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1. p. 24: Example 2.3 is clarified by noting that the specified rotation matrix
Q is for a clockwise rotation of π/2. The present wording is formally
correct, but certainly ambiguous. So with our sign convention of counter-
clockwise as positive, the rotation angle for the given matrix is α = −π/2.
Alternatively, we could impose a positive counter-clockwise rotation of
α = +π/2 by taking

Q =





0 −1 0
1 0 .0
0 0 1



 .

This matrix is also a rotation with detQ = 1 and QT = Q−1. This
matrix maps the vector v = (1, 0, 0)T to v′ = (0,−1, 0)T . And it maps
v = (0, 1, 0)T to v′ = (1, 0, 0)T .

2. pp. 27-28: Similar to the concern for Example 2.3, the wording here re-
quires correction. The top of the page should read “A coordinate system
rotated clockwise by α = −π/2 about the x3 axis has....” Also, the words
below Solution should be “...as expected for a clockwise rotation of axes
of −π/2.”

3. p. 38: A useful addition here would be an introduction of octahedral planes
associated with a symmetric tensor.

4. p. 47: It would be useful to cite for a thorough background on Gibbs nota-
tion and especially the concept and appropriate notation for the gradient
of a vector:

Wood, B., and Whitaker, S. (2024). The development of Gibbs’s dyadic
and implications for the gradient of a vector field, British Journal of the

History of Mathematics, published online 24 Nov 2024.

5. p. 69: Equation (2.368) should have instead

∇T · v =
1√
g

∂

∂xi
(
√
gvi) =

1

x1
∂

∂x1
(x1v1) +

∂v2

∂x2
+
∂v3

∂x3
. (2.368)

6. p. 110: Figure 3.9 should have xo
P instead of xo.

7. p. 111: In the sentence just after Eq. (3.172), replace I+∆t LT by I+dt LT .
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8. p. 113: For consistency in formatting, Eq. (3.184) would benefit from
additional spacing to yield

(vT · ∇) dx− (dxT · ∇) v ≡ Lv dx ≡ [v, dx], (3.184)

9. p. 146: Should be

Golub, G. H., and Van Loan, C. F. (2013). Matrix Computations, 4th ed.
Baltimore: Johns Hopkins University Press.

10. p. 166: The bottom margin is too narrow, relative to other pages.

11. p. 172: First paragraph of Ch. 4.4.2, replace “yields the the work rate...”
with “yields the work rate”

12. p. 175: It is more appropriate to replace Eqs. (4.170, 4.171) by the more
elegant

∂o

(

ρ

(

h+
1

2
vjvj

))

+ ∂i

(

ρvi

(

h+
1

2
vjvj

))

=
∂p

∂t
− ∂iqi + ∂i(τijvj)

+ρvifi, (4.170)

∂

∂t

(

ρ

(

h+
1

2
vT · v

))

+∇T ·
(

ρv

(

h+
1

2
vT · v

))

=
∂p

∂t
−∇T · q+∇T · (τ · v)

+ρvT · f . (4.171)

13. p. 179: Although characterized as “nonrigorous,” perhaps the rigor in ar-
riving at Eq. (4.208) could be enhanced. It is not immediately obvious
that the volume integral operator is equivalent to the area integral oper-
ator. So it seems as if we might be operating non-uniformly. With small
effort, this could be explained better.

14. p. 220: Just before Eq. (5.155), the text should be

“In matrix form, we can write this inequality using the method of quadratic
forms, see Section 2.8:”

15. p. 220: Just after Eq. (5.155), the text should read

“..part of the coefficient matrix has eigenvalues...”

16. p. 236: While not an error, a short new discussion of a three-dimensional
extension to the stream function would be useful here. It could link nicely
to Eq. (11.12) on p. 523. For background, see Aziz and Hellums.1 The
discussion would be a version of the following:

Because ∇T · v = 0, it is possible to define a vector potential, ψ, which
must be constructed such that the following holds:

1K. Aziz and J. D. Hellums, Numerical solution of the three-dimensional equations of
motion for laminar natural convection, Physics of Fluids, 19(2): 314-324, 1967.
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v = ∇×ψ.

Now by the properties of vector calculus, we are ensured that the incom-
pressibility condition will hold as

∇T · ∇ ×ψ = 0,

for all ψ. Next recall the definition of vorticity ω and operate on it:

ω = ∇× v,

= ∇×∇×ψ,
= ∇(∇T ·ψ)−∇2ψ.

The vector potential ψ is not uniquely determined, for example, if the curl
of ψ maps to the physical velocity vector v, so does ψ +∇χ, where χ is
any scalar function. Let us choose to constrain ψ such that ∇T · ψ = 0.
This is a common exercise in magneto-electro dynamics, and is known as
choosing the gauge, see Feynman, et al. (1963, Volume 2, Chapter 18).
With this choice, we get a Poisson equation for ψ:

−∇2ψ = ω.

Later, in Sec. 11.1.1, we shall see that in the limit of zero inertia, the
incompressible Navier-Stokes equations give us Eq. (11.8),∇2ω = 0. Thus
taking the Laplacian of our Poisson equation for ψ, we get the biharmonic
equation

∇4ψ = 0.

This is the vector extension of the scalar Eq. (11.15), and it is valid under
the mathematical constraint ∇T · ψ = 0 and the physical constraint of
negligible fluid inertia.

Taking ψ = (ψx, ψy, ψz)
T , we also see that

u =
∂ψz

∂y
− ∂ψy

∂z
, v = −∂ψz

∂x
+
∂ψx

∂z
, w = −∂ψx

∂y
+
∂ψy

∂x
.

17. p. 251: In Sec. 6.7.8, it would be useful to introduce the Knusden number.
For an ideal gas, it is Kn =Mo/Re

√

γπ/2.

18. p. 266: Just after Eq. (7.4) the phrase “...modeled as incompressible...”
has an incorrect break to form a new paragraph.

19. p. 269: The terms “centripetal,” “Coriolis,” and “body force,” should be
recognized in the index.

20. p. 307: New equations should be provided for the uniform flow:

φ = Uo (x cosα+ y sinα) , ψ = Uo (y cosα− x sinα) .
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21. p. 339: middle of second paragraph, replace “They will will have a different
mathematical character” with “They will have a different mathematical
character.”

22. p. 390: Figure 9.27 is slightly improved by showing a small velocity mag-
nitude increase so that v2 > v1.

23. p. 391: Eq. (9.368) is improved to more clearly show dimensionless groups
when recast as

v2 =

cpp2T1

(√

p2

1
v2

1(2cpT1+v2

1)
c2pp

2

2
T 2

1

+ 1− 1

)

p1v1

= v1

(
p2
p1

)
cpT1
v21





√

1 + 2

(
p1
p2

)2
v21
cpT1

(

1 +
v21

2cpT1

)

− 1



 .

24. p. 437: It is possible to scale the irreversibility production rate İ. There
are many ways to do this. One way is to scale by ρ21R

2T1/µ. This scaling
induces the dimensionless irreversibility production rate to range between
0 and roughly 1.75 for the conditions of Fig. 9.51.

25. p. 441: It is appropriate to also recognize John von Neumann in addition to
Taylor and Sedov for the solution of the point source blast wave. Taylor
published his technical report (The formation of blast wave by a very
intense explosion, British Report RC-210) on the subject of blast waves
on 27 June 1941. von Neumann published equivalent results in a technical
report (The point source solution, NDRC, Div. B, Report AM-9) on 30
June 1941.

26. p. 445: Equation (9.682) needs P to be replaced by p in the last sub-
bracketed term.

27. p. 461: Figure 10.1 is improved by a small change. It is better to place
the origin of the coordinate axes downstream somewhat, and have p = po
at such a downstream location. This is to avoid effects of the entrance
length near the current location of x = 0.

28. p. 462: This section would be improved by either new analysis or small
discussion of the Graetz problem in which advection of energy is not ne-
glected.

29. p. 465: The text just before Equation (10.23) is better stated as “...of the
form ∇2p = f(u, v, w). Section 6.4.4 has...”
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30. p. 465: Equation (10.23) is missing a µ and should read as

0 = − ∂2p

∂x2
+ µ

∂

∂x

∂2u

∂y2
= − ∂2p

∂x2
+ µ

∂2

∂y2
∂u

∂x
︸︷︷︸

=0

. (10.23)

31. p. 477. It might be more accurate to replace Eq. (10.112) with

τo = µ
du

dy
. (10.112)

and note that this imposes no variation with t, x, or z.

32. p. 478. Just after Eq. (10.119), the text should read

“So the only nonzero components of the stress tensor are τxy = τyx = τo.”

33. p. 478. It is appropriate to replace Eq. (10.120) with

0 = −dqy
dt

+ τo
du

dy
. (10.120)

34. p. 479: Eq. (10.134) should be

T (u) = To +
µo

2ko
(U2 − u2). (10.134)

35. p. 480. The phrase just before Sec. 10.2 is better stated as

“...for example, the vorticity field is given by finding ωz = −du/dy.”

36. p. 491. A new header is probably needed just before Eq. (10.215) saying

Finite Pr, Ec

37. p. 521: Section 11.1.1 would be enhanced by a short discussion of fun-
damental solutions to the biharmonic equation. For example, in two-
dimensional flows

(a) ψ(x, y) = xv(x, y) − yu(x, y) + w(x, y) where u, v, and w are each
harmonic functions and u and v are harmonic conjugates of each
other.

(b) ψ(r) = c1 + c2 ln r + c3r
2 ln r + c4r

2 satisfies ∇4ψ = 0.

38. pp. 523-525: Example 11.1. It would be useful to show ∇4ψ = 0.

39. pp. 526-528: Example 11.2. It would be useful to show ∇4ψ = 0.

40. pp. 529-533: Example 11.3. While not an error, it would be useful for a
future edition to consider a transformation for Stokes flow over a sphere:
η = cosφ. See Leal (2007).
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41. p. 557: Here it would be useful to add text and analysis to give an ap-
proximation of the local Nusselt number for laminar flow over a flat plate.
It should be

Nux = 0.332Re1/2x Pr1/3.

See Incropera and DeWitt (1981, p. 326), Schetz (1993, p. 88), White
(2006, p. 239).

42. p. 561: Equation (11.281) has two small errors. The mass equation should
have y instead of ỹ, and there is too much white space between the equal
sign and the 0. So, we should find instead

∂u

∂x
+
∂v

∂y
= 0, u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
. (11.281)

43. p. 575: More details would be useful in showing how to find the com-
pressible boundary layer profile. A version of this problem for a slightly
more general relation between µ and T is given in von Kármán and Tsien,
Boundary layers in compressible fluids, Journal of the Aeronautical Sci-

ences, 5(6): 227-232. Direct solution of Eq. (11.381) and boundary condi-
tions is not obvious. Note at η = 0, the no-slip condition gives f(0) = 0.
This results in d2f/dη2|η=0 → −∞. Some related discussion is found in
Mills and Abedin, Computing laminar boundary layers with the von Mises
equation, Aeronautical Journal, 78(766): 476-479. 1974.

This singular behavior may be concisely recognized and captured by in-
cluding new text just following Eq. (11.381):

“Let us take
df

dη
= g.

Then Eq. (11.381) becomes

−η
2
g =

d

dη
(fg) ,

−1

2
ηg = f

dg

dη
+ g

df

dη
,

−1

2
ηg = f

dg

dη
+ g2,

dg

dη
= −−g2

f
− 1

2

ηg

f
.

This, along with df/dη = g, define a non-autonomous system of differential
equations that must satisfy f(0) = 0, f(∞) = 1. Now the plate surface
is at y = 0, which we assign to the stream function with ψ = 0, and so
η = 0. Because at the plate surface we have u = 0, and thus f = 0, we see
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Figure 1: Compressible boundary layer velocity profile f(η) along with g(η).

that dg/dη is singular at the plate surface. Let us address the singularity
by defining a new independent variable s such that

dη

ds
= f, η(s = 0) = 0.

Using the chain rule our system becomes

dg

ds
= −g2 − 1

2
ηg,

df

ds
= fg,

dη

ds
= f.

These equations are not singular. We must have η(s = 0) = 0, f(s = 0) =
0, f(s → ∞) = 1. To solve this numerically, we need to seed the initial
value of f with a very small positive number so as to move η away from
its equilibrium for f = 0. Here we choose f(0) = 1/1000. And we take
the maximum value of s to be smax = 1000. Then a numerical solution is
generated. Knowing now f(s) and η(s), we parametrically plot f(η) and
g(η) in Fig. 1. We see g(η) = df/dη is singular at η = 0. And it is obvious
that dg/dη|η=0 → −∞.”

44. p. 577: Consider adding the following problem and solution.

Consider the solution of a doublet for the Stokes equations, ∇T · v = 0,
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Figure 2: Doublet in Stokes flow; velocity vector field and contours of velocity
potential; c = 1, z = 0, α = (1, 0, 0)T .

∇p = µ∇T · ∇v. Show the solution

v = c

(
α

r3
− 3(αT · x)x

r5

)

= c

(

I− 3xx

r2

)

· α
r3
, p = p0,

satisfies the Stokes equations, and plot the streamlines in the plane z = 0
for c = 1 and α = (1, 0, 0)T . In general α is any constant unit vector,

x = (x, y, z)T , and r =
√

x2 + y2 + z2.

Solution

The velocity field here expands to

v = c







−2x2+y2+z2

(x2+y2+z2)5/2

3xy

(x2+y2+z2)5/2

3xz
(x2+y2+z2)5/2






.

It is easily verified by direct substitution that

∇T · v = 0, ∇p = 0, ∇T · ∇v = 0,

so the Stokes equations are satisfied. One can also show a velocity poten-
tial exists

φ = c
αT · x
r3

.

The velocity vector field and velocity potential contours are given in Fig. 2
for c = 1 and z = 0.
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Figure 3: Rotlet in Stokes flow; velocity vector field; c = 1, z = 0, α =
(0, 0, 1)T .

45. p. 577: Consider adding the following problem and solution.

Consider the solution of a rotlet for the Stokes equations, ∇T · v = 0,
∇p = µ∇T · ∇v. Show the solution

v = c

(
α× x

r3

)

, p = p0,

satisfies the Stokes equations, and plot the streamlines in the plane z = 0
for c = 1 and α = (0, 0, 1)T . In general α is any constant unit vector,

x = (x, y, z)T , and r =
√

x2 + y2 + z2.

Solution

The velocity field here expands to

v = c






−y

(x2+y2+z2)3/2

x
(x2+y2+z2)3/2

0




 .

It is easily verified by direct substitution that

∇T · v = 0, ∇p = 0, ∇T · ∇v = 0,

so the Stokes equations are satisfied. The velocity vector field is given in
Fig. 3.

46. p. 577: Consider adding the following problem and solution.

9



x

y

x

y

z

- 2 - 1 0 1 2

- 2

- 1

0

1

2

x

y

z

Figure 4: Stokeslet in Stokes flow; velocity vector field and pressure field; c = 1,
µ = 1, z = 0, p0 = 0.

Consider the solution of a Stokeslet for the Stokes equations, ∇T · v = 0,
∇p = µ∇T · ∇v. Show the solution

v = c

(
(αT · x)x

r3
+
α

r

)

= c
(xx

r2
+ I
)

· α
r
, p = 2cµ

αT · x
r3

+ p0,

satisfies the Stokes equations, and plot the streamlines in the plane z = 0
for c = 1 and α = (1, 0, 0)T . In general α is any constant unit vector,

x = (x, y, z)T , and r =
√

x2 + y2 + z2.

Solution

The velocity and pressure fields here expand to

v = c







2x2+y2+z2

(x2+y2+z2)3/2
xy

(x2+y2+z2)3/2

xz
(x2+y2+z2)3/2






, p =

2cµx

(x2 + y2 + z2)3/2
.

It is easily verified by direct substitution that

∇T · v = 0, −∇p+ µ∇T · ∇v = 0,

so the Stokes equations are satisfied. The velocity vector and pressure
field is given for c = 1, µ = 1, z = 0 in Fig. 4. With the stress tensor as

T = −pI+∇v,

direct calculation verifies
∇T ·T = 0.
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Direct calculation also verifies that

∇2p = 0.

Thus, the pressure field is harmonic.

47. p. 581: Just before Eq. 12.3, the sentence should read “Note this is com-
pletely....”

48. p. 615: Just before Eq. (13.7), replace “so the the projected vector” with
“so the projected vector”

49. p. 626: Just before Eq. (13.70), we should find “...the trigonometric iden-
tity sinπz cos 2πz = (− sinπz + sin 3πz)/2 and...”

50. p. 628: Equation (13.86) needs a small improvement. One should remove
the dependence on t to yield

ψ(x, z) = ±
√

b(r − 1) sinπz sinax, (13.86)

51. p. 628: Equation (13.87) is in error. It should be

T (x, z) = ±
√

b(r − 1) sinπz cos ax− (r − 1) sin 2πz, (13.87)

This renders it consistent with the correct Eq. (13.67).

52. p. 628: Equation (13.89) is in error. It should be

T (x, z) = 2
√
6(sinπz)

(

cos
πx√
2

)

− 9 sin 2πz. (13.89)

This renders it consistent with the correct Eq. (13.67) and Fig. 13.6.

53. p. 648: Section 14.1.2, “Connection to the Mean Free Path Scale” should be
briefly augmented so that it receives additional support from an uncited
recent article,

Gallis, M. A., Torczynski, J. R., Krygier, M. C., Bitter, N. P., and Plimp-
ton, S. J. (2021). Turbulence at the edge of continuum, Physical Review
Fluids, 6, 013401.

This article quantitatively and decisively connects predictions of a stan-
dard sub-continuum fluid model to those of a continuum fluid model in the
turbulent regime and demonstrates a point made qualitatively in the text:
that in the limit of high Mach and Reynolds numbers, the Kolmogorov
microscale length approaches the mean free path length.

54. p. 660: May want to note that the initial conditions, Eqs. (14.84, 14.86),
are such that ρ(x, y, z, 0)T (x, y, z, 0) = ρoTo, as po = ρoRTo. The initial
pressure distribution is such that∇p = −ρg. In the limit as (To−T1)/To →
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0, Taylor series expansion of Eq. (14.86) reveals the initial pressure distri-
bution is approximatd by

p(x, y, z, 0) ∼ po − ρogz

(

1 +
To − T1
2To

z

h

)

.

This is identical to Eq. (12.130). It provides a correction for the incom-
pressible hydrostatic limit.

55. p. 675: Add the citation

Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B. (1988).
Buoyancy-Induced Flows and Transport. New York: Hemisphere.

56. p. 676: Should be

Golub, G. H., and Van Loan, C. F. (2013). Matrix Computations, 4th ed.
Baltimore: Johns Hopkins University Press.

57. p. 676: Add the citation

Hirschel, E. H., Cousteix, J., and Kordulla, W. (2014). Three-Dimensional

Attached Viscous Flow: Basic Principles and Theoretical Foundations,
Berlin: Springer.

58. p. 678: Add the citation

Ladyzhenskaia, O. (1969). The Mathematical Theory of Viscous Incom-

pressible Flow, 2nd ed. New York: Gordon and Breach.

59. p. 679: Add the citation

O’Neill, M. E., and Chorlton, F. (1986). Ideal and Incompressible Fluid

Dynamics, New York: John Wiley.

60. p. 679: Add the citation

O’Neill, M. E., and Chorlton, F. (1989). Viscous and Compressible Fluid

Dynamics, New York: John Wiley.

61. p. 679: Add the citation

Oswatitsch, K. (1956). Gas Dynamics, New York: Academic Press.

62. p. 680: One can now recognize

Panton, R. L. (2024). Incompressible Flow, 5th ed. Hoboken, New Jersey:
John Wiley.

Many interior citations in the book likely require a page number modifi-
cation if the citation is to the 2024 edition.

63. p. 681: Rearrange the citation Samelson and Wiggins (2006) so that it
precedes Saminy, et al. (2004)
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64. p. 699: Add the citation

Schobeiri, M. T. (2022). Advanced Fluid Mechanics and Heat Transfer for

Engineers and Scientists. Cham, Switzerland: Springer.

SOLUTION MANUAL

1. p. 65: It could be useful to adjust the solution of Problem 4.4 to be fully
3D. This affects the mean stress Tm = (1/3)Tii. This would also require
adjusting the actual problem statement to emphasize the 3D feature.
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