{~m} / \mathrm{s}$ generate dimensional plots of $u(x, y)$ and $T(x, y)$. Assume the thermal conductivity k is such that $\operatorname{Pr}=1$. Take the ordinate to be y and the abscissa to be either u or T; plot the profiles at various x. Choose the range of y and x such that a meaningful variation is displayed.

