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Examination 2: Solution
Prof. J. M. Powers
6 December 2002

1. (20) A uniform stream with velocity U in the x direction combines with a source
of strength m at (a, 0) and a sink of strength −m at (−a, 0). Plot the resulting
streamlines, note any stagnation points and closed-body streamlines. If the far field
pressure is po, find the pressure at the leading edge stagnation point.

Solution
Here we have a complex potential

W (z) = Uz +
m

2π
ln(z − a) − m

2π
ln(z + a).

Using the properties of the natural logarithm, we get,

W (z) = Uz +
m

2π
ln

(
z − a

z + a

)
.

Taking the derivative, we get

dW

dz
= u − iv = U +

m

π

a

z2 − a2
.

u − iv = U +
m

π

a

(x + iy)2 − a2
.

Realizing that because of symmetry the stagnation point will be on the x axis, where y = 0, we
have on the x axis

(u − iv)|y=0 = U +
m

π

a

x2 − a2
.

Now the imaginary part of this expression is zero, so on the x axis, we have v = 0. So for a
stagnation point, we then take

u = U +
m

π

a

x2 − a2
= 0.

Solving for x, we find stagnation points at

x = ±a

√
1 − m

Uπa
.

It can be seen easily be direct visualization of the stream function, or shown algebraically that
the stagnation point needs to have |x| > a to allow for a closed contour streamline, which results,
for m > 0, a > 0 in

U < 0.

A set of streamfunctions and velocity potentials is shown in Fig. 1.

Bernoulli’s equation for this flow field gives(
p +

1

2
ρ|u|2

)
farfield

= p +
1

2
ρ(u2 + v2).

In the far field p = po and |u|2 = U2. At the stagnation point u = v = 0, so at the stagnation
point, we have

po +
1

2
ρU2 = p.
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Figure 1: Streamlines and velocity potential for m = π, U = −1/3, a = 1.

2. (20) A complex potential is given by

W (z) = 2z +
1
z

+
1
z2

.

Find the velocity vector at the point (x, y) = (1, 1).

Solution
Here, we take the derivative of the complex potential to find the complex velocity field.

W (z) = 2z +
1

z
+

1

z2
.

dW

dz
= 2 − 1

z2
− 2

z3
.

u − iv = 2 − 1

(x + iy)2
− 2

(x + iy)3
.

At the point (1, 1), we then have

u − iv = 2 − 1

(1 + i)2
− 2

(1 + i)3
.

u − iv = 2 − (1 − i)2

4
− 2(1 − i)3

8
.

u − iv = 2 +
i

2
+

i + 1

2
.

u − iv = 5/2 + i.

So

u =
5

2
, v = −1.
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3. (30) A shock is driven into air by a piston moving at 300 m/s. The still air has a
temperature of 300 K and a pressure of 100 kPa.

(a) Assuming air to be a calorically perfect ideal gas with R = 287 J/kg/K and
γ = 7/5, calculate the speed of the shock, and the pressure after the passage of
the shock.

(b) Assuming air to be an ideal gas with R = 287 J/kg/K and calorically imperfect
with

e = a0 + a1T + a2T
2,

with a0 = 4640 J/kg, a1 = 706 J/kg/K, a2 = 0.062 J/kg/K2, pose the resulting
system of non-linear algebraic equations which could be used to solve for the
shock speed and post-shock pressure, as well as other variables. Do not solve.

Solution
We use what is effectively the equation derived in class for the piston velocity:

D =
γ + 1

4
vp +

√
γRT1 + v2

p

(
γ + 1

4

)2

.

We take γ = 7/5, vp = 300 m/s, p1 = 100000 Pa, T1 = 300 K to get

D = 571.075 m/s.

We then use another equation derived in class

p2 =
2

γ + 1
ρ1D

2 − γ − 1

γ + 1
p1,

to get
p2 = 298981 Pa.

For the non-ideal state equation, we need to solve the following six jump conditions for the six
unknowns ρ2, u2, D, p2, h2, and T2.

ρ2u2 = −ρ1D,

ρ2u
2
2 + p2 = ρ1D

2 + p1,

h2 +
u2

2

2
= h1 +

D2

2
,

h2 = (ao + a1T2 + a2T
2
2 ) + RT2,

p2 = ρ2RT2,

u2 = vp − D

Here we consider h1 and ρ1 as knowns, which are easily computed from ρ1 = p1/R/T1 and
h1 = (ao + a1T1 + a2T

2
1 ) + RT1. Solving for the non-ideal shock state, we find that

D = 567.187 m/s, p2 = 297626 Pa.

So the fact that the calorically imperfect gas has additional vibrational and rotational modes
to absorb piston energy results in a slower wave at a lower pressure.

4. (30) Sir Isaac Newton, living in an era in which Boyle’s Law and Charles’ Law were well
understood, but entropy and basic thermodynamic principles were not, was mistakenly
inclined to think of gas dynamics as an isothermal process. Assuming the energy
equation is replaced in favor of an isothermal condition,
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(a) Write the mass and momentum equations for one-dimensional inviscid, unsteady,
flow of a calorically perfect ideal gas, reducing them to be in terms of the two
unknowns ρ and u.

(b) Write these equations in characteristic form.
(c) Use this flawed theory to estimate the speed of sound.
(d) Compare a Newtonian estimate of the speed of sound in calorically perfect ideal

air at 300 K to that of an isentropic theory.

Solution
The isothermal equations are

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0,

ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0.

Since the flow that of an isothermal ideal gas, we have

p = ρRT,
∂p

∂x
= RT

∂ρ

∂x
,

so we have

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0,

ρ
∂u

∂t
+ ρu

∂u

∂x
+ RT

∂ρ

∂x
= 0.

In matrix form, we then have(
1 0
0 ρ

)(
∂ρ
∂t
∂u
∂t

)
+

(
u ρ

RT ρu

)(
∂ρ
∂x
∂u
∂x

)
=

(
0
0

)
.

Then, following the procedure in the course notes, we seek eigenvalues of(
λ − u −ρ
−RT ρ(λ − u)

)
.

Solving for the eigenvalues, we get

λ = u ±
√

RT.

We find the eigenvectors are
(±√

RT 1 ) .

Carrying out the operations precisely as done in the notes for the isentropic case, we get the
characteristic form

±
√

RT
dρ

dt
+ ρ

du

dt
= 0,

on
dx

dt
= u ±

√
RT.

The characteristics give the speed of small disturbances, so the Newtonian estimate for the
sound speed is

cNewtonian =
√

RT.

Comparing results for R = 287 J/kg/K, T = 300 K, we find

cisentropic = 347 m/s, cNewtonian = 293 m/s.
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