AME 538/ME 438 Homework Prof. J. M. Powers Due: October 11, 1994

Fluid Kinematics

1. Consider the flow field $v_1 = x_2, v_2 = x_1$.

a) Find a closed-form analytic expression for the equation of a general pathline of a fluid particle of the form $x_1 = x_1(t), x_2 = x_2(t)$. At t = 0 the particle is located at $(x_1, x_2) = (x_1^o, x_2^o)$.

b) Find a closed form analytic expression for the equation of a general streamline through (x_1^o, x_2^o) and show this is equivalent to a pathline for this steady flowfield.

c) Consider generally the motion of a family of fluid particles located initially, t = 0, on the line segment $x_1 = 1, 0 \le x_2 \le 1$. Consider specifically three particles of the family which at t = 0 are at (1, 0), (1, 1/2), (1, 1). Plot the location of each of the three particles at t = 0, t = 1, t = 2. The curve which connects each of the points at fixed time is called a *time line*. Sketch the location of the time lines at t = 0, t = 1, t = 2for this family of fluid particles. If possible, find a general expression for the time line at $t = \hat{t}, x_2 = x_2(x_1; \hat{t})$ for the entire family of particles.

2. Use the Fortran program provided to plot streamlines in the domain $0 \le x_1 \le 1$, $0 \le x_2 \le 1$ for the following flow field

$$v_1 = \sin(2\pi x_2)$$

 $v_2 = x_2 - x_1^2$