AME 538/ME 438
Homework
Prof. J. M. Powers
Due: October 11, 1994

Fluid Kinematics

1. Consider the flow field $v_{1}=x_{2}, v_{2}=x_{1}$.
a) Find a closed-form analytic expression for the equation of a general pathline of a fluid particle of the form $x_{1}=x_{1}(t), x_{2}=x_{2}(t)$. At $t=0$ the particle is located at $\left(x_{1}, x_{2}\right)=\left(x_{1}^{o}, x_{2}^{o}\right)$.
b) Find a closed form analytic expression for the equation of a general streamline through $\left(x_{1}^{o}, x_{2}^{o}\right)$ and show this is equivalent to a pathline for this steady flowfield.
c) Consider generally the motion of a family of fluid particles located initially, $t=0$, on the line segment $x_{1}=1,0 \leq x_{2} \leq 1$. Consider specifically three particles of the family which at $t=0$ are at $(1,0),(1,1 / 2),(1,1)$. Plot the location of each of the three particles at $t=0, t=1, t=2$. The curve which connects each of the points at fixed time is called a time line. Sketch the location of the time lines at $t=0, t=1, t=2$ for this family of fluid particles. If possible, find a general expression for the time line at $t=\hat{t}, x_{2}=x_{2}\left(x_{1} ; \hat{t}\right)$ for the entire family of particles.
2. Use the Fortran program provided to plot streamlines in the domain $0 \leq x_{1} \leq 1$, $0 \leq x_{2} \leq 1$ for the following flow field

$$
\begin{gathered}
v_{1}=\sin \left(2 \pi x_{2}\right) \\
v_{2}=x_{2}-x_{1}^{2}
\end{gathered}
$$

