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The great importance of the results obtained by means of the pendulum has induced

philosophers to devote so much attention to the subject, and to perform the experiments with

such a scrupulous regard to accuracy in every particular, that pendulum observations may

justly be ranked among those most distinguished by modern exactness. It is unnecessary here

to enumerate the different methods which have been employed, and the several corrections

which must be made, in order to deduce from the actual observations the result which would

correspond to the ideal case of a simple pendulum performing indefinitely small oscillations

in vacuum. There is only one of these corrections which bears on the subject of the present

paper, namely, the correction usually termed the reduction to a vacuum. On account of

the inconvenience and expense attending experiments in a vacuum apparatus, the observations

are usually made in air, and it then becomes necessary to apply a small correction, in order

to reduce the observed result to what would have been observed had the pendulum been

swung in a vacuum. The most obvious effect of the air consists in a diminution of the moving

force, and consequent increase in the time of vibration, arising from the buoyancy of the

fluid. The correction for buoyancy is easily calculated from the first principles of hydro-

statics, and formed for a considerable time the only correction which it was thought neces-

sary to make for reduction to a vacuum. But in the year 1828 Bessel, in a very important

memoir in which he determined by a new method the length of the seconds' pendulum, pointed

out from theoretical considerations the necessity of taking account of the inertia of the air as

well as of its buoyancy. The numerical calculation of the effect of the inertia forms a

problem of hydrodynamics which Bessel did not attack ; but he concluded from general

principles that a fluid, or at any rate a fluid of small density, has no other effect on the

time of very small vibrations of a pendulum than that it diminishes its gravity and increases

its moment of inertia. In the case of a body of which the dimensions are small compared

with the length of the suspending wire, Bessel represented the increase of inertia by that of a

mass equal to k times the mass of the fluid displaced, which must be supposed to be added

to the inertia of the body itself. This factor k he determined experimentally for a sphere a

little more than two inches in diameter, swung in air and in water. The result for air,

obtained in a rather indirect way, was k = 0*9459, which value Bessel in a subsequent paper

increased to 0'956. A brass sphere of the above size having been swung in water with two

different lengths of wire in succession gave two values of k, differing a little from each

other, and equal to only about two-thirds of the value obtained for air.
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The attention of the scientific world having been called to the subject by the publication

of BesseFs memoir, fresh researches both theoretical and experimental soon appeared. In

order to examine the effect of the air by a more direct method than that employed by Bessel,

a large vacuum apparatus was erected at the expense of the Board of Longitude, and by

means of this apparatus Captain (now Colonel) Sabine determined the effect of the air on

the time of vibration of a particular invariable pendulum. The results of the experiments

are contained in a memoir read before the Royal Society in March 1829, and printed in the

Philosophical Transactions for that year. The mean of eight very consistent experiments

gave 1*655 as the factor by which for that pendulum the old correction for buoyancy must

be multiplied in order to give the whole correction on account of the air. A very remark-

able fact was discovered in the course of these experiments. While the effects of air at the

atmospheric pressure and under a pressure of about half an atmosphere were found to be

as nearly as possible proportional to the densities, it was found that the effect of hydrogen at

the atmospheric pressure was much greater, compared with the effect of air, than corresponded

with its density. In fact, it appeared that the ratio of the effects of hydrogen and air

on the times of vibration was about 1 to 5^, while the ratio of the densities is only about

1 to 13. In speaking of this result Colonel Sabine remarks,
" The difference of this ratio

from that shewn by experiment is greater than can well be ascribed to accidental error in the

experiment, particularly as repetition produced results almost identical. May it not indicate

an inherent property in the elastic fluids, analogous to that of viscidity in liquids, of resistance

to the motion of bodies passing through them, independently of their density ? a property, in

such case, possessed by air and hydrogen gas in very different degrees ; since it would appear

from the experiments that the ratio of the resistance of hydrogen gas to that of air is more

than double the ratio following from their densities. Should the existence of such a distinct

property of resistance, varying in the different elastic fluids, be confirmed by experiments

now in progress with other gases, an apparatus more suitable than the present to investigate

the ratio in which it is possessed by them, could scarcely be devised : and the pendulum,

in addition to its many important and useful purposes in general physics, may find an

application for its very delicate, but, with due precaution, not more delicate than certain,

determinations, in the domain of chemistry." Colonel Sabine has informed me that the

experiments here alluded to were interrupted by a cause which need not now be mentioned,

but that as far as they went they confirmed the result of the experiments with hydrogen, and

pointed out the existence of a specific action in different gases, quite distinct from mere

variations of density.

Our knowledge on the subject of the effect of air on the time of vibration of pendulums
has received a most valuable addition from the labours of the late Mr Baily, who erected

a vacuum apparatus at his own house, with which he performed many hundreds of careful

experiments on a great variety of pendulums. The experiments are described in a paper

read before the Royal Society on the 31st of May 1832. The result for each pendulum is

expressed by the value of n, the factor by which the old correction for buoyancy must be

multiplied in order to give the whole effect of the air as deduced from observation. Four

spheres, not quite ll inch in diameter, gave as a mean n = T864, while three spheres, a little
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more than 2 inches in diameter, gave only 1*748. The latter were nearly of the same size

as those with which Bessel, by a different method, had obtained k = 0*94.6 or 0*956, which

corresponds to n = 1*946 or 1*956. Among the "Additional Experiments" in the latter

part of Baily's paper, is a set in which the pendulums consisted of plain cylindrical rods.

With these pendulums it was found that n regularly increased, though according to an

unknown law, as the diameter of the rod decreased. While a brass tube l^ inch in

diameter gave n equal to about 2*3, a thin rod or thick wire only 0*072 inch in diameter

gave for n a value as great as 7*530.

Mathematicians in the meanwhile were not idle, and several memoirs appeared about this

time, of which the object was to determine from hydrodynamics the effect of a fluid on the

motion of a pendulum. The first of these came from the pen of the celebrated Poisson.

It was read before the French Academy on the 22nd of August 1831, and is printed in the

11th Volume of the Memoirs. In this paper, Poisson considers the case of a sphere suspended

by a fine wire, and oscillating in the air, or in any gas. He employs the ordinary equations

of motion of an elastic fluid, simplified by neglecting the terms which involve the square of

the velocity ; but in the end, in adapting his solution to practice, he neglects, as insensible,

the terms by which alone the action of an elastic differs from that of an incompressible fluid,

so that the result thus simplified is equally applicable to fluids of both classes. He finds

that when insensible quantities are neglected n = 1*5, so that the mass which we must sup-

pose added to that of the pendulum is equal to half the mass of the fluid displaced. This

result does not greatly differ from the results obtained experimentally by Bessel in the case

of spheres oscillating in water, but differs materially from the result he had obtained for air.

It agrees pretty closely with some experiments which had been performed about fifty years

before by Dubuat, who had in fact anticipated Bessel in shewing that the time of vibration

of a pendulum vibrating in a fluid would be affected by the inertia of the fluid as well as

by its density. Dubuat's labours on this subject had been altogether overlooked by those

who were engaged in pendulum experiments; probably because such persons were not

likely to seek in a treatise on hydraulics for information connected with the subject of their

researches. Dubuat had, in fact, rather applied the pendulum to hydrodynamics than hy-

drodynamics to the pendulum.

In the Philosophical Magazine for September 1833, p. 185, is a short paper by Professor

Challis, on the subject of the resistance to a ball pendulum. After referring to a former

paper, in which he had shewn that no sensible error would be committed in a problem of

this nature by neglecting the compressibility of the fluid even if it be elastic, Professor Challis,

adopting a particular hypothesis respecting the motion, obtains 2 for the value of the factor

» for such a pendulum. This mode of solution, which is adopted in several subsequent

papers, has given rise to a controversy between Professor Challis and the Astronomer Royal,

who maintains the justice of Poisson's result.

In a paper read before the Royal Society of Edinburgh on the 16th of December 1833,

and printed in the 13th Volume of the Society's Transactions, Green has determined from

the common equations of fluid motion the resistance to an ellipsoid performing small oscil-

lations without rotation. The result is expressed by a definite integral ; but when two of
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the principal axes of the ellipsoid become equal, the integral admits of expression in finite

terms, by means of circular or logarithmic functions. When the ellipsoid becomes a sphere,

Green's result reduces itself to Poisson's.

In a memoir read before the Royal Academy of Turin on the 18th of January 1835,

and printed in the 37th Volume of the memoirs of the Academy, M. Plana has entered at

great length into the theory of the resistance of fluids to pendulums. This memoir contains,

however, rather a detailed examination of various points connected with the theory, than the

determination of the resistance for any new form of pendulum. The author first treats the

case of an incompressible fluid, and then shews that the result would be sensibly the same in

the case of an elastic fluid. In the case of a ball pendulum, the only one in which a com-

plete solution of the problem is effected, M. Plana's result agrees with Poisson's.

In a paper read before the Cambridge Philosophical Society on the 29th of May 1843,

and printed in the 8th Volume of the Transactions, p. 105, I have determined the resistance

to a ball pendulum oscillating within a concentric spherical envelope, and have pointed out

the source of an error into which Poisson had fallen, in concluding that such an envelope

would have no effect. When the radius of the envelope becomes infinite, the solution agrees

with that which Poisson had obtained for the case of an unlimited mass of fluid. I have

also investigated the increase of resistance due to the confinement of the fluid by a distant

rigid plane. The same paper contains likewise the calculation of the resistance to a long

cylinder oscillating in a mass of fluid either unlimited, or confined by a cylindrical envelope,

having the same axis as the cylinder in its position of equilibrium. In the case of an un-

confined mass of fluid, it appeared that the effect of inertia was the same as if a mass equal

to that of the fluid displaced were distributed along the axis of the cylinder, so that n = 2

in the case of a pendulum consisting of a long cylindrical rod. This nearly agrees with

Baily's result for the long 1^ inch tube; but, on comparing it with the results obtained with

the cylindrical rods, we observe the same sort of discrepancy between theory and observation

as was noticed in the case of spheres. The discrepancy is, however, far more striking in the

present case, as might naturally have been expected, after what had been observed with

spheres, on account of the far smaller diameter of the solids employed.
A few years ago Professor Thomson communicated to me a very beautiful and powerful

method which he had applied to the theory of electricity, which depended on the consideration

of what he called electrical images. The same method, I found, applied, with a certain modi-

fication, to some interesting problems relating to ball pendulums. It enabled me to calculate

the resistance to a sphere oscillating in presence of a fixed sphere, or within a spherical enve-

lope, or the resistance to a pair of spheres either in contact, or connected by a narrow rod,

the direction of oscillation being, in all these cases, that of the line joining the centres of the

spheres. The effect of a rigid plane perpendicular to the direction of motion is of course

included as a particular case. The method even applies, as Professor Thomson pointed out

to me, to the uncouth solid bounded by the exterior segments of two intersecting spheres,

provided the exterior angle of intersection be a submultiple of two right angles. A set of

corresponding problems, in which the spheres are replaced by long cylinders, may be solved

in a similar manner. These results were mentioned at the meeting of the British Association

26—2
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at Oxford in 1847, and are noticed in the volume of reports for that year, but they have

not yet been published in detail.

The preceding are all the investigations that have fallen under my notice, of which the

object was to calculate from hydrodynamics the resistance to a body of given form oscillating

as a pendulum. They all proceed on the ordinary equations of the motion of fluids. They
all fail to account for one leading feature of the experimental results, namely, the increase

of the factor n with a decrease in the dimensions of the body. They recognize no distinction

between the action of different fluids, except what arises from their difference of density.

In a conversation with Dr Robinson about seven or eight years ago on the subject of the

application of theory to pendulums, he noticed the discrepancy which existed between the

results of theory and experiment relating to a ball pendulum, and expressed to me his con-

viction that the discrepancy in question arose from the adoption of the ordinary theory of

fluid motion, in which the pressure is supposed to be equal in all directions. He also de-

scribed to me a remarkable experiment of Sir James South's which he had witnessed. This

experiment has nojt been published, but Sir James South has kindly allowed me to mention

it. When a pendulum is in motion, one would naturally have supposed that the air near the

moving body glided past the surface, or the surface past it, which comes to the same thing

if the relative motion only be considered, with a velocity comparable with the absolute velocity

of the surface itself. But on attaching a piece of gold leaf to the bottom of a pendulum, so

as to stick out in a direction perpendicular to the surface, and then setting the pendulum in

motion, Sir James South found that the gold leaf retained its perpendicular position just as

if the pendulum had been at rest ; and it was not till the gold leaf carried by the pendulum
had been removed to some distance from the surface, that it began to lag behind. This

experiment shews clearly the existence of a tangential action between the pendulum and the

air, and between one layer of air and another. The existence of a similar action in water is

clearly exhibited in some experiments of Coulomb's which will be mentioned in the second

part of this paper, and indeed might be concluded from several very ordinary phenomena.

Moreover Dubuat, in discussing the results of his experiments on the oscillations of spheres

in water, notices a slight increase in the effect of the water corresponding to an increase in

the time of vibration, and expressly attributes it to the viscosity of the fluid.

Having afterwards occupied myself with the theory of the friction of fluids, and arrived

at general equations of motion, the same in essential points as those which had been pre-

viously obtained in a totally different manner by others, of which, however, I was not at

the time aware, I was desirous of applying, if possible, these equations to the calculation

of the motion of some kind of pendulum. The difficulty of the problem is of course

materially increased by the introduction of internal friction, but as I felt great confidence in

the essential parts of the theory, I thought that labour would not be ill-bestowed on the

subject. I first tried a long cylinder, because the solution of the problem appeared likely

to be simpler than in the case of a sphere. But after having proceeded a good way towards

the result, I was stopped by a difficulty relating to the determination of the arbitrary con-

stants, which appeared as the coefficients of certain infinite series by which the integral of a

certain differential equation was expressed. Having failed in the case of a cylinder, I tried
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a sphere, and presently found that the corresponding differential equation admitted of integra-

tion in finite terms, so that the solution of the problem could be completely effected. The

result, I found, agreed very well with Baily's experiments, when the numerical value of a

certain constant was properly assumed ; but the subject was laid aside for some time. Having
afterwards attacked a definite integral to which Mr Airy had been led in considering the

theory of the illumination in the neighbourhood of a caustic, I found that the method which

I had employed in the case of this integral would apply to the problem of the resistance to a

cylinder, and it enabled me to get over the difficulty with which I had before beeen baffled.

I immediately completed the numerical calculation, so far as was requisite to compare the

formulae with Baily's experiments on cylindrical rods, and found a remarkably close agreement

between theory and observation. These results were mentioned at the meeting of the British

Association at Swansea in 1848, and are briefly described in the volume of reports for that

year.

The present paper is chiefly devoted to the solution of the problem in the two cases of

a sphere and of a long cylinder, and to a comparison of the results with the experiments of

Baily and others. Expressions are deduced for the effect of a fluid both on the time and on

the arc of vibration of a pendulum consisting either of a sphere, or of a cylindrical rod, or of a

combination of a sphere and a rod. These expressions contain only one disposable constant,

which has a very simple physical meaning, and which I propose to call the index of friction

of the fluid. This constant we may conceive determined by one observation, giving the effect

of the fluid either on the time or on the arc of vibration of any one pendulum of one of the

above forms, and then the theory ought to predict the effect both on the time and on the

arc of vibration of all such pendulums. The agreement of theory with the experiments of

Baily on the time of vibration is remarkably close. Even the rate of decrease of the arc of

vibration, which it formed no part of Baily's object to observe, except so far as was necessary

for making the small correction for reduction to indefinitely small vibrations, agrees with the

result calculated from theory as nearly as could reasonably be expected under the circum-

stances.

It follows from theory that with a given sphere or cylindrical rod the factor n increases

with the time of vibration. This accounts in a good measure for the circumstance that Bessel

obtained so large a value of k for air, as is shewn at length in the present paper ; though it

unquestionably arose in a great degree from the increase of resistance due to the close prox-

imity of a rigid plane to the swinging ball.

I have deduced the value of the index of friction of water from some experiments of Cou-

lomb's on the decrement of the arc of oscillation of disks, oscillating in water in their own

plane by the torsion of a wire. When the numerical value thus obtained is substituted in

the expression for the time of vibration of a sphere, the result agrees almost exactly with

Bessel's experiments with a sphere swung in water.

The present paper contains one or two applications of the theory of internal friction to

problems which are of some interest, but which do not relate to pendulums. The resistance

to a sphere moving uniformly in a fluid may be obtained as a limiting case of the resistance to

a ball pendulum, provided the circumstances be such that the square of the velocity may be
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neglected. The resistance thus determined proves to be proportional, for a given fluid and a

given velocity, not to the surface, but to the radius of the sphere ; and therefore the accele-

rating force of the resistance increases much more rapidly, as the radius of the sphere

decreases, than if the resistance varied as the surface, as would follow from the common

theory. Accordingly, the resistance to a minute globule of water falling through the air with

its terminal velocity depends almost wholly on the internal friction of air. Since the index of

friction of air is known from pendulum experiments, we may easily calculate the terminal

velocity of a globule of given size, neglecting the part of the resistance which depends upon

the square of the velocity. The terminal velocity thus obtained is so small in the case of

small globules such as those of which we may conceive a cloud to be composed, that the

apparent suspension of the clouds does not seem to present any difficulty. Had the resistance

been determined from the common theory, it would have been necessary to suppose the globules

much more minute, in order to account in this way for the phenomenon. Since in the case of

minute globules falling with their terminal velocity the part of the resistance depending upon
the square of the velocity, as determined by the common theory, is quite insignificant compared
with the part which depends on the internal friction of the air, it follows that were the pres-

sure equal in all directions in air in the state of motion, the quantity of water which would

remain suspended in the state of cloud would be enormously diminished. The pendulum

thus, in addition to its other uses, affords us some interesting information relating to the

department of meteorology.

The fifth section of the first part of the present paper contains an investigation of the

effect of the internal friction of water in causing a series of oscillatory waves to subside. It

appears from the result that in the case of the long swells of the ocean the effect of friction is

insignificant, while in the case of the ripples raised by the wind on a small pool, the motion

subsides very rapidly when the disturbing force ceases to act.



PART I.

ANALYTICAL INVESTIGATION.

Section I.

Adaptation of the general equations to the case of the fluid surrounding a body which

oscillates as a pendulum. General laws which follow from the form of the equations. Solu-

tion of the equations in the case of an oscillating plane.

1. In a paper
" On the Theories of the Internal Friction of Fluids in Motion, eye,"

which the Society did me the honour to publish in the 8th Volume of their Transactions, I

have arrived at the following equations for calculating the motion of a fluid when the internal

friction of the fluid itself is taken into account, and consequently the pressure not supposed

equal in all directions:

dp I du du du du\ IcPu cPu d'u\

dm
"

\ dt doc dy dz) Xda? dy
2

dz")

u d (du dv dw\
J. _ I u

_j. 1 . . (l)
3 dx \da> dy dW

d (du dv dw\

dy

with two more equations which may be written down from symmetry. In these equations

u, v, w are the components of the velocity along the rectangular axes of oo, y, % ; X, Y, Z are

the components of the accelerating force ; p is the pressure, t the time, p the density, and n
a certain constant depending on the nature of the fluid.

The three equations of which (l) is the type are not the general equations of motion which

apply to a heterogeneous fluid when internal friction is taken into account, which are those num-

bered 10 in my former paper, but are applicable to a homogeneous incompressible fluid, or to

a homogeneous elastic fluid subject to small variations of density, such as those which accom-

pany sonorous vibrations. It must be understood to be included in the term homogeneous
that the temperature is uniform throughout the mass, except so far as it may be raised or

lowered by sudden condensation or rarefaction in the case of an elastic fluid. The general

equations contain the differential coefficients of the quantity y. with respect to x, y, and % ;

but the equations of the form (l) are in their present shape even more general than is required

for the purposes of the present paper.

These equations agree in the main with those which had been previously obtained, on

different principles, by Navier, by Poisson, and by M. de Saint-Venant, as I have elsewhere

observed*. The differences depend only on the coefficient of the last term, and this term

vanishes in the case of an incompressible fluid, to which Navier had confined his investiga-

tions.

The equations such as (l) in their present shape are rather complicated, but in applying

•
Report on recent researches in Hydrodynamics. Report of the British Association for 1846, p. 16.



[16] PROFESSOR STOKES, ON THE EFFECT OF THE INTERNAL FRICTION

them to the case of a pendulum they may be a good deal simplified without the neglect of any

quantities which it would be important to retain. In the first place the motion is supposed

very small, on which account it will be allowable to neglect the terms which involve the

square of the velocity. In the second place, the nature of the motion that we have got to

deal with is such that the compressibility of the fluid has very little influence on the result, so

that we may treat the fluid as incompressible, and consequently omit the last terms in the

equations. Lastly, the forces X, Y, Z are in the present case the components of the force of

gravity, and if we write

p + II + pf(Xd.v + Ydy + Zd%)

for p, we may omit the terms X, Y, Z.

If x be measured vertically downwards from a horizontal plane drawn in the neighbourhood
of the pendulum, and if g be the force of gravity, f(Xdoe + Ydy + Zdss) = g%, the arbitrary

constant, or arbitrary function of the time if it should be found necessary to suppose it to be

such, being included in II. The part of the whole force acting on the pendulum which

depends on the terms II + gp% is simply a force equal to the weight of the fluid displaced,

and acting vertically upwards through the centre of gravity of the volume.

When simplified in the manner just explained, the equations such as (l) become

dp fcFu dru d*u\ du

d~x
=

>l

{dw*
+
df

+
d^i

~
P ~di'

dp td*v d?v d?v\ dv

dy
=

,i
Id**

+
df

+
~d?)

"
P It

'

dp icPw d2w d'wA dw
d~i

=
fl

(dx*
+
df

+
dx*)

~
p
dt\

which, with the equation of continuity,

du dv dw
j- + -7- + — - 0, (3)dx ay dz

are the only equations which have to be satisfied at all points of the fluid, and at all instants

of time.

In applying equations (2) to a particular pendulum experiment, we may suppose ft con-

stant ; but in order to compare experiments made in summer with experiments made in winter,

or experiments made under a high barometer with experiments made under a low, it will be

requisite to regard p as a quantity which may vary with the temperature and pressure of the

fluid. As far as the result of a single experiment*, which has been already mentioned,

performed with a single elastic fluid, namely air, justifies us in drawing such a general

conclusion, we may assert that for a given fluid at a given temperature p.
varies as

p.

2. For the formation of the equations such as (1), I must refer to my former paper;

(2)

* The first of the experiments described in Col. Sabine's

paper, in which the gauge stood as high as 7 inches, leads to

the same conclusion ; but as the vacuum apparatus had not yet

been made stanch it is perhaps hardly safe to trust this

experiment in a question of such delicacy.
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but it will be possible, in a few words, to enable the reader to form a clear idea of the meaning
of the constant fi.

Conceive the fluid to move in planes parallel to the plane of toy, the motion taking place

in a direction parallel to the axis of y. The motion will evidently consist of a sort of con-

dv
tinuous sliding, and the differential coefficient — may be taken as a measure of the rate of

sliding. In the theory it is supposed that in general the pressure about a given point is com-

pounded of a normal pressure, corresponding to the density, which being normal is necessarily

equal in all directions, and of an oblique pressure or tension, altering from one direction to

another, which is expressed by means of linear functions of the nine differential coefficients of

the first order of u, v, w with respect to x, y, z, which define the state of relative motion at

any point of the fluid. Now in the special case considered above, if we confine our attention

to one direction, that of the plane of tvy, the total pressure referred to a unit of surface is

compounded of a normal pressure corresponding to the density, and a tangential pressure

dv
expressed by u— , which tends to reduce the relative motion.

d%

In the solution of equations (2), ft always appears divided by p. Let
ju.
=

f/p. The

constant ft! may conveniently be called the index offriction of the fluid, whether liquid or gas,

to which it relates. As regards its dimensions, it expresses a moving force divided by the

product of a surface, a density, and the differential coefficient of a velocity with respect to a

line. Hence ^' is the square of a line divided by a time, whence it will be easy to adapt the

numerical value of p' to a new unit of length or of time.

3. Besides the general equations (2) and (3), it will be requisite to consider the equations

of condition at the boundaries of the fluid. For the purposes of the present paper there will

be no occasion to consider the case of a free surface, but only that of the common surface of

the fluid and a solid. Now, if the fluid immediately in contact with a solid could flow past it

with a finite velocity, it would follow that the solid was infinitely smoother with respect to

its action on the fluid than the fluid with respect to its action on itself. For, con-

ceive the elementary layer of fluid comprised between the surface of the solid and a

parallel surface at a distance h, and then regard only so much of this layer as corresponds

to an elementary portion dS of the surface of the solid. The impressed forces acting on

the fluid element must be in equilibrium with the effective forces reversed. Now conceive

h to vanish compared with the linear dimensions of dS, and lastly let dS vanish*. It

is evident that the conditions of equilibrium will ultimately reduce themselves to this, that

the oblique pressure which the fluid element experiences on the side of the solid must be equal

and opposite to the pressure which it experiences on the side of the fluid. Now if the fluid

could flow past the solid with a finite velocity, it would follow that the tangential pressure

To be quite precise it would be necessary to say, Conceive
h and dS to vanish together, h vanishing compared with the

linear dimensions of dS; for so long as rf,S remains finite we
cannot suppose h to vanish altogether, on account of the curva-

ture of the elementary surface. Such extreme precision in

unimportant matters tends, I think, only to perplex the reader,

and prevent him from entering so readily into the spirit of an

investigation.
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called into play by the continuous sliding of the fluid over itself was no more than counter-

acted by the abrupt sliding of the fluid over the solid. As this appears exceedingly improba-

ble a priori, it seems reasonable in the first instance to examine the consequences of supposing

that no such abrupt sliding takes place, more especially as the mathematical difficulties of the

problem will thus be materially diminished. I shall assume, therefore, as the conditions to be

satisfied at the boundaries of the fluid, that the velocity of a fluid particle shall be the same,

both in magnitude and direction, as that of the solid particle with which it is in contact. The

agreement of the results thus obtained with observation will presently appear to be highly

satisfactory. When the fluid, instead of being confined within a rigid envelope, extends indefi-

nitely around the oscillating body, we must introduce into the solution the condition that

the motion shall vanish at an infinite distance, which takes the place of the condition to be

satisfied at the surface of the envelope.

To complete the determination of the arbitrary functions which would be contained in the

integrals of (2) and (3), it would be requisite to put t = in the general expressions for u, v
t

w, obtained by integrating those equations, and equate the results to the initial velocities sup-

posed to be given. But it would be introducing a most needless degree of complexity into the

solution to take account of the initial circumstances, nor is it at all necessary to do so for the

sake of comparison of theory with experiment. For in a pendulum experiment the pendulum
is set swinging and then left to itself, and the first observation is not taken till several oscilla-

tions have been completed, during which any irregularities attending the initial motion would

have had time to subside. It will be quite sufficient to regard the motion as already going on,

and limit the calculation to the determination of the simultaneous periodic movements of the

pendulum and the surrounding fluid. The arc of oscillation will go on slowly decreasing, but

it will be so nearly constant for several successive oscillations that it may be regarded as

strictly such in calculating the motion of the fluid ; and having thus determined the resultant

action of the fluid on the solid we may employ the result in calculating the decrement of the

arc of oscillation, as well as in calculating the time of oscillation. Thus the assumption of

periodic functions of the time in the expressions for u, v, w will take the place of the determi-

nation of certain arbitrary functions by means of the initial circumstances,

4. Imagine a plane drawn perpendicular to the axis of x through the point in the

fluid whose co-ordinates are x, y, ss. Let the oblique pressure in the direction of this plane

be decomposed into three pressures, a normal pressure, which will be in the direction of x, and

two tangential pressures in the directions of y, %, respectively. Let PY be the normal pressure,

and T3 the tangential pressure in the direction of y, which will be equal to the component in

the direction of w of the oblique pressure on a plane drawn perpendicular to the axis of y.

Then by the formulae (7), (8) of my former paper, and (3) of the present,

~ du
Pt-p-Zv— , (4)ax

_ (du dv\ ,

\dy dxj

These formulae will be required in finding the resultant force of the fluid on the pendulum, after
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the motion of the fluid has been determined in terms of the quantities by which the motion of

the pendulum is expressed.

5. Before proceeding to the solution of the equations (2) and (3) in particular cases, it

will be well to examine the general laws which follow merely from the dimensions of the several

terms which appear in the equations.

Consider any number of similar systems, composed of similar solids oscillating in a

similar manner in different fluids or in the same fluid. Let a, a', a"... be homologous lines in

the different systems; T, T', T" ... corresponding times, such for example as the times of

oscillation from rest to rest. Let x, y, % be measured from similarly situated origins, and in

corresponding directions, and t from corresponding epochs, such for example as the com-

mencements of oscillations when the systems are beginning to move from a given side of the

mean position.

The form of equations (2), (3) shews that the equations being satisfied for one system will

be satisfied for all the systems provided

fill pUX
tt cc l> cc 10, X cc y o: X, and p cc ee .

X t

The variations x cc y « x merely signify that we must compare similarly situated points in

inferring from the circumstance that (2), (3) are satisfied for one system that they will be satis-

fied for all the systems. If c, c, c" ... be the maximum excursions of similarly situated points

of the fluids

c
tta— I Sec H, t cc T,

and the sole condition to be satisfied, in addition to that of geometrical similarity, in order

that the systems should be dynamically similar, becomes

— cc - or cc fi (6)r P

This condition being satisfied, similar motions will take place in the different systems, and we

shall have

pac
P~^fi (7)

It follows from the equations (4), (5), and the other equations which might be written

down from symmetry, that the pressures such as JPU Ts vary in the same manner as p, whence

it appears from (7) that the resultant or resultants of the pressures of the fluids on the solids,

acting along similarly situated lines, which vary as pa
2
, vary as pa

3 and cT~ 2

conjointly.

In other words, these resultants in two similar systems are to one another in a ratio com-

pounded of the ratio of the masses of fluid displaced, and of the ratio of the maximum

accelerating effective forces belonging to similarly situated points in the solids.

6. In order that two systems should be similar in which the fluids are confined by

envelopes that are sufficiently narrow to influence the motion of the fluids, it is necessary that

27—2
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the envelopes should be similar and similarly situated with respect to the solids oscillating

within them, and that their linear dimensions should be in the same ratio as those of the

oscillating bodies. In strictness, it is likewise necessary that the solids should be similarly

situated with respect to the axis of rotation. If however two similar solids, such as two

spheres, are attached to two fine wires, and made to perform small oscillations in two

unlimited masses of fluid, and if we agree to neglect the effect of the suspending wires, and

likewise the effect of the rotation of the spheres on the motion of the fluid, which last will

in truth be exceedingly small, we may regard the two systems as geometrically similar, and

they will be dynamically similar provided the condition (6) be satisfied. When the two

fluids are of the same nature, as for example when both spheres oscillate in air, the condition

of dynamical similarity reduces itself to this, that the times of oscillation shall be as the

squares of the diameters of the spheres.

If, with Bessel, we represent the effect of the inertia of the fluid on the time of oscillation

of the sphere by supposing a mass equal to k times that of the fluid displaced added to the

mass of the sphere, which increases its inertia without increasing its weight, we must expect

to find k dependant on the nature of the fluid, and likewise on the diameter of the sphere.

Bessel, in fact, obtained very different values of k for water and for air. Baily's experiments

on spheres of different diameters, oscillating once in a second nearly, shew that the value of

k increases when the diameter of the sphere decreases. Taking this for the present as the

result of experiment, we are led from theory to assert that the value of k increases with the

time of oscillation ; in fact, k ought to be as much increased as if we had left the time of

oscillation unchanged, and diminished the diameter in the ratio in which the square root of

the time is increased. It may readily be shewn that the value of k obtained by Bessel's

method, by means of a long and short pendulum, is greater than what belongs to the long

pendulum, much more, greater than what belongs to the shorter pendulum, which oscillated

once in a second nearly. The value of k given by Bessel is in fact considerably larger than

that obtained by Baily, by a direct method, from a sphere of nearly the same size as those

employed by Bessel, oscillating once in a second nearly.

The discussion of the experiments of Baily and Bessel belongs to Part II. of this paper.

They are merely briefly noticed here to shew that some results of considerable importance

follow readily from the general equations, even without obtaining any solution of them.

7- Before proceeding to the problems which mainly occupy this paper, it may be well to

exhibit the solution of equations (2) and (3) in the extremely simple case of an oscillating plane.

Conceive a physical plane, which is regarded as infinite, to be situated in an unlimited

mass of fluid, and to be performing small oscillations in the direction of a fixed line in the

plane. Let a fixed plane coinciding with the moving plane be taken for the plane of yz, the

axis of y being parallel to the direction of motion, and consider only the portion of fluid

which lies on the positive side of the plane of yz. In the present case, we must evidently

have u = 0, w =
; and p, v will be functions of x and t, which have to be determined. The

equation (3) is satisfied identically, and we get from (2), putting m =
n'p,

dp dv , d'v

7- = 0,
— = n

—
j (8)dx dt dx*
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The first of these equations gives p = a constant, for it evidently cannot be a function of t,

since the effect of the motion vanishes at an infinite distance from the plane ; and if we include

this constant in II, we shall have p = 0. Let V be the velocity of the plane itself, and suppose

V=csmnt (9)

Putting in the second of equations (8)

v = Xi sin nt + Xs cos nt, (10)

we get
_ ,*Xt ,*XX ^dlX2

da? dor n dx

The last of these equations gives

-v^r* . / n / n Vt~- x ,~ .In / n „X^e 2* (Asm \/ —,x + Bcos\/ —x)+e 2fi (C sin V —
;«> + D cosV —

>*)•
2/x 2(oi 2(j. 2/x

Since X2 must not become infinite when x = oo
,
we must have C =

0, D = 0. Obtaining Jf,

from the first of equations (11), and substituting in (10), we get

__ */ -p / Yt /ft
v= e 2/i

'

{-Asin(nt-\/—,») + J? cos (nt - \/—,w)\.

Now by the equations of conditions assumed in Art. S, we must have v = V when w = 0,

whence

"V —,i / n
2" sin(w#-\/ —,w) . (12)v = ce

To find the normal and tangential components of the pressure of the fluid on the plane, we

must substitute the above value of v in the formulae (4), (5), and after differentiation put
x = 0. Plf T3 will then be the components of the pressure of the solid on the fluid, and

therefore - Pu — T3, those of the pressure of the fluid on the solid. We get

^1 = 0, T3

. /«»* , . x Am' /„ 1 dV\VV -Y^nt+cosnt)
=
pV-y[ r+- -ft)-

• 03)

The force expressed by the first of these terms tends to diminish the amplitude of the

oscillations of the plane. The force expressed by the second has the same effect as increasing

the inertia of the plane.

8. The equation (12) shews that a given phase of vibration is propagated from the plane

into the fluid with a velocity -y/(8ja'»), while the amplitude of oscillation decreases in geometric

progression as the distance from the plane increases in arithmetic. If we suppose the time of

oscillation from rest to rest to be one second, n = -k ; and if we suppose -y/m'= ill6 inch, which,

as will presently be seen, is about its value in the case of air, we get for the velocity of propa-

gation .2908 inch per second nearly. If we enquire the distance from the plane at which the

amplitude of oscillation is reduced to one half, we have only to put \J
—

t
x = log, 2, which

2fx

gives, on the same suppositions as before respecting numerical values, x = .06415 inch nearly.
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For water the value of ft is a good deal smaller than for air, and the corresponding value of x

smaller likewise, since it varies cceieris paribus as yV- Hence if a solid of revolution of

large, or even moderately large, dimensions be suspended by a fine wire coinciding with the

axis of revolution, and made to oscillate by the torsion of the wire, the effect of the fluid may
be calculated with a very close degree of approximation by regarding each element of the

surface of the solid as an element of an infinite plane oscillating with the same linear velocity.

For example, let a circular disk of radius a be suspended horizontally by a fine wire

attached to the centre, and made to oscillate. Let r be the radius vector of any element of

the disk, measured from its centre, 6 the angle through which the disk has turned from its

dB
mean position. Then in equation (13), we must put V = r—

, whence
dt

_ . /V idQ i d?9\

The area of the annulus of the disk comprised between the radii r and r + dr is 4nrrdr,

both faces being taken, and if G be the whole moment of the force of the fluid on the disk,

G = - 4tt / ^T^dr, whence

P W 2 \dt n df)

Let My2 be the moment of inertia of the disk, and let «j be what n would become if the

fluid were removed, so that — n^My^O is the moment of the force of torsion. Then when the

fluid is present the equation of motion of the disk becomes

(^^^V^I +^Vyj^W^o, . . (14)

or, putting for shortness

d?Q d9
(i + ^)- + 2w/3- +^ = o,

which gives, neglecting /3
2
,

where

eoe
-npi sin (nt + a), (15)

The observation of n and «l9
or else the observation of n and of the decrement of the arc

of oscillation, would enable us to determine /3, and thence //. The values of /3 determined in

these two different ways ought to agree.

There would be no difficulty in obtaining a more exact solution, in which the decrement of

the arc of oscillation should be taken into account in calculating the motion of the fluid, but

I pass on to the problems, the solution of which forms the main object of this paper.
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Section II.

Solution of the equations in the case of a sphere oscillating in a mass ofjluid either

unlimited, or confined by a spherical envelope concentric with the sphere in its position of

equilibrium.

9. Suppose the sphere suspended by a fine wire, the length of which is much greater

than the radius of the sphere. Neglect for the present the action of the wire on the fluid, and

consider only that of the sphere. The motion of the sphere and wire being supposed to take

place parallel to a fixed vertical plane, there are two different modes of oscillation possible.

We have here nothing to do with the rapid oscillations which depend mainly on the rotatory

inertia of the sphere, but only with the principal oscillations, which are those which are

observed in pendulum experiments. In these principal oscillations the centre of the sphere

describes a small arc of a curve which is very nearly a circle, and which would be rigorously

such, if the line joining the centre of gravity of the sphere and the point of attachment of the

wire were rigorously in the direction of the wire. In calculating the motion of the fluid, we

may regard this arc as a right line. In fact, the error thus introduced would only be a small

quantity of the second order, and such quantities are supposed to be neglected in the investi-

gation. Besides its motion of translation, the sphere will have a motion of rotation about a

horizontal axis, the angular motion of the sphere being very nearly the same as that of the

suspending wire. This motion, which would produce absolutely no effect on the fluid according

to the common theory of hydrodynamics, will not be without its influence when friction is taken

into account ; but the effect is so very small in practical cases that it is not worth while to take

it into account. For if a be the radius of the sphere, and I the length of the suspending wire,

the velocity of a point in the surface of the sphere due to the motion of rotation will be a

small quantity of the order al~ l

compared with the velocity due to the motion of translation.

In finding the moment of the pressures of the fluid on the pendulum, forces arising from these

velocities, and comparable with them, have to be multiplied by lines which are comparable

with a, I, respectively. Hence the moment of the pressures due to the motion of rotation of

the sphere will be a small quantity of the order a2
/"

8
, compared with the moment due to the

motion of translation. Now in practice I is usually at least 20 or 30 times greater than a, and

the whole effect to be investigated is very small, so that it would be quite useless to take

account of the motion of rotation of the sphere.

The problem, then, reduces itself to this. The centre of a sphere performs small periodic

oscillations along a right line, the sphere itself having a motion of translation simply : it is

required to determine the motion of the surrounding fluid.

10. Let the mean position of the centre of the sphere be taken for origin, and the

direction of its motion for the axis of w, so that the motion of the fluid is symmetrical with

respect to this axis. Let •sr be the perpendicular let fall from any point on the axis of x, q
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the velocity in the direction of w, u> the angle between the line & and the plane of xy. Then

p, u, and q will be functions of x, w, and t, and we shall have

v = q cos w, w = q sin to, y = ar cos at, ss = sr sin w,

whence

•ar
s =y2 + a:*, &j=tan -1 -.

We have now to substitute in equations (2) and (3), and we are at liberty to put

co = after differentiation. We get

d (I sin w d d
—— = cos id

— —-
,

= —— when w = 0,

ay dur w du> disr

d* d2

T~s
" T=5 when w " °»

dy
2

d-ar
2

d . d cos a> d id— = sin to— + ,
= —— when a> = 0,

dss dw nr dw nr dw

d2
1 d Id3

,—-=--— + ——-j
when a) = 0,

dz' tit din- "nr dw

whence we obtain

dp ld?u d?u 1 du\ dudp Id'u d'u 1 du\ du . _

IT
1-* Tl + w=» + -T- )-/°-j7' (,6)

dx \dxz d-sr •&&&/ dt

-*& +£* i£-{A'-& ..... 07)
Vda?"' d?zr •ar d^ar w2

/ d#

dw da a , .

T +TL + 1 =0 ( 18 )
dx dip T&

Eliminating p from (16) and (17), and putting for
ju.

its equivalent f/p, we get

,
d l d2 d2

1 d \
,
d / d2 d2 Id IX

_rf
/d« . d<7\

d-ar Vda?
2 dw2

or d'ar/ da? \d#
2

d'ar
2 w dur &-) dt \d-ur dx)

( d
2 d3 Id 1 1 d\idu dq\ ,

'

\dar d'ar -ar dw -ar u d£/ Vd'ar da?/

By virtue of (18), "sr {udur — qdx) is an exact differential. Let then

ar (ud-nr - qdx) =
d\J/ (20)

Expressing t* and q in terms of
\^,

we get

du dq 1 / d2 d2
1 d \

dw do? bt \da?
2 dw8

<& dw)

Substituting in (19), and operating separately on the factor -ar
-1

, we obtain

/ d? d2 id 1 d \ 1 d? d- 1 d \
,

. ,.

[—- + .
; + _ —

\|/
ft 0. . . (20)

\dx2 d2,sr tit dur
/u.

dtl \dx~ dsr- •& d-ar;
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Since the operations represented by the two expressions within parentheses are evidently

convertible, the integral of this equation is

f = ^ + f»* (21)

where
\j/u \^2 are the integrals of the equations

/ d? d2
1

_d_\

/ <P cP Id 1 d\

\d,v
2 dm3 "nr dw /x dt)

* 2

(22)

(23)

f
,
/ d* d* 1 d\ d\ J_ dyj,

~y{dl?
+

dlr*
+
wd^)~dl) :&d ;& : ' ' * - (24)

11. By means of the last three equations, the expression for dp obtained from (l6) and

(17) is greatly simplified. We get, in the first place,

1 dp

p doe

but by adding together equations (22) and (23), and taking account of (21), we get

d2^ _ d?\f, \_d>\f
1 df2

da;
2

d-ar
2 nr dw

ft! dt

On substituting in (24), it will be found that all the terms in the right-hand member of

the equation destroy one another, except those which contain —— and —
^— , and the equation

dt dt

is reduced to

dp
dm urdtdur

The equation (17) may be reduced in a similar manner, and we get finally

sr \dtdx dtdur I

which is an exact differential by virtue of (22).

(25)

* If we denote for shortness the operation

<P <P 1 d

di- da* a da
by D, our equation becomes

which gives by the separation of symbols

bur &-}&•-»*.-• »
d'l' .

so that
—j-

is composed of two parts, which are separately the

integrals of (22), (23). Hence we have for the integral of ('20')

Wm» + +1+ *j * being a function of x and a without t

which satisfies the equation D'V = 0. For the equations (22),

Vol. IX. Paet II.

(23) will not be altered if we put/\^,d<, fty^dl for \fr lt <^s,

the arbitrary functions which would arise from the integration

with respect to t being supposed to be included in ¥. The
function ¥, which taken by itself can only correspond to steady

motion, is excluded from the problem under consideration by
the condition of periodicity. But we may even, independently

of this condition, regard (21 ) as the complete integral of (20'),

provided we suppose included in (21) terms which would be

obtained by supposing \\r
at first to vary slowly with the

time, employing the integrals of (22) and (23), and then

making the rate of variation diminish indefinitely. By treat-

ing the symbolical expression in the right-hand member of

d
equation (a) as a vanishing fraction,

—
being supposed to

vanish, we obtain in fact D~* ; so that under the convention

just mentioned the function ¥ may be supposed to be in-

cluded in
\]i i + i//2 . The same remarks will apply to the

equation in Section III. which answers to (20').

28



[26] PROFESSOR STOKES, ON THE EFFECT OF THE INTERNAL FRICTION

12. Passing to polar co-ordinates, let r be the radius vector drawn from the origin, 9 the

angle which r makes with the axis of x, and let R be the velocity along the radius vector,

the velocity perpendicular to the radius vector : then

x = r cos 9, W = r sin 9, u = R cos 9 - 9 sin 9, q — R sin 9 + 9 cos 9.

Making these substitutions in (20), (22), (23), and (25), we obtain

r sin9(Rrd9-Gdr) = df, ..;... (26)

d2
xb

{
sin 9 d ( 1 d\bA^ +^^U^J =0

<27>

da

\^2 sin0 d
I

1 d^2\ 1
d\j/2

~d?~
+
~r^d9{sti9^9) ~»'~dT

=
' ' ' * (28)

dpm -4-^(f±L rd0.l^±L dr) my
rsin9\dtdr rdtd9 j

yy>

We must now determine
\j/ 1 and \js2 by means of (27) and (28), combined with the equa-

tions of condition. When these functions are known, p will be obtained by integrating the

exact differential which forms the right-hand member of (29), and the velocities R, 0, if

required, will be got by differentiation, as indicated by equation (26). Formulae deduced

from (4) and (5) will then make known the pressure of the fluid on the sphere.

13. Let £ be the abcissa of the centre of the sphere at any instant. The conditions to

be satisfied at the surface of the sphere are that when r = r„ the radius vector of the surface,

we have

R=cos9—, 9=-sin0-^.
dt dt

Now r, differs from a by a small quantity of the first order, and since this value of r has

to be substituted in functions which are already small quantities of that order, it will be suffi-

cient to put r m a. Hence, expressing R and 9 in terms of
\|/,

we get

d\ls . dp d4r . . dp— = a sin 6r — ,
—£ m or sin 9 cos 9 —-

, when r = a. . . (30)
dr dt d9 dt

When the fluid is unlimited, it will be found that certain arbitrary constants will vanish

by the condition that the motion shall not become infinite at an infinite distance in the fluid.

When the fluid is confined by an envelope having a radius b, we have the equations of con-

dition

d4f d\ls

-j-
= 0, —5 = 0, when r = b (31)dr d9

14. We must now, in accordance with the plan proposed in Section I., introduce the con-

dition that the function
\^ shall be composed, so far as the time is concerned, of the circular

functions sin nt and cos nt, that is, that it shall be of the form Psin nt + Q cos nt, where P
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and Q are functions of r and 8 only. An artifice, however, which has been extensively

employed by M. Cauchy will here be found of great use. Instead of introducing the circular

functions sinnt and cos nt, we may employ the exponentials e^i"', and f-V^Inf. Since

our equations are linear, and since each of these exponential functions reproduces itself at each

differentiation, it follows that if all the terms in any one of our equations be arranged in two

groups, containing as a factor e^^"' in one case, and e-^J-int in the other, the two groups
will be quite independent, and the equations will be satisfied by either group separately.

Hence it will be sufficient to introduce one of the exponential functions. We shall thus have

only half the number of terms to write down, and half the number of arbitrary constants to

determine that would have been necessary had we employed circular functions. When we have

arrived at our result, it will be sufficient to put each equation under the form U + \/~-\ V= 0,

and throw away the imaginary part, or else throw away the real part and omit \/— l since

the system of quantities U, and the system of quantities V must separately satisfy the equa-
tions of the problem. Assuming then

dt
ce
V-lnt

y e F
>

we have to determine P as a function of r and 6.

15. The form of the equations of condition (SO) points out sin
2
(9 as a factor of P, and

since the operation sin 6 —- ——- —-
performed on the function sm s 6 reproduces the same

ad sin ad

function with a coefficient -
2, it will be possible to satisfy equations (27) and (28) on the sup-

position that sin
2
(3 is a factor of yi and y2*. Assume then

yi = e
VZ1 " f

sin
2 6 % (r), y2

= e
V
~
lM <

sin
2

0/, (r).

Putting for convenience

n \/- 1 - n'm2
, (32)

and substituting in (27) and (28), we get

f"(r) "
^/.W

- 0, ....... . (33)

f2"(r)--J.2 (r)-m?Mr) =
(34)r

* When this operation is performed on the function

dYi
sinB—, the function is reproduced with a coefficient

- » (« + 1). Yi here denotes a Laplace's coefficient of the i,h

order, which contains only one variable angle, namely 6.

Now <// may be expanded in a series of quantities of the

>dYi
general form sin 6

<I0
For, since we are only concerned

with the differential coefficients of ty with respect to r and

6, we have a right to suppose i^ to vanish at whatever point
of space we please. Let then

\jr
= when r = a and 6 = 0.

To find the value of
\fi

at a distance r from the origin, along
the axis of x positive, it will be sufficient to put 6 = 0, d8 =
in (26), and integrate from r = o to r, whence i^ = 0. To

find the value of i^ at the same distance r along the axis of

* negative, it will be sufficient to leave r constant, and in-

tegrate d
tj/

from 6 = to 6 = tt. Referring to (26), we see

that the integral vanishes, since the total flux across the

surface of the sphere whose radius is r must be equal to zero.

Hence \j/
vanishes when 6 = or = ir, and it appears from

(26) that when 6 is very small or very nearly equal to nr, \j/

varies ultimately as sin* 6 for given values of r and t. Hence

\\r
cosec 6, and therefore f\]r cosec 6 dS, is finite even when

sin 6 vanishes, and therefore /<//cosec6rf6 may be expanded
in a series of Laplace's coefficients, and therefore if> itself in

dYi
a series of quantities of the form sin 6 ——-

. It was somewhat
06

in this way that I first obtained the form of the function \fr.

28—2
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The equations of condition (30), (3l) become, on putting /(r) for/j(r) + /2 (r),

/» = «c, f(a) = ±a2
c, (35)

/(6)=0, /(6)=0 (36)

We may obtain p from (29) by putting for ^ its value e/i

'm'
t
sin2 0/, (r), replacing

after differentiation %f\(r) by its equivalent f*f"(r)t
and then integrating. It is unnecessary

to add an arbitrary function of the time, since any such function may be supposed to be

included in II. We get

p = -
pfj.'m

i
6 il

'mH
cosef1'(r) (37)

16. The integration of the differential equation (33) does not present the least difficulty,

and (34) comes under a well known integrable form. The integrals of these equations are

f,(r) = - + Br\
T

Mr) = Ce-mr (l+—) + Demr (l - —),
\ mrj \ mrj

(38)

and we have to determine A, B, C, D by the equations of condition.

The solution of the problem, in the case in which the fluid is confined by a spherical

envelope, will of course contain as a particular case that in which the fluid is unlimited, to

obtain the results belonging to which it will be sufficient to put b = oo . As, however, the

case of an unlimited fluid is at the same time simpler and more interesting than the general

case, it will be proper to consider it separately.

Let +m denote that square root of (i'

J «\/-l which has its real part positive; then

in equations (38) we must have D = 0, since otherwise the velocity would be infinite at an

infinite distance. We must also have B = 0, since otherwise the velocity would be finite when

r = oo
, as appears from (26). We get then from the equations of condition (35)

, , 3a2
e / 1\ _ 3ac

A=±a3c + 1+ , C=-~
2m \ ma) 2m

whence

£•,/*«, (39)

>/,=la'c6'
i

' m!/ sin
2

0Jfl+ — +-J-) " -—
f 1 +—)«" m(r " fl)L • («)r

(\ ma m'a*) r ma \ mrj J

p = ±pacu jWl +— + __ I e*'
1"" cos -

(41)m
\ ma m'ar) r

17. The symbolical equations (40), (4l) contain the solution of the problem, the motion

of the sphere being defined by the symbolical equation (39). If we wish to exhibit the

actual results by means of real quantities alone, we have only to put the right-hand members
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of equations (39), (40), (41) under the form U + \/'- 1 V, and reject the imaginary part.

Putting for shortness

Vr>"^ <42 )

we have m = v (l + y/- l), and we obtain

f = - sin nt, (48)n

\l/ = ia8 csin2
^| |( 1 + )

cosnt + (1 +— ]
sinnH -

r 2
\L\ 2vaJ 2i>a \ vaj J r

e~ v (
r ~ a)

\ cos (nt
- vr + va)+ (l + —\ sin (nt - vr + va)\\, . (44)

P = - A pacn\[\ + )sinn< (l +— 1 cos«4 cosfl. — (45)r ^ r
\\ ival 2va \ vaj J r2

v '

The reader will remark that the £, \J/, p of the present article are not the same as the

£, ^ , p of the preceding. The latter are the imaginary expressions, of which the real parts

constitute the former. It did not appear necessary to change the notation.

When (i'
= 0, v = ,

and
-ty

reduces itself to

a3 c . a3
. , „ dp— sin2 9 cos nt, or — sin

2 9 — .

2r 2r dt

In this case we get from (26)

dt r * dt r

and Rdr + QrdO is an exact differential d<p where

d%cos0

which agrees with the result deduced directly from the ordinary equations of hydrodynamics *.

18. Let us now form the expression for the resultant of the pressures of the fluid on the

several elements of the surface of the sphere. Let Pr be the normal, and Te the tangential,

component of the pressure at any point in the direction of a plane drawn perpendicular to

the radius vector. The formulae (4), (5) are general, and therefore we may replace x, y in

these formulae by x', y ,
where x', y are measured in any two rectangular directions we please.

Let the plane of x' y pass through the axis of x and the radius vector, and let the axis of x'

be inclined to that of x at an angle $, which after differentiation is made equal to 9. Then

Plt T3 will become Pr , Te, respectively. We have

u = R cos (9
- 9) - 8 sin (9

-
9), v = R sin (0

- $) + 9 cos (9
- $),

See Camb. Phil. Trans. Vol. VIII. p. 119.
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and when 9 = §
d (I d d

die'** d~r' dy'

=
rd~9'

du' dR du dR 9 dv' de
doe' dr

'

dy rd9 r
'

dee' dr
'

whence

dR m (dR d9 e\
Pr

= p-2 M — , Te =-^(— + - (46)
dr \rd9 dr rl

In these formulae, suppose r put equal to a after differentiation. Then Pr , Te will be the

components in the direction of r, 9 of the pressure of the sphere on the fluid. The resolved

part of these in the direction of x is

P, cos 9 - Te sin 9,

which is equal and opposite to the component, in the direction of x, of the pressure of the

fluid on the sphere. Let F be the whole force of the fluid on the sphere, which will evidently

act along the axis of x. Then, observing that 2wa2 sin9d9 is the area of an elementary

annulus of the surface of the sphere, we get

F=2wat

fi-Pr cos 9+ Te sin9)a sm9d9, .... (47)

the suffix a denoting that r is supposed to have the value a in the general expressions for

P, and Te .

The expression for F may be greatly simplified, without employing the solution of equa-

tions (27), (28), by combining these equations in their original state with the equations of

condition (30). We have, in the first place, from (26)

1 d^ 1 M
r4 sm9 d9 r sm 9 dr

Now the equations (30) make known the values of 4r and ~~, and of their differential
dr

coefficients of all orders with respect to 9, when r = a. When the expressions for R and 6 are

substituted in (46), the result will contain only one term in which the differentiation with

respect to r rises to the second order. But we get from (21), (27), (28)

d2
\f/

sin 9 d t 1 d^\ 1 d\//2

~dr*
= "

~V d~9 VshTe d~9 J ^^'df'
and the second of equations (30) gives the value for r = a of the first term in the right-hand

member of the equation just written. We obtain from (48) and (30)

dR\T =0
'

dr) „

fdR\ sin0d£ _ /9\

\rd~9J a

~
~~~a~ ~di~ lW,

fdQ\ _i /rfvM

\dr)~
~

ix a sin 9\dt) a

'
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Substituting in (47), and writing ft p for n, we get

F = 2-n-a rl-apa cos6 + p [~j) }
sin 9d9.

With respect to the first term in this expression, we get by integration by parts

fp cos 9 sin 9 d9 = £ sin2 9 . p -
\ /sin

2 9 -^ d9.
du

The first term vanishes at the limits. Substituting in the second term for — the
du

expression got from (29), and putting r = a, we get

fp, cos 9 sin 9d0 - -
$p %- f (

d

-p) sin 9 d9.
*o dt J \ dr ) a

Substituting in the expression for F, we get

F~*f>a- H«^hj +8(^»),J«Qerf0
(49)

19- The above expression for F, being derived from the general equations (27), (28),

combined with the equations of condition (30), holds good, not merely when the fluid is con-

fined by a spherical envelope, but whenever the motion is symmetrical about an axis, and that,

whether the motion of the sphere be or be not expressed by a single circular function of the

time. It might be employed, for instance, in the case of a sphere oscillating in a direction

perpendicular to a fixed rigid plane.

When the fluid is either unconfined, or confined by a spherical envelope concentric with

the sphere in its position of equilibrium, the functions xj^, -v^2 consist, as we have seen, of

sin2 9 multiplied by two factors independent of 9. If we continue to employ the symbolical

expressions, which will be more convenient to work with than the real expressions which

might be derived from them, we shall have

e^"7.00, e
v - lre

7c00>

for these factors respectively. Substituting in (49), and performing the integration with

respect to 9, we get

F-^irpans/^Tl {af,'(a) + 2f2(a)} e^~lnt (50)

20. Consider for the present only the case in which the fluid is unlimited. The arbitrary

constants which appear in equations (38) were determined for this case in Art. 16. Substi-

tuting in (50) we get

F= -Zirpa?cn\/- 1
(
1 + + ^-9 ) e

v - ln '-
•* r

V, ma m2a2
J
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Putting for m its value y(l + */ - l), and denoting by M the mass of the fluid displaced by
the sphere, which is equal to ^irpa

3

,
we get

IV 4v«/ ^va V val )

V
2 ±va) dt2

4,va \ vaj dt K }

F=-Mcn 1 + -LK/-1 + JL 1+-H«Vri»|
IV 4v«/ ^va V v«/J

whence

Since v^ _ 1 nas ^een eliminated, this equation will remain unchanged when we pass from the

symbolical to the real values of F and
£.

Let t be the time of oscillation from rest to rest, so that nr =
ir, and put for shortness

k, k' for the coefficients of M' in (51); then

2/ot t 4j/a 4i>a V val
(52)

The first term in the expression for the force F has the same effect as increasing the inertia

of the sphere. To take account of this term, it will be sufficient to conceive a mass kM'

collected at the centre of the sphere, adding to its inertia without adding to its weight. The

main effect of the second term is to produce a diminution in the arc of oscillation : its effect

on the time of oscillation would usually be quite insensible, and must in fact be neglected

for consistency's sake, because the motion of the fluid was determined by supposing the motion

of the sphere permanent, which is only allowable when we neglect the square of the rate of

decrease of the arc of oscillation.

If we form the equation of motion of the sphere, introducing the force F, and then

proceed to integrate the equation, we shall obtain in the integral an exponential e~
8 ' multi-

df rp£
plying the circular function, S being half the coefficient of •— divided by that of —| . Let1 * ° dt dt2

M be the mass of the sphere, My 1
its moment of inertia about the axis of suspension, then

nk'M1

(l + ay = <2§ {My* +kM'(l+ af) .

In considering the diminution of the arc of oscillation, we may put I + a for y. During i

oscillations, let the arc of oscillation be diminished in the ratio of J to A
t , then

A
. ,

-n-i k'M1

\og>.— =iTd= ————
, (53)&'A

t
2 M+kM v '

For a given fluid and a given time of oscillation, both k and k' increase as a decreases.

Hence it follows from theory, that the smaller be the sphere, its density being supposed given,

the more the time of oscillation is affected, and the more rapidly the arc of oscillation

diminishes, the alteration in the rate of diminution of the arc due to an alteration in the radius

of the sphere being more conspicuous than the alteration in the time of oscillation.

21. Let us now suppose the fluid confined in a spherical envelope. In this case, we have



OF FLUIDS ON THE MOTION OF PENDULUMS. [33]

to determine the four arbitrary constants which appear in (38) by the four equations (35) and

(36). We get, in the first place,

- + Ba* + Ce- ma
( 1 +—} + Dena f 1 -—) ^la'c, . ... (54)

a \ ma) \ ma) " v '

--+2Ba*-Ce-ma (ma + l +—) + Dema (ma-l+~) = a2
c, . . (55)

a \ ma) \ ma)

^
+^ + C 6

-(i + ^) + ^(l-^)=o, (56)

-^ + 2Bb*-C6- mb
(mb + l + -^~) +Demb

(mb-1 + ~) = o. . . (57)
b \ mb) \ mb)

Putting a%cK for af((a) +2/2 (a), which is the quantity that we want to find, we get

from (38) and (54) ,

*ml ~c <58)

Eliminating in succession B from (54) and (55), from (56) and (57), and from (54) and (56),

we shall obtain for the determination of A, C, D three equations which remain unchanged
when a and b are interchanged, and the signs of A, C, and D changed. Hence - A, -

C, -D
are the same functions of b and a that A, C, D are of a and b. It will also assist in the

further elimination to observe that C and D are interchanged when the sign of m is changed.

The result of the elimination is

K m . _ _£6 gfo
b)

-
v(b, a)

<Zm*a*' 12mab + £(a,b) + £(b,a)'
^

the functions
£, r\ being defined by the equations

n (a, b)
= (»reV + 3ma + 3) (m

s
6
2 - 3mb + 3) 6

m
(*-°), 1

£(a, 6)= \b(m*V-3mb+3)-a(m
!ai + 3ma + 3)\ e

m
(b

- a
). J

(60)

It turns out that Kiss, complicated function of m and ab~ l

, and the algebraical expressions

for the quantities which answer to k and k' in Art. 20 would be more complicated still, because

n(l +\/ -
1) would have to be substituted for m in (60) and (59), and then K reduced to the

form -fc + v-lA;'. To obtain numerical results from these formulae, it would be best to

substitute the numerical values of a, b, and v in (60) and (59), and perform the reduction of

K in figures.

22. If the distance of the envelope from the surface of the sphere be at all considerable,

the exponential e
v

^
b ~ a

\ which arises from 6
ra

(
J - a

), will have so large a numerical value that

we may neglect the terms in the numerator and denominator of the fraction in the expression

for K which contain e
~ v ^

b ~ a
\ as well as the term in the denominator which is free from expo-

nentials, in comparison with the terms which contain e"(
b~ a\ Thus, if b - a be two inches,

t one second, and y//x
= .116, we have e

v
(
b - a ) = 2424000000, nearly ; and if b - a be only an

Vol. IX. Paet II. 29
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inch or half an inch, we have still the square or fourth root of the above quantity, that is,

about 49234 or 222, for the value of that exponential. Hence, in practical cases, the above

simplification may be made, which will cause the exponentials to disappear from the expression

for K. We thus get

3b (m?a
2 + 3ma + 3) (m

c62 - Smb + 3)= 1

T 2m?a2 b (r»
2
6* - 3mb + 3)

- a (roV + Sma + 3)
' ' ' ^

If we assume

3va + 3 + (2i>
2 a2 + 3va)\/ - 1 = -4'(coset + y/-l sina),

- 3vb + 3 + (Z^b
2 - 3vb) \/- 1 = 5'(cos /3 + v^-1 sin/3),

bS cos /3
— a A' cos a = C cos y,

b fi' sin j8
- a A' sin a = C sin

<y,

we get from (6l)

3bv — 1 ^i'5' c . . _ . / . , _ . ,

+
Wa*

'

~C~ {
c0S (a + /3 -7)+V -1 sin(a + j3- 7)},

whence

,
3bA'B' . ,

•

* =
, « <,t^y

sln (a + P -
7)

~ J »

4 1< a C

^ 36^'^
A;=

4^^C7COS(a
+ /3

-
7);

(62)

and, as before, kM' is the imaginary mass which we must conceive to be collected at the centre

of the sphere, in order to allow for the inertia of the fluid, and — k'M'n — the term in F on
dt

which depends the diminution in the arc of oscillation.

23. If we suppose // = 0, and therefore m = co
,
we get from (61)

b3 + 2 a3

2 (o
3 - a3)

and, in this case, k is the same as K with sign changed, and k' = 0, which agrees with the

result obtained directly from the ordinary equations of hydrodynamics*. If, on the other

hand, we make 6 = 00 , we arrive at the results already obtained in Art. 20. In both these

cases it becomes rigorously exact to neglect in the expression for K — 1 given by (59) all the

terms which are not multiplied by e"^""'.

If the effect of the envelope be but small, which will generally be the case, it will be

convenient to calculate k and k' from the formulae (52), which apply to the case in which

6 = »
,
and then add corrections A k, Ak' due to the envelope. We get from (61)

/ ,, 3 (m! a2 + 3ma + 3Y ,„,,A k — v — l A k = - (64)
2m2 a 6(w»

2 63 -3»w6 + 3)
- a(m2 ai + 3ma + 3)'

See Camb. Phil. Trans. Vol. VIII. p. 120.
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which may be treated, if required, as the equation (6l) was treated in the preceding article.

If, however, we suppose m large, and are content to retain only the most important term in

(64), we get simply

Afr = —~±-, Ak' = 0, (65)
2 (b

3 - a3)

so that the correction for the envelope may be calculated as if the fluid were destitute of

friction.

Section III.

Solution of the equations in the case of an infinite cylinder oscillating in an unlimited

mass offluid, in a direction perpendicular to its axis.

24. Suppose a long cylindrical rod suspended at a point in its axis, and made to oscillate

as a pendulum in an unlimited mass of fluid. The resistance experienced by any element

of the cylinder comprised between two parallel planes drawn perpendicular to the axis will

manifestly be very nearly the same as if the element belonged to an infinite cylinder oscillating

with the same linear velocity. For an element situated very near either extremity of the rod,

the resistance thus determined would, no doubt, be sensibly erroneous ; but as the diameter of

the rod is supposed to be but small in comparison with its length, it will be easily seen that the

error thus introduced must be extremely small.

Imagine then an infinite cylinder to oscillate in a fluid, in a direction perpendicular to its

axis, so that the motion takes place in two dimensions, and let it be required to determine the

motion of the fluid. The mode of solution of this problem will require no explanation, being

identical in principle with that which has been already adopted in the case of a sphere. In

the present instance the problem will be found somewhat easier, up to the formation of the

equations analogous to (33) and (34), after which it will become much more difficult.

25. Let a plane drawn perpendicular to the axis of the cylinder be taken for the plane of

xy, the origin being situated in the mean position of the axis of the cylinder, and the axis of

x being measured in the direction of the cylinder's motion. The general equations (2), (3)

become in this case

dp r<Pu d°u\ du
d~x

=
lL

[dx1
+
lhf)

"
P ~dt'

) (66)
dp (d?v

d?v\ dv

d^
= M

[dx1
+
df)

"
P dt'

du dv

dx dy
v '

By virtue of (67), udy-vdx is an exact differential. Let then

, udy -vdx = d% (68)

29—2
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Eliminating p by differentiation from the two equations (66), and expressing u and t> in

terms of ^ m tne resulting equation, we get

/ d2 d8 •
1 d \ l <P

d?_\

\d^
+
d^~^dtj\d^

+
'dy)

x ~
' ' ' ' •

and, as before

where
X =

Xi + X" •

f d" d* \

{c^
+ d?)*^ '

f <F d2

1_
d\

K2&
+

dtf

"
n' dt) X*

~ °

. . . (69)

. , . (70)

• • • (71)

. . . (72)

We get from (66) and (68)

,
d/d2 d2

1 d \
,

d / d2 d2
1 d \

dp =
»pdx.-\^ +

^--,-) x -»pdy.-{— + —--,-) x,

which becomes by means of (70), (71), and (72)

26. Passing to polar co-ordinates r, (9, where 9 is supposed to be measured from the axis

of x, we get from (68), (71), (72), and (73)

RrdO- 9dr = dx,

id Id2

1

s id 1 <P \

/£_ l
_d

ydr1 r dr

(74)

(75)

Id l

r r*

1 d\
(76)

(77)

R, in (74) being the velocities along and perpendicular to the radius vector.

27. Let a be the radius of the cylinder ; and as before let the cylinder's motion be

defined by the equation

dt
" = ce* 7*

'; (78)

then we have for the equations of condition which relate to the surface of the cylinder

R = —£r = COS0 -2 = C COS0 e'
x''n^

^
rd0 dt

dv d?
= -

-7* = - sin $ -5 = - c sin (9 e"'
m

''.

dr d*

when r = a. (79)
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The general equations (75), (76), as well as the equations of condition (79), may be

satisfied by taking

X^e'*'"'' sin OF^r), x* = e^'sinflF% (r) (80)

Substituting in (75), (76), and (79), we get

F^ + jrJi'W-^ito-O, (81)

Ft"(r) +
J
Fi{r) -^Fs (r)

- m2F2 (r)
= 0, . . . . (82)

F
1 (a) + Fa (a)

= ac, F{(fi) + F2\a) =
c, .... (83)

besides which we have the condition that the velocity shall vanish at an infinite distance.

28. The integral of (81) is

F
1 (r)

= - + Br (84)
r

The integral of (82) cannot be obtained in finite terms.

To simplify the latter equation, assume F2 (r)
= ^3 (r). Substituting in (82), and inte-

grating once, we get

F3"(r) + - F3'(r)
- m*F3 (r)

=
(85)

r

It is unnecessary to add an arbitrary constant, because such a constant, if introduced, might

be got rid of by writing F3 (r) + C for F3 (r).

To integrate (85) by series according to ascending powers of r, let us first, instead of (85),

take the equation formed from it by multiplying the second term by 1 - 8. Assuming in this

new equation Fa (r) = Ax* + B
t
aP + ..., and determining the arbitrary indices a, /3...and the

arbitrary constants A
t , B

t
...so as to satisfy the equation, we get

_ s v
. . m2r2 mV .

^ (r) ^^ 1+
2l2^)-

f
2, 4 (2 -^)(4-^)

+ -^

+ A"T Jl +
2(2~7I)

+
2.4 (2 +3) (4 + S)

+ "'»

= (A )
+ A

/l
+ Ajlogr)\l +—+—

3
+ ...]

+ terms involving J* S
3
...

In this expression

'a + rs
—

71
—

tz, *i +

£, =1-' + 2" l + 3- 1
... +1" 1

(86)
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Putting now

A, - C - A
tt, A„ = Dl-\

substituting in the above equation, and then making % vanish, we get

*,(r)-<C+Dlogr)(l+— +5^+«)

-< i^'Sl + i^'y2+ ^^^'y3+- ) - • * * (87)

The series in this equation are evidently convergent for all values of r, however great ; but,

nevertheless, they give us no information as to what becomes of F3 (r) when r becomes infinite,

and yet one relation between C and D has to be determined by the condition that F3 (r) shall

not become infinite with r.

The equation (85) may be integrated by means of descending series combined with expo-

nentials, by assuming F3 (f)
= e^mr{Ar

a + B^...). I have already given the integral in this

form in a paper, On the numerical calculation of a class of definite integrals and infinite

series*. The result is

„,
' . „ ,, l

2
1
2 .32

l
2 .S2 .52

F>(r) = C?e~ mr r~l \l + i- Iw l 2.4mr 2.4(4mr)
2

2.4.6(4jrar)
3 '

l
2

l
2 32 I

2 S2 5 2

+ D' e
mr

r~l{l + + -+ -— +...}. . (88)2.4,mr 2.1(4mr)' 2.4.6(4»»r)
3 * v '

These series, although ultimately divergent in all cases, are very convenient for numerical

calculation when the modulus of mr is large. Moreover they give at once D'= for the con-

dition that F3 (r) shall not become infinite with r, and therefore we shall be able to obtain the

required relation between C and D, provided we can express D' as a function of C and D.

29. This may be effected by means of the integral of (85) expressed by definite integrals.

This form of the integral is already known. It becomes, by a slight transformation,

F3 (r)
= f*{C" + D"log(rsm

i
a,)}(e

mrcoa »+€- mrcosa
')da>, . . (89)

C", If' being the two arbitrary constants. If we expand the exponentials in (89), and integrate

the terms separately, we obtain, in fact, an expression of the same form as (87). This trans-

formation requires the reduction of the definite integral

P
{
m f

* cos" a) log sin wdo).

If we integrate by parts, integrating cos w log sin wdw, and differentiating cos 2 '-1
to, we shall

make P
t depend on Pj_i. Assuming P = Q , Pi

= ^Q 1 ..„ and generally

_ 1.3...(£»-1)

• Camb. Phil. Trans. Vol. IX. p. 182.
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we get

Q,-Q.-{2-
I + *- ,

...+ (20-
1

}f
=
|l°g(i)-J-Si.*

The equivalence of the expressions (87) and (89) having been ascertained, in order to find

the relations between C, D and C", D", it will be sufficient to write down the two leading terms

in (87) and (89), and equate the results. We thus get

C + Z> log r = ttC" + irD" log r + ZirLl' log (1),

whence

C = 7rC" + 27r log (£).£>", D=nD" (90)

There remains the more difficult step of finding the relation between D' and C", D". For

this purpose let us seek the ultimate value of the second member of equation (89) when r

increases indefinitely. In the first place we may observe that if Q, Q' be two imaginary quan-

tities having their real parts positive, if the real part of Q be greater than that of Q', and if

r be supposed to increase indefinitely, e
Qr will ultimately be incomparably greater than e

Q r
, or

even than log r . e
Qr

, or, to speak more precisely, the modulus of the former expression will

ultimately be incomparably greater than the modulus of either of the latter. Hence, in finding

the ultimate value of the expression for F3 (r) in (89), we may replace the limits and ^ir of

<o by and an, where to, is a positive quantity as small as we please, which we may suppose to

vanish after r has become infinite. We may also, for the same reason, omit the second of the

exponentials. Let cos w = 1 — X, so that

sin' to = 2X
(
1_

^)'
dw =

d\ X dX

then the limits of X will be and X15 where \1= l - cosw!. Since log 1 1
J ultimately

-m\r x

vanishes, and H 1- ...becomes ultimately 1, we get from (89)
4

limit of F3 (r)
= e

mr x limit of f
X,

(C" + D"log2\r) .

If now we put X=X'r-1
, we shall have and Xi»" for the limits of X', and the second of

these becomes infinite with r. Hence

limit of F3 (r) = (Zr)-ie
mr

/"°(C" + ZT log2X') e-mV X'-Mx'. . . (91)
•'0

/*CO

Now / e~"x-ida! = 7r^, and if we differentiate both sides of the equation

/'

W
€- ir

a?
s - 1 d (»=r(s)

A demonstration by Mr Ellis of the theorem

L 2 logsin6de=
jjlog(i)

due to Euler will be found in the 2nd volume of the Cam-
bridge Mathematical Journal, p. 282, or in Gregory's Ex-
amples, p. 484,

f The word limit is here used in the sense in which f(r)
may be called the limit of <Hr) when the ratio of <p(r) to/(r)
is ultimately a ratio of equality, though /(r) and <p(r) may
vanish or become infinite together, in which case the limit of

<t> (r), according to the usual sense of the word limit, would be

said to be zero or infinity.
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with respect to 8, and after differentiation put s = ^, we get

fV'arHogtfda? = r'(|).

Putting WBtnX' in these equations we get

r e
-mX'\'-ld\' = irlm-l, f° e~ mX

'

\'-Hog\' d\' = m-h {r'(|)
-
«ijof »)],

"o

where that value of m~l is to be taken which has its real part positive. Substituting in

(91) we get

limit of Ftir) =
{—)*- \C" {*-W\

-
log?) 2>"}.

Comparing with (88) we get

»-(£)V+
(.-»rt-«,r)in <*)

30. We are now enabled to find the relation between C and D arising from the condition

that the motion of the fluid shall not become infinitely great at an infinite distance from the

cylinder. The determination of the arbitrary constants A, B, C, D will present no further

difficulty. We must have B = 0, since otherwise the velocity would be finite at an infinite

distance, and then the two equations (83), combined with the relation above mentioned, will

serve to determine A, C, D. The motion of the fluid will thus be completely determined, the

functions F^r), F3 {r) being given by (84) and (87). When the modulus of mr is large, the

series in (87), though ultimately hypergeometrically convergent, are at first rapidly divergent,

and in calculating the numerical value of F3 (r) in such a case it would be far more convenient

to employ equation (88). The employment of this equation for the purpose would require the

previous determination of the constant C'. It will be found however that in calculating the

resultant pressure of the fluid on the cylinder, which it is the main object of the present

investigation to determine, a knowledge of the value of C will not be required, and that, even

though the equation (88) be employed.

Putting U= in (92), and eliminating C" and D" between the resulting equation and the

two equations (90), we get

Vth

C=0og--7r-*r'l)Z>; (93)
o

and we get from (83) and (84), observing that F2 (r)
= F3'(r), and that B = 0,

A A— + F3'(a) = ac, + aF3"(a) = ac, .... (94)
a a

whence

a'c + A aF3"(a)
(95)

a*c- A F3'(a)

This equation will determine A, because if F3 (a) be expressed by (87) the second member of
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(95) will only contain the ratio of C to D, which is given by (93), and if F3 (a) be expressed

by (88) C will disappear, inasmuch as D'= 0.

31. Let us now form the expression for the resultant of the forces which the fluid exerts

on the cylinder. Let F be the resultant of the pressures acting on a length dl of the cylinder,

which will evidently be a force acting in the direction of the axis of w ; then we get in the

same way as the expression (47) was obtained

F=adl J™(- Pr cos 9 + Te sin 9)a d9, (96)

and Pr , Te are given in terms of R and 9 by the same formulae (46) as before. When the

right-hand members of these equations are expressed in terms of v, there will be only one

term in which the differentiation with respect to r rises to the second order, and we get from

(70), (75), and (76)

d*X l <*X 1 ^X x d
X°-

d~?
='"

"r~dr~
'

r* d0*
4
'p'~dt'

We get from this equation and the equations of condition (79)

,dR\
m i(*X\ _ 1

(J?x_\ m
\dr) a a\de)a a?\drde) a

'

fdR\ 1 fd\\ sin 9 d'£ _
U<W/"#

"
& UflV. a~~di~~a~'

(dQ\
I
_ (d?x\ _l_(<hc\

1

(d\\ _l(dj(A _ I (dte\
\dr) a WJa a \dr) a a* W6>V a ,/W*/„ n'\dt) m

'

Hence

F=adl p*{-pa cos6 + p(-^ sin9}d9. .... (97)

We get by integration by parts

r],Q = n sin ft - f\

[d9)
fpa cos 9 dd = pa sin 9 - f(-^\ sin9d9.

» d9 ) a

The first term vanishes at both limits; and putting for
-f-

its value given by (77), and
• d9

substituting in (97), we get

F =P adl
d
i
ifla

{

d

i)^(x^}^ed9,
or

F = irpadl.n\/~^\ {aF^a) + F3'(a)} e^71 "'-

Observing that F3'(a) or Fs (a) = ac - Fx (a) from (83), and that /\(a) = Aa~\ where

A is given by (95), and putting M' for vpcfdl, the mass of the fluid displaced, we get

F = M'cnV—U.^l^m\^^
[ aF3 (a) + F3 (a) J

Vol. IX. Part II. 30
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which becomes by means of the differential equation (85) which F3 satisfies

F-^'cn^—^-^WX^in,. ..... (98)
[

m*aF3 (a)]

Let

''•'a^'*-^"^ (99)m ar 3 {a)

where k and k' are real, then, as before, kM' —— will be the part of F which alters the time
or

dp
of oscillation, and k'M'n— the part which produces a diminution in the arc of oscillation.

at

When (i! vanishes, m becomes infinite, and we get from (88) and (99), remembering that

D'= 0; k = 1, k'= 0, a result which follows directly and very simply from the ordinary equa-

tions of hydrodynamics*.

32. Every thing is now reduced to the numerical calculation of the quantities k, k', of

which the analytical expressions are given. The series (87) being always convergent might be

employed in all cases, but when the modulus of m a is large, it will be far more convenient to

employ a series according to descending powers of a. Let us consider the ascending series first.

Let 2tn be the modulus of ma; then

- V^T a / n a / ir
ma = 2tne 4

, m -r V - - ~V ~ > • • • (100)
2 v

fi 2 /xt

t being as before the time of oscillation from rest to rest. Substituting in (99) the above

expression for ma, we get

j '

,/ \/ - 1 aF3'(a)

Putting for shortness

loge
4 + *--*r'(l) = - A (102)

we get from (87) and (93)

^F,(a)-(logm
+ A +^^)(1+^yTl-JnL-_|l_ v/3T + ...)

•
See Camb. Phil. Trans. Vol. VIII. p. 116.
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Let

m m
1 I

s
. 2

2
. 8

2

+ ... = ML,
in

8

m5L
1* l

8
.2

a
.3

»4

J+... -if,',
tn

m
<? _ m

.«? + = TV

tn*

1
2.22

1
2.22 .32.48

tn

+ ... =Me ,

s

+ ... = .My,

Mft*

iTa*
"

i
2

. 2"! s*. *
s* + '" = N"

nr tn

F'
S

'

1 ~I^i^'
S

'

3+ •" = Ar°''
tn' SU- m'

,Si + ... -2V/,

(103)

1
2.29

1
2
.2

2
.32 .42

log, nt + A = i:
(104)

then substituting in (101), changing the sign of \/ -
1, and arranging the terms, we get

&+\/^A'=i+—1i

- -
(105)m -

^ jf;+ z (1
- mj) + n;+{- lm ' - -

(1
- iio + jv

'} v/ri4 4

33. Before going on with the calculation, it will be requisite to know the numerical

value of the transcendental quantity A. Now

T- J
r'(£)

= (r^)-T'(i)
=
^i°g.roo ds

and the value of — log T(l + s) may be got at once from Legendre's table of the common
ds

logarithms of T(l +«), in which the interval of 5 is .001. Putting l
s
for the tabular number

corresponding to s, we have

log r(l + «)
- 1000 log, 10 {Als

- £A2
/,+ ^ A

3
/,
- i A% + ...}.ds

For a = 1

AZS
= + 16050324, A2

Z,= + 405620, A34= - 359, A4
ZS
= + 6*

the last figure being in each case in the 12th place of decimals. We thus get

tt ^T'(l) =- 1.9635102, A = + .5772158 (106)

34. When ttt is large, it will be more convenient to employ series according to

descending powers of a. Observing that the general term of F3 (a) as given by (88), in

which Z>'= 0, is

klj- [l.3...(2i- 1)1
2

v '
2.4...2i(4ma)'a4

* These numbers are copied from De Morgan's Differential and Integral Calculus, p. 588.

30—2
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we get for the general term of F3'(a)

, v.- i ^ m „ t 1 - 3— (2*— 3

(- l)*-
1 Ce- mi

2.4...(2i
-
2)(4raa

and the expression within brackets is equivalent to

(2i- l)(2i + 1)

)P I (2i- ])
2

'

2i - 1 1

i)
i_1 aM 2i.4ma 2a /'

whence

8ia

aJf,'(a) = Ce-m«mal {- 1 - -±^_ + -il^l^ _
...},1 2.4«ia 2.4(4ma)

!i J

and we find by actual division

Wltn\
= - ma — A + * (ma)

-1
...

35. When many terms are required, the calculation of the coefficients may be facilitated

in the following manner.

Assuming aF3'(a)
=

v(a) F3 (a)f we have

F3\a) = a" 1

v(a) F3(a), F3"(a)
=

{a"
1

./(a)
- a' 2

v(a) + a- 2
(im)

8

}
_F3 (a).

Substituting in the differential equation (85) which F3 has to satisfy, we get

av'(a)+ {via)}
2 - m?a2 =0 (107)

Assuming
v (a)

= - ma + A + Ai (ma)~
1+ A„(ma)~

s
+..., . . . (108)

and substituting in the above equation, we get

- ma - 1 A-Ama)'
1- 2A2 (ma)~

2 - 3A3 (ma)~
3
...

+ {-2ma + A + A x {md)-* +...] {A + A^ma)-
1

+...}
= 0,

which gives on equating coefficients, A = —
^, and for i >

2Ai+l
= -iA

{ + A A
t
+ A 1Ai

_ l ...jrAi
A

Q,

or, assuming to avoid fractions,

4=2- 2i
-'5,, (109)

B{+1
= -2iB

i
+ B B

i + B lBi_ l ...+ Bi
Bm .... (110)

a formula by means of which the coefficients B„ B2 , B3 ... may be readily calculated one

after another. We get

B =-l, £,= +1, #2
= -4, #,= +25, £4 =-208, #5

= +2146,
JBs

= - 26368, B7
= + 375733, Ba

= - 6092032. J

We get now from (100), (101), (108), and (109)

k-y/ - 1&' = 1 +2e 4 TO" 1 -iB e 4 HI" 2 - - B.e * ttr 3
..., (112)

24
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whence if we calculate

Ux
= 2tn-1 ,

U2
=- ^B tit"

2
, M3 - T^g- J?! «' «1,= (-i)

,+,
i5,_,8-

|

+*m-',

. (113)

we shall have, changing the sign of v — 1 in (112), and writing 8 for e 4 »

k + y/ - 1 ft' = 1 + m,8 + «2 8
2 - w3 8

3 + w4 8
4 - «5 8

5 + ...

k= 1 + -^£"1 + ^2^3- «*+'\/i.W»"\/i tt7+ M8- \/2 M!)"-

A' = <y/£ M, + tt2
-

>\/\ U3 + y/\ M5
- U6 + ^\ U-,

- y/± u$-"

If lu I.... be the common logarithms of the coefficients of HI -1
, m~2

... in the last two

of the formula? (113),

Z,
= .1505150

4 = 1.6989700

L = 2.6453650

lt
= 2.4948500

h = 2.2371251

It
= 2.4046734

Z7
= 2.3646348 ;

Z8
= 2.7019316 ;

4 = 2.6017045;

and if the logarithms of the coefficients of tit
-1

, III
-2

... in w,, w2 ... be required, it will be

sufficient to add .1505150 to the 1st, 3rd, 5th, &c. of the logarithms above given.

36. It will be found that when tn is at all large, the series (113) are at first convergent,

and afterwards divergent, and in passing from convergent to divergent the quantities u
t
become

nearly equal for several successive terms. If after having calculated i terms of the first of the

series (113) we wish to complete the series by a formula involving the differences of u
{,
we

have

u^ - ui+1 8
i+1 + ui+ .,H

i+2 - ... = 8* {l
- 8 (l + A) + 8

2
(l + A)

2 -
...} Ui

= 8
!

{l +8(1 + A)}"
1 ^

8 r 8 / 8 \ 2
. ,=

{l A +
)
A2 -

...} «,-,
1 + 8 '

1 + 8 \1 + 8/
' '

,'
'

.
7T / . IT IT -\T^l , „ , , 7T -V-l

and 1 + 8 = 1 + cos- + V - 1 sin - = 2 cos-e 8
, 8 (l + 8)

_1 = \ sec - . e 8
,

so that the quantities to be added to k, k', are

to k, (- l)*£sec
—

{cos
—-—

ir.Ui
-
^ sec - cos— Tr.Au

{
8 S

(*
sec

?)

21+1 A2 JCOS IT. A^ttj...}

,l , .it 7T , . 2l — 1 7T . 9,1
to ft , (- 1)*

i sec — }sm v . u, - 1 sec - sin— w . A«4d 8
l

8 a
8 8

(*-i)'
. 2* + 1

sin ir. A2

Mj...}

(114)

37. The following table contains the values of the functions ft and ft' calculated for

40 different values of HI. From m = .1 to ttl = 1.5 the calculation was performed by means
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of the formula (105); the rest of the table was calculated by means of the series (113).

In the former part of the calculation, six places of decimals were employed in calculating the

functions M , &c. given by (103). The last figure was then struck out, and five-figure loga-

rithms were employed in multiplying the four functions M , M'
Q , Me , and 1 - Me by

-
, and by L, as well as in reducing the right-hand member of (105) to the form k + \/ - 1 A/.

4

The terms of the series (113) were calculated to five places of decimals. That these series are

sufficiently convergent to be employed when lit = 1-5, might be presumed from the numerical

values of the terms, and is confirmed by finding that they give k = 1*952, and k'= V\S3. For

til = 1-5 and a few of the succeeding values, the second and third of the series (113) were

summed directly as far as W -5
inclusively, and the remainders were calculated from the formulae

(114). Two columns are annexed, which give the values of ttl'k and ttt
2

&', and exhibit the law

o/ the variation of the two parts of the force F, when the radius of the cylinder varies, the

nature of the fluid and time of oscillation remaining unchanged. Four significant figures are

retained in all the results.

m
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required in the calculation of the functions M , &c, and of the products LM , &c, in order to

ensure a given degree of accuracy in the result. The calculation by the descending series

(113) is on the contrary very easy.

It will be found that the first differences of TO2
// and of m8

(k
-

1) are nearly constant,

except near the very beginning of the table. Hence in the earlier part of the table the value of k

or k' for a value of TO not found in the table will be best got by finding VH-k - TO" or OT2
k' by

interpolation, and thence passing to the value of k or k'. Very near the beginning of the table,

interpolation would not succeed, but in such a case recourse may be had to the formula? (103),

(104), (105), the calculation of which is comparatively easy whem TO is small. It did not seem

worth while to extend the table beyond OT = 4, because where TO is greater than 4, the series

(113) are so rapidly convergent that k and k' may be calculated to a sufficient degree of accu-

racy with extreme facility.

38. Let us now examine the progress of the functions k and k' .

When TO is very small, we may neglect the powers of TO in the numerator and denominator

of the fraction in the right-hand member of equation (105), retaining only the logarithms and

the constant terms. We thus get

k + v/ - 1 k = 1 »

4

whence

w2

(fc-i) =—L**a m* k
' = ttv • • (]15 )

Mi) "($)'

L being given by (102) and (104), or (104) and (106). When TO vanishes, L, which involves the

logarithm of TO -1
,
becomes infinite, but ultimately increases more slowly than if it varied as TO

affected with any negative index however small. Hence it appears from (115), that k — 1 and

k' are expressed by TO-2 multiplied by two functions of TO which, though they ultimately vanish

with TO, decrease very slowly, so that a considerable change in TO makes but a small change in

these functions. Now when the radius a of the cylinder varies, everything else remaining the

same, TO varies as a, and in general the parts of the force F on which depend the alteration

in the time of vibration, and the diminution in the arc of oscillation, vary as a2
k, a2

k', respec-

tively. Hence in the case of a cylinder of small radius, such as the wire used to support a

sphere in a pendulum experiment, a considerable change in the radius of the cylinder produces

a comparatively small change in the part of the alteration in the time and arc of vibration

which is due to the resistance experienced by the wire. The simple formulae (115) are accurate

enough for the fine wires usually employed in such experiments if the theory itself be appli-

cable ; but reasons will presently be given for regarding the application of the theory to such

fine wires as extremely questionable.

From TO = *3 or *4 to the end of the table, the first differences of each of the func-
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tions HI
2

(k
—

l) and tn2
&' remain nearly constant. Hence for a considerable range of values

of TO, each of the functions may be expressed pretty accurately by J + Bm. When HI

is at all large, the first two terms in the 2nd and 3rd of the formulae (113) will give k and k'

with considerable accuracy, because, independently of the decrease of the successive quan-

tities tn~', HI -2
,

III"3
..., the coefficients of III

-1 and III" 2 are considerably larger than those

of several of the succeeding powers. If we neglect in these formulas the terms after «2 ,

we get
k = i + ^2. m-\ k'= -v/2. tn-

1 + ^ m-
2
.

It may be remarked that these approximate expressions, regarded as functions of the radius

a, have precisely the same form as the exact expressions obtained for a sphere, the coefficients

only being different.

Section IV.

Determination of the motion of a fluid about a sphere which moves uniformly with

a small velocity. Justification of the application of the solutions obtained in Sections II.

and III. to cases in which the extent of oscillation is not small in comparison with the

radius of the sphere or cylinder. Discussion of a difficulty which presents itself with

reference to the uniform motion of a cylinder in a fluid.

39. Let a sphere move in a fluid with a uniform velocity V, its centre moving in a right

line ; and let the rest of the notation be the same as in Section II. Conceive a velocity

equal and opposite to that of the sphere impressed both on the sphere and on the fluid, which

will not affect the relative motion of the sphere and fluid, and will reduce the determination

of the motion of the fluid to a problem of steady motion. Then we have for the equations

of condition

R =
o, 9 = 0, when r = a; (116)

B=-Vcosd, 6 = Fsinfl, when r= oo (117)

The equations of condition, as well as the equations of motion, may be satisfied by sup-

posing \j/
to have the form sin2 Of (r). We get from (20'), by the same process as that by

which (33), (34) were obtained,

(&-S)V»-«
(,18)

the only difference being that in the present case the equation (20') cannot be replaced by the

two (22), (23), which become identical, inasmuch as the velocity of the fluid is independent

of the time.

The integral of (118) is

f{r) = Ar~ x + Br + CV + Dr\ (119)
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which gives

R ^r-x ^ = 2 cos9 (Ar-* + Br- 1 + C + Dr*),
r2 sin ad

9 = ]—x ~ = sind (Ar~
3 - Br~ x - 2(7 - 4,Dr2).

r sin d dr

The first of the equations of condition (117) requires that

D = 0, C=-^V. (120)

It is particularly to be remarked that inasmuch as the two arbitrary constants C, D
are determined by the first of the conditions (117), none remain whereby to satisfy the

second. Nevertheless it happens that the second of these conditions leads to precisely the same

equations (120) as the first. The equations of condition (116) give

whence

R= - v
{
1 -rr + t?)

cose> (,22)

_, / 3a a3
\

.

e = v
{
l

-rr-^) sme <123>

If now we wish to obtain the solution of the problem in its original shape, in which the

sphere is in motion and the fluid at rest, except so far as it is disturbed by the sphere, we

have merely to add Vco&O, - VsinO, ^ Vr* sin
2

to the expressions for R, 0, \k. We
get from (121)

* = F«2

(^-J)^e (124)

40. Let us now return to the problem of Section II.
;

let us suppose the time of

oscillation to increase indefinitely, and examine what equation (40) becomes in the limit.

When t becomes infinite, n, and therefore wi, vanishes ; the expression within brackets

in (40) takes the form 00 — 09, and its limiting value is easily found by the ordinary methods.

We must retain the m2 in the coefficient of t, because t is susceptible of unlimited increase.

We get in the limit

y],
= ±

;
a!!

ce'
i
'm'

t(— --) sin2 (125)

dP
If now we put V for -~

, the velocity pf the sphere, we get from
(39), ce'

l
'm'

t = V. After

substituting in
(125),

the equation will remain unchanged when we pass from the symbolical
to the real values of

y\,
and V, and thus (125) will be reduced to (124).

* I have already had occasion, in treating of another sub- I I had obtained as a limiting case of the problem of a ball

ject, to publish the solution expressed by this equation, which
| pendulum. See Philosophical Magazine for May 1848, p. 343.
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41. It appears then that by supposing the rate of alteration of the velocity of the sphere

to decrease indefinitely, we obtain from the solution of the problem of Section II. the same

result as was obtained in Art. 39, by treating the motion as steady. As yet, however, the

method of Art. 40 is subject to a limitation from which that of Art. 39 is free. In obtaining

equation (40), it was supposed that the maximum excursion of the sphere was small in com-

parison with its radius. Retaining this restriction while we suppose t to become very large,

we are obliged to suppose c to become very small, so that the velocity of the sphere is not

merely so small that we may neglect terms depending upon its square, a restriction to which

Art. 39 is also subject, but so extremely small that the space passed over by the sphere in even

a long time is small in comparison with its radius.

We have seen, however, that on supposing t very large in (40) we obtain a result

identical with (124), not merely a result with which (124) becomes identical when the restriction

above mentioned is introduced. This leads to the supposition that the solution expressed by

(40) is in fact more general than would appear from the way in which it was obtained. That

such is really the case may be shewn by a slight modification of the analysis. Instead of

referring the fluid to axes fixed in space, refer it to axes originating at the centre of the sphere,

and moveable with it. In the general equations of motion, the terms which contain differential

coefficients taken with respect to the co-ordinates will remain unchanged, inasmuch as they

represent the very same limiting ratios as before : it is only those in which differentiation with

d'

respect to t occurs that will be altered. If — be the symbol of differentiation with respect to t
at

when the fluid is referred to the moveable axes, we shall have

d d! d}~ d

dt dt dt dx^

dP d
but the terms arising from -— — are of the order of the square of the velocity, and are

dt dx

therefore to be neglected. Hence the general equations have the same form whether the fluid

be referred to the fixed or moveable axes. But on the latter supposition the equations of

condition (30) become rigorously exact. Hence equation (40) gives correctly the solution of

the problem, independently of the restriction that the maximum excursion of the sphere be small

compared with its radius, provided we suppose the polar co-ordinates r, 9 measured from the

centre of the sphere in its actual, not its mean position. Similar remarks apply to the problem

of the cylinder. Moreover, in the case of a sphere oscillating within a concentric spherical

envelope, it is not necessary, in order to employ the solution obtained in Section II., that the

maximum excursion of the sphere be small compared with its radius ; it is sufficient that it be

small compared with the radius of the envelope.

These are points of great importance, because the excursions of an oscillating sphere in a

pendulum experiment are not by any means extremely small compared with the radius of the

sphere ; and in the case of a narrow cylinder, such as the suspending wire, so far from

the maximum excursion being small compared with the radius of the cylinder, it is, on the con-

trary, the radius which is small compared with the maximum excursion.
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42. Let us now return to the case of the uniform motion of a sphere. In order to obtain

directly the expression for the resistance of the fluid, it would be requisite first to find p, then to

get Pr and T9 from (46), or at least to get the values of these functions for r = a, and lastly to

substitute in (47) and perform the integration. We should obtain p by integrating the expression

for dp got from (16) and (17). It would be requisite first to express u and q in terms of
\j/,

then

to transform the expression for dp so as to involve polar co-ordinates, and then substitute for

yf/
its value given by (121); or 'else to express the right-hand member of (121) by the co-ordi-

nates », •&, and substitute in the expression for dp*. We have seen, however, that the results

applicable to uniform motion may be deduced as limiting cases of those which relate to

oscillatory motion, and consequently, we may make use of the expression for F already worked

out. Writing V for ce^~ int in the first equation of Art. 20, expressing m in terms of n,

and then making n vanish, we get

-
F=6iriu'paV, (126)

and — F is the resistance required.

This equation may be employed to determine the terminal velocity of a sphere ascending

or descending in a fluid, provided the motion be so slow that the square of the velocity

may be neglected. It has been shewn experimentally by Coulomb
j-,

that in the case of very

slow motions, the resistance of a fluid depends partly on the square and partly on the first

power of the velocity. The formula (126) determines, in the particular case of a sphere, that

part of the whole resistance which depends on the first power of the velocity, even though the

part which depends on the square of the velocity be not wholly insensible.

It is particularly to be remarked, that according to the formula (126), the resistance varies

not as the surface but as the radius of the sphere, and consequently the quotient of the resist-

ance divided by the mass increases in a higher ratio, as the radius diminishes, than if the

resistance varied as the surface. Accordingly, fine powders remain nearly suspended in a

fluid of widely different specific gravity.

43. When the motion is so slow that the part of the resistance which depends on the

square of the velocity may be neglected, we have, supposing V to be the terminal velocity,

* The equations(16), (17) give, after a troublesome trans-

formation to polar co-ordinates,

dp
dr r1 sin 8

— If-
dd \J?

sin d 1 d o d\
-1 *, (a)

dp
dJ'

d8 sinfl dd
fi dt

a
d_ /d>_ smjj jj

1 d p d \

~sinfl dr \dr'
+

r' rf0 sin? dl ~~p dl)
*' * <•

The expression for dp got from these equations is an exact

differential by virtue of the equation which determines \\r ;
and

in the problems considered in Section IX and in the present
Section

\jr
has the form ¥sin»0, where ¥ is independent of 0.

Hence we get from (4), by integrating partially with respect
to 0,

. d /d° 2 p d\
^^^d-rKdT'-^-^Tt)

*• (c)
1 £*

dr \dr2 r3
<< dt)

It is unnecessary to add an arbitrary function of r, because

if X(r) be such a function which we suppose added to the

right-hand member of (c), we must determine X by substituting

in (o). The resulting expression for X'(r) cannot contain 0,

inasmuch as the expression for dp is an exact differential, but

it is composed of terms which all involve cos as a factor, and

therefore we know, without working out, that these terms must

destroy one another. Hence X (r) must be constant, or at most

be a function of t, which we may suppose included in TJ. X (r)

will in fact be equal to zero if II be the equilibrium pressure at

the depth at which fgdz' vanishes.

t Mimoires de VInstxtut, Tom. m. p. 246.
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— F = 4 -Kg (<t
-

p) a3
,
where g is the force of gravity, and <r, which is supposed greater than

p, the density of the sphere. Substituting in (126) we get

F= ^(-- 1
)

fl2 <127>
9m \p J

Let us apply this equation to determine the terminal velocity of a globule of water forming

part of a cloud. Putting g = 386, /a'
= (.116)

8
, an inch being the unit of length, and supposing

ap~
l - l = 1000, in order to allow a little for the rarity of the air at the height of the cloud,

we get V = 6372 x 1000a2
. Thus, for a globule the one thousandth of an inch in diameter,

we have V = 1.593 inch per second. For a globule the one ten thousandth of an inch in dia-

meter, the terminal velocity would be a hundred times smaller, so as not to amount to the one

sixtieth part of an inch per second.

We may form a very good judgment of the magnitude of that part of the resistance which

varies as the square of the velocity, and which is the only kind of resistance that could exist

if the pressure were equal in all directions, by calculating the numerical value of the resistance

according to the common theory, imperfect though it be. It follows from this theory that if

h be the height due to the velocity V, the resistance is to the weight as 3ph to 8aa. For

V = 1.593 inch per second, the resistance is not quite the one four hundredth part of the

weight ; and for a sphere only the one ten thousandth of an inch in diameter, moving with the

velocity calculated from the formula (127), the ratio of the resistance to the weight would be

ten times as small. The terminal velocities of the globules calculated from the common theory

would be 32.07 and 10.14 inches per second, instead of only 1.593 and .01593 inch. It appears

then that the apparent suspension of the clouds is mainly due to the internal friction of air.

44. The resistance to the globule has here been determined as if the globule were a solid

sphere. In strictness, account ought to be taken of the relative motion of the fluid particles

forming the globule itself. Although it may readily be imagined that no material change

would thus be made in the numerical result, it may be worth while to point out the mode of

solution of the problem. Suppose the globule preserved in a strictly spherical shape by

capillary attraction, which will very nearly indeed be the case. Conceive a velocity equal and

opposite to that of the globule impressed both on the globule and on the surrounding fluid,

which will reduce the problem to one of steady motion. Let fa, &c. refer to the fluid forming

the globule, and assume fa =/, (r) sin
2
9. Then we get on changing the constants in (119)

/, (r) = A.r-
1 + B,r + C^ + X>,^.

The arbitrary constants Au .Bj vanish by the condition that the velocity shall not become

infinite at the centre. There remain the two arbitrary constants Clf Dy to be determined, in

addition to those which appeared in the former problem. But we have now four instead of

two equations of condition which have to be satisfied at the surface of the sphere, which

are that

R = 0, #, = 0, e = G„ Te =Tw whenr = o. . . . (128)

We shall thus have the same number of arbitrary constants as conditions to be satisfied. Now

T19
will involve ^ as a coefficient, just as Tt involves f/p or yu; and pn which refers to water,
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is much larger than n, which refers to air, although /a' is larger than p*. Hence the results

will be nearly the same as if we had taken /m
= °°

,
or regarded the sphere as solid.

If, however, instead of a globule of liquid descending in a gas we have a very small bubble

ascending in a liquid, we must not treat the bubble as a solid sphere. We may in this case

also neglect the motion of the fluid forming the sphere, but we have now arrived at the other

extreme case of the general problem, and the two equations of condition which have to be

satisfied at the surface of the sphere are that R = and Te
= when r = a, instead of R = and

= 0, when r = a.

The equation of condition Te
= which applies to a bubble, as well as the fourth of equa-

tions (128), will not be the true equations, if forces arising from internal friction exist in the

superficial film of a fluid which are of a different order of magnitude from those which exist

throughout the mass. At the end of the memoir already referred to, Coulomb states that in

very slow motions the resistance of bodies not completely immersed in a liquid is much greater

than that of bodies wholly immersed, and promises to communicate a second memoir in con-

tinuation of the first. This memoir, so far as I can find out, has never appeared. Should the

existence of such forces in the superficial film of a liquid be made out, the results deduced

from the theory of internal friction will be modified in a manner analogous to that in which the

results deduced from the common principles of hydrostatics are modified by capillary attraction.

It may be remarked that we have nothing to do with forces of this kind in considering the

motion of pendulums in air, or even in considering the oscillations of a sphere in water, except

as regards the very minute fraction of the whole effect which relates to the resistance experienced

by the suspending wire in the immediate neighbourhood of the free surface.

It may readily be seen that the effect of a set of forces in the superficial film of a liquid

offering a peculiar resistance to the relative motion of the particles would be, to make the re-

sistance of a gas to a descending globule agree still more clearly with the result obtained by

regarding the globule as solid, while the resistance experienced by an ascending bubble would

be materially increased, and made to approach to that which would belong to a solid sphere of

the same size without mass, or more strictly, with a mass only equal to that of the gas forming

the bubble. Possibly the determination of the velocity of ascent of very small bubbles may
turn out to be a good mode of measuring the amount of friction in the superficial film of a

liquid, if it be true that forces of this kind have any existence. But any investigation relating

to such a subject would at present be premature.

45. Let us now attempt to determine the uniform motion of a fluid about an infinite

cylinder. Employing the notation of Section III, and reducing the problem to one of steady

motion as in Art. 39, we obtain the same equations of condition (116), (117), as in the case of

the sphere. Assuming ^ = sin 0F(r), and substituting in the equation obtained from (69) by

transforming to polar co-ordinates and leaving out the terms which involve — , we getU t

Id1 Id 1\» „

{^ +
rTr-?)

F^ = ° <*«

The integral of this equation may readily be obtained by multiplying the last term of the
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operating factor by (l + <J)

3
, integrating the transformed equation, and then making & vanish.

It is

F(r) = Ar- 1 + Br + Cr log r + Dr3
, (130)

which gives

R = —\ = (Ar~
2 + B + C logr + Dr2

) cos 9,
rd9

9 = - -^ = (Ar~ 2 -B-C-Closr- 3Dr*) sin 9.
dr

The first of the equations of condition (117) requires that

C = 0, D = 0, B = - V,

which also satisfies the second. We have thus only one arbitrary constant left whereby to

satisfy the two equations of condition (116), and the same value of A will not satisfy these

two equations.

46. It appears then that the supposition of steady motion is inadmissible. It will be

remembered that, in the case of the sphere, the solution of the problem was only possible

because it so happened that the values of two arbitrary constants determined by satisfying the

first of the equations of condition (117) satisfied also the second, which indicates that the

solution was to a certain extent tentative. We have evidently a right to conceive a sphere or

infinite cylinder to exist at rest in an infinite mass of fluid also at rest, to suppose the sphere

or cylinder to be then moved with a uniform velocity V, and to propose for determination the

motion of the fluid at the end of the time t. But we have no right to assume that the motion

approaches a permanent state as t increases indefinitely. We may follow either of two courses.

We may proceed to solve the general problem in which the sphere or cylinder is supposed to

move from rest, and then examine what results we obtain by supposing t to increase indefi-

nitely, or else we may assume for trial that the motion is steady, and proceed to inquire

whether we can satisfy all the conditions of the problem on this supposition. The former

course would have the disadvantage of requiring a complicated analysis for the sake of ob-

taining a comparatively simple result, and it is even possible that the solution of the problem

might baffle us altogether ; but if we adopt the latter course, we must not forget that the

equations with which we work are only provisional.

It might be objected that the impossibility of satisfying the conditions of the problem on

the hypothesis of steady motion arose from our assumption that sin 9 was a factor of %, the

other factor being independent of 9. This however is not the case. For, for given values of

r and t, ^ is a finite function of 9 from 9 = to 9 = w. We have a right to suppose % to

vanish at any point of the axis of x positive that we please ; and if we suppose ^ to vanish at

one such point, it may be shewn as in the note to Art. 15, that ^ will vanish at all points of

the axis of x positive or x negative. Hence ^ may be expanded in a convergent series of sines

of 9 and its multiples; and since ^ and its derivatives with respect to 9 alter continuously

with 9; the expansions of the derivatives will be got by direct differentiation*. This being

See a paper On the Critical Values of the Sums of Periodic Series. Camb. Phil. Trans. Vol. VIII. p. 533.
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true for all other pairs of values of r and t, y can in general be expanded in a convergent

series of sines of 6 and its multiples ;
but the coefficients, instead of being constant, will be

functions of r and t, or in the particular case of steady motion, functions of r alone. Now

a very slight examination of the general equations will suffice to shew that the coefficients of

the sines of the different multiples of 9 remain perfectly independent throughout the whole

process, and consequently had we employed the general expansion, we should have been led

to the very same conclusions which have been deduced from the assumed form of y.

47. If we take the impossibility of the existence of a limiting state of motion, which

has just been established, in connexion with the results obtained in Section III., we shall be

able to understand the general nature of the motion of the fluid around an infinite cylinder

which is at first at rest, and is then moved on indefinitely with a uniform velocity.

The fluid being treated as incompressible, the first motion which takes place is impulsive.

Since the terms depending on the internal friction will not appear in the calculation of this

motion, we may employ the ordinary equations of hydrodynamics. The result, which is

easily obtained, is

Va?
Rdr + QrdO =

dcp,
where

(p
=- cosfl* (131)

As the cylinder moves on, it carries more and more of the fluid with it, in consequence of

friction. For the sake of precision, let the quantity carried by the element dl of the cylinder

be defined to be that which, moving with the velocity V, would have the same momentum in

the direction of the motion that is actually possessed by the elementary portion of fluid which

is contained between two parallel infinite planes drawn perpendicular to the axis of the cylin-

der, at an interval dl, the particles composing which are moving with velocities that vary from

V to zero in passing from the surface outwards. The pressure of the cylinder on the fluid con-

tinually tends to increase the quantity of fluid which it carries with it, while the friction of the

fluid at a distance from the cylinder continually tends to diminish it. In the case of a sphere,

these two causes eventually counteract each other, and the motion becomes uniform. But in

the case of a cylinder, the increase in the quantity of fluid carried continually gains on the

decrease due to the friction of the surrounding fluid, and the quantity carried increases indefi-

nitely as the cylinder moves on. The rate at which the quantity carried is increased, decreases

continually, because the motion of the fluid in the neighbourhood of the cylinder becomes more

and more nearly a simple motion of translation equal to that of the cylinder itself, and there-

fore the rate at which the quantity of fluid carried is increased would become smaller and

smaller, even were no resistance offered by the surrounding fluid.

*
According to these equations, the fluid flows past the

surface of the cylinder with a finite velocity. At the end of the

small time t after the impact, the friction has reduced the

velocity of the fluid in contact with the cylinder to that of the

cylinder itself, and the tangential velocity alters very rapidly
in passing from the surface outwards. At a small distance s

from the surface of the cylinder, the relative velocity of the

fluid and the cylinder, in a direction tangential to the surface,

is a function of the independant variables t', s, which vanishes

with * for any given value of f, however small, but which for

any given value of s, however small, approaches indefinitely to

the quantity determined by (131) as t vanishes. The commu.

nication of lateral motion is similar to the communication of

temperature when the surface of a body has its temperature

instantaneously raised or lowered by a finite quantity.
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The correctness of this explanation is confirmed by the following considerations. Suppose
that F (r) had been given by the equation

F (r)
= Ar- 1 + Br + CV" 5 + Drs

instead of (130), 5 being a small positive quantity. On this supposition it would have been

possible to satisfy all the equations of condition, and therefore steady motion would have been

possible. By determining the arbitrary constants, and substituting in
%, we should have

obtained

y\,
= aV{ s + . - Uin 0,

Since $ is supposed to be extremely small, it follows from these expressions that when r is not

greater than a moderate multiple of a, the velocities R, Q are extremely small ; but, however

small be 8, we have only to go far enough from the cylinder in order to find velocities as

nearly equal to - VcosO, + Fsin Q as we please. But the distance from the cylinder to which

we must proceed in order to find velocities R, 9 which do not differ from their limiting values

— Fcos#, + Fsin 9 by more than certain given quantities, increases indefinitely as $ decreases.

Hence, restoring to the fluid and the cylinder the velocity V, we see that in the neighbourhood
of the cylinder the motion of the fluid does not sensibly differ from a motion of translation, the

same as that of the cylinder itself, while the distance to which the cylinder exerts a sensible

influence in disturbing the motion of the fluid increases indefinitely as $ decreases.

48. When we have formed the equations of motion of a fluid on any particular dynamical

hypothesis, it becomes a perfectly definite mathematical problem to determine the motion of the

fluid when a given solid, initially at rest as well as the fluid, is moved in a given manner, or

to discuss the character of the analytical solution in any extreme case proposed. It is quite

another thing to enquire how far the principles which furnished the mathematical data of the

problem may be modified in extreme cases, or what will be the nature of the actual motion in

such cases. Let us regard in this point of view the case considered in the preceding article as

a mathematical problem. When the quantity of fluid carried with the cylinder becomes con-

siderable compared with the quantity displaced, it would seem that the motion must become

unstable, in the sense in which the motion of a sphere rolling down the highest generating line

of an inclined cylinder may. be said to be unstable. But besides the instability, it may not be

safe in such an extreme case to neglect the terms depending on the square of the velocity, not

that they become unusually large in themselves, but only unusually large compared with

the terms retained, because when the relative motions of neighbouring portions of the fluid

become very small, the tangential pressures which arise from friction become very small like-

wise.
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Now the general character of the motion must be nearly the same whether the velocity

of the cylinder be constant, or vary slowly with the time, so that it does not vary materially

when the cylinder passes through a space equal to a small multiple of its radius. To
return to the problem considered in Section III., it would seem that when the radius of the

cylinder is very small, the motion which would be expressed by the formulas of that Section

would be unstable. This might very well be the case with the fine wires used in supporting
the spheres employed in pendulum experiments. If so, the quantity of fluid carried by the

wire would be diminished, portions being continually left behind and forming eddies. The
resistance to the wire would on the whole be increased, and would moreover approximate to a

resistance which would be a function of the velocity. Hence, so far as depends on the wire, the

arc of oscillation would be more affected by the resistance of the air than would follow from

the formulae of Section III. Whether the effect on the time of oscillation would be greater

or less than that expressed by the formula? is difficult to say, because the increase of

resistance would tend to increase the effect on the time of vibration, while on the other hand

the approximation of the law of resistance to that of a function of the velocity would tend to

diminish it.

Section V.

On the effect of internal friction in causing the motion of a Jiuid to subside. Applica-

tion to the case of oscillatory waves.

49. We have already had instances of the effect of friction in causing a gradual subsi-

dence in the motion of a solid oscillating in a fluid ; but a result may easily be obtained

from the equations of motion in their most general shape, which shews very clearly the

effect of friction in continually consuming a portion of the work of the forces acting on the

fluid.

Let Pj, P2 , P3
be the three normal, and Tlt T2 ,

T3 the three tangential pressures
in the direction of three rectangular planes parallel to the co-ordinate planes, and let D be

the symbol of differentiation with respect to t when the particle and not the point of space
remains the same. Then the general equations applicable to a heterogeneous fluid, (the equa-
tions (10) of my former paper,) are

(Du \ dP, dT„ dT2

with the two other equations which may be written down from symmetry. The pressures

Pi, &c. are given by the equations

_ [du .\ tdv dw\

**-'-*$:*)•
ri =-^U +

^)'
• • • <is3>

and four other similar equations. In these equations

. du dv dw
3d =— + — + -p- (134)dx dy d%

Vol. IX. Part II. 32
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At the end of the time t let V be the vis viva of a limited portion of the fluid, occupying

the space which lies inside the closed surface 8, and let V + D V be the vis viva of the same

mass at the end of the time t + Dt. Then

V= fffp (u* + »* + w2

) dx dy dz,

rrr ( Du Dv Dw\
DV=2DtJJJ P l« —

j+v-pj
+ w j^ )

da)dy d*> • • • (135)

the triple integrals extending throughout the space bounded by S. Substituting now for

Du—-
, &c. their values given by the equations of the system (132), we getu z

DV = 2Dt fffp («Z + vY + wZ) dx dy dz

- 2Dt ffflu ($& +—*

+—) + v (%& i

dTl
+

•J J •* \ \dx dy dz J \dy dz

dT3\

dx )

(dP, dTo dT,\\
+ w [^ + "L±l +

a
±±)\dxdydz (136)

\dz dx dy I)

The first part of this expression is evidently twice the work, during the time Dt, of the

external forces which act all over the mass. The second part becomes after integration by

parts
- 2Dt ff{u Pt + vT3 + w T,) dy dz - 2 Dt ff(v P2 + w Tt + uT3) dz dx

-zDtffiwPs + uTz + vTi) dxdy
rrridu dv dw (dv dw\ (dw du\

J J J [dx dy dz \dz dy)
'

\dx dz)

(du
dv\ 1- +
-)T^dxdydz.

The double integrals in this expression are to be extended over the whole surface S.

If dS be an element of this surface, I', m, ri the direction-cosines of the normal drawn outwards

at dS, we may write I'dS, tridS, n'dS for dydz, dzdx, dxdy. The second part of DV
thus becomes

-2Dtff{u (tPx + m'T3 + n'T2) + v (m'P2 + riT
x + ft,) + w (n'P3 + l'T2 + m'T,) \

dS.

The coefficients of u, v, w in this expression are the resolved parts, in the direction of

x, y, z, of the pressure on a plane in the direction of the elementary surface dS, whence it

appears that the expression itself denotes twice the work of the pressures applied to the

surface of the portion of fluid that we are considering
1

.

On substituting for P15 &c. their values given by the equations (133), (134), we get for

the last part of DV
n. rrr fdu dv dw\ , , ,

+ 2Dtfffp(J
- + - + -

[-)dxdydzdy

-, rrr f ldu\* (dv\
2 fdw^ a (du dv dw

- 2Dt
ftt»Hdx)

+2
U) +2 U) "I \dx

+
Ty

+^
(dv dw\* (dw du\ 2

(du dv\ 2

\ ,

\dx dy) \dx dz) \dy dx) )

w\*
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In this expression p denotes, in the case of an elastic fluid, the pressure statically corres-

ponding to the density which actually exists about the point whose co-ordinates are x, y, z, and

the part of the expression which contains p denotes twice the work converted into vis viva in

consequence of internal expansions, and arising from the forces on which the elasticity depends.

The last part of the expression is essentially negative, or at least cannot be positive, and can

only vanish in one very particular case. It denotes the vis viva consumed, or twice the work

lost in the system during the time dt, in consequence of internal friction. According to the

very important theory of Mr Joule, which is founded on a set of most striking and satisfactory

experiments, the work thus apparently lost is in fact converted into heat, at such a rate, that

the work expressed by the descent of 772 lbs through one foot, supplies the quantity of heat

required to raise 1 lb. of water through 1° of Fahrenheit's thermometer.

50. The triple integral containing n can only vanish when the differential coefficients of

u, v, w satisfy the five following equations,

du dv dw
dx dy dz

'

I

dv dw dw du du dv— + =0, +=0,

— + — = 0.
dz dy dx dz dy dx

(137)

These equations give immediately the following expressions for the differentials of u, v, w,

in which the co-ordinates alone are supposed to vary, the time being constant :

du = $dx —
(a'"dy + w"dz,

"j

dv = $dy - w'dz + w"'dw, > (*38)

dw = $dz — w"dx + tody.
'

In these equations \ w, w", w" are certain functions of which the forms are defined by
the equations (138), but need not at present be considered. It follows from equations (138)

that the motion of each element of the fluid within the surface S is compounded of a motion of

translation, a motion of rotation, and a motion of dilatation alike in all directions. So far as

regards the first two kinds of motion, the fluid element moves like a solid, and of course there

is nothing to call internal friction into play. For the reasons stated in my former paper, I was

led to assume that a motion of dilatation alikein all directions, (which of course can only exist

in the case of an elastic fluid,) has no effect in causing the pressure to differ from the statical

pressure corresponding to the actual density, that is, in occasioning a violation of the func-

tional relation commonly supposed to exist between the pressure, density, and temperature.

The reader will observe that this is a totally different thing from assuming that a motion of

dilatation has no effect on the pressure at all.

When the fluid is incompressible S = 0, and it may be proved without
difficulty that

W, to", to" are constant, that is to say, constant so far as the co-ordinates are concerned. In

this case we get by integrating equations .(137)

u = a — to"y + to'z, i

v = b - to'z + w'"x, \ (139)

w = c - to'x + to'y.
'

32—2
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Hence, in the case of an incompressible fluid, unless the whole mass comprised within the

surface S move together like a solid, there cannot fail to be a certain portion of vis viva

lost by internal friction. In the case of an elastic fluid, the motion which may take place

without causing a loss of vis viva in consequence of friction is somewhat more general, and

corresponds to velocities » + A», u + A«, m + Aic, where u, v, w are the same as in

(139), and

Au = $x + 2(ax + (Zy + yx) x - a (a? + y* + *2

),

with similar expressions for Av and Aw. In these expressions a, /3, y are three constants

symmetrically related to x, y, %, and $ is a constant which has the same relation to each of the

co-ordinates *.

51. By means of the expression given in Art. 49, for the loss of vis viva due to internal

friction, we may readily obtain a very approximate solution of the problem : To determine the

rate at which the motion subsides,- in consequence of internal friction, in the case of a series of

oscillatory waves propagated along the surface of a liquid.

Let the vertical plane of xy be parallel to the plane of motion, and let y be measured ver-

tically downwards from the mean surface ; and for simplicity's sake suppose the depth of the

fluid very great compared with the length of a wave, and the motion so small that the square

of the velocity may be neglected. In the case of motion which we are considering, udx + vdy
is an exact differential

d<f>
when friction is neglected, and

cp
= ce~my $m.(mx -

nt), (140)

where c, m, n are three constants, of which the last two are connected by a relation which it is

not necessary to write down. We may continue to employ this equation as a near approxi-

mation when friction is taken into account, provided we suppose c, instead of being constant,

to be a parameter which varies slowly with the time. Let V be the vis viva of a given portion

of the fluid at the end of the time t, then

V= pc*m
2

fff €-*"•* dxdydx (141)

But by means of the expression given in Art. 49, we get for the loss of vis viva during the

time dt, observing that in the present case
ft.

is constant, w —
0, 5 = 0, and udx + vdy = deb,

where is independent of x,

which becomes, on substituting for
(p

its value, ,

8^m* dt fffe-
Smy dm dy dx.

But we get from (141) for the decrement of vis viva of the same mass arising from the

variation of the parameter c

dc
- 2pm"c

—
dtfffe-'

imy dx dy dx.
at

*
(See Note C at the end.)
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Equating the two expressions for the decrement of vis viva, putting for m its value 27rX _I
,

where \ is the length of a wave, replacing fj. by fj!p, integrating, and supposing c to be the

initial value of c, we get
16irV<

C = C €~ Xs
.

It will presently appear that the value of -^/V for water is about -

0564, an inch and a

second being the units of space and time. Suppose first that X is two inches, and t ten seconds.

Then l6irV*k"
2 = 1-256> and c : c :: 1 : 0-2848, so that the height of the waves, which varies

as c, is only about a quarter of what it was. Accordingly, the ripples excited on a small pool

by a puff of wind rapidly subside when the exciting cause ceases to act.

Now suppose that \ is 40 fathoms or 2880 inches, and that t is 86400 seconds or a whole

day. In this case l67r
2M'£X~

2
is equal to only

-

005232, so that by the end of an entire day, in

which time waves of this length would travel 574 English miles, the height would be diminished

by little more than the one two hundredth part in consequence of friction. Accordingly, the

lono- swells of the ocean are but little allayed by friction, and at last break on some shore

situated at the distance of perhaps hundreds of miles from the region where they were first

'excited.

52. It is worthy of remark, that in the case of a homogeneous incompressible fluid,

whenever udx + vdy + wdss is an exact differential, not only are the ordinary equations of

fluid motion satisfied*, but the equations obtained when friction is taken into account are

satisfied likewise. It is only the equations of condition which belong to the boundaries of the

fluid that are violated. Hence any kind of motion which is possible according to the ordinary

equations, and which is such that udx + vdy + wdx is an exact differential, is possible

likewise when friction is taken into account, provided we suppose a certain system of normal

and tangential pressures to act at the boundaries of the fluid, so as to satisfy the equations of

condition. The requisite system of pressures is given by the system of equations (133).

Since fx. disappears from the general equations (l), it follows that p is the same function as

before. But in the first case the system of pressures at the surface was P, = P2
= P3

— p,

Ty
= T2

= Tz
= 0. Hence if A Pi &c. be the additional pressures arising from friction, we get

from (133), observing that £=0, and that udx + vdy + wdss is an exact differential
dtp,

d!
d> d?d> (Pd>AP>=" 2

'
jl -^. A^=- 2^3±' AP3 =-2m-^, • 0*2)

A7'1 =-2 M —', Ar2 =-2M -^|-, AT3
= -*M-T-7- • 043)

dy dss dzdx dxdy

Let dS be an element of the bounding surface, /', m, n' the direction-cosines of the normal

drawn outwards, AP, AQ, A R the components in the direction of x, y, z of the additional

*
It is here supposed that the forces X, Y, Z are ouch that Xdx t Ydy ->- Zdx is an exact differential.
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pressure on a plane in the direction of dS. Then by the formulae (9) of my former paper

applied to the equations (142), (143) we get

*P-- gJr^ + »'-^ + «'-££4 f .... (144)
[ dor doe dy dot dx)

with similar expressions for A Q and A R, and A P, A Q, AR are the components of the

pressure which must be applied at the surface, in order to preserve the original motion

unaltered by friction.

53. Let us apply this method to the case of oscillatory waves, considered in Art. 51.

In this case the bounding surface is nearly horizontal, and its vertical ordinates are very small,

and since the squares of small quantities are neglected, we may suppose the surface to

coincide with the plane of xx in calculating the system of pressures which must be supplied,

in order to keep up the motion. Moreover, since the motion is symmetrical with respect to the

plane of xy, there will be no tangential pressure in the direction of *, so that the only

pressures we have to calculate are AP2 and AT3. We get from (140), (142), and (143),

putting y = after differentiation,

AP2
= -

2/u.m
2
c sin (mx -

nt), A T% = Z/itrfc cos (mx -
nt). . . (145)

If U|, «i be the velocities at the surface, we get from (140), putting y = after differen-

tiation,

«i = mc cos(mn -
nt), u, = - mc sin (mx -

nt). . . . (146)

It appears from (145) and (146) that the oblique pressure which must be supplied at the

surface in order to keep up the motion is constant in magnitude, and always acts in the

direction in which the particles are moving.

The work of this pressure during the time dt corresponding to the element of surface

dx dx, is equal to dx dx (A T3 . u
x
dt + AP, .v x dt.) Hence the work exerted over a given

portion of the surface is equal to

2/uim
3(?dt ffdx dx.

In the absence of pressures AP2 , A T3 at the surface, this work must be supplied at the

expence of vis viva. Hence 4/fim
3c! dt ffdx dx is the vis viva lost by friction, which agrees

with the expression obtained in Art. 51, as will be seen on performing in the latter the

integration with respect to y, the limits being y = to y = oo .



PART II.

COMPARISON OF THEORY AND EXPERIMENT.

Section I.

Discussion of the Experiments of Baity, Bessel, Coulomb, and Dubuat.

54. The experiments discussed in this Section will be taken in the order which is most

convenient for discussion, which happens to be almost exactly the reverse of the chronological

order. I commence with the experiments of the late Mr Baily, which are described in the

Philosophical Transactions for 1832, in a memoir entitled "On the Correction of a Pendulum

for the Reduction to a Vacuum : together with Remarks on some anomalies observed in Pendu-

lum experiments."

The object of these experiments was, to determine by actual observation the correction to

the time of vibration due to the presence of the air in the case of a great number of pendu-

lums of various forms. This was effected by placing each pendulum in succession in a vacuum

apparatus, by which means the pendulum, without being dismounted, could be swung alter-

nately under the full atmospheric pressure, and in air so highly rarefied as nearly to approach

to a vacuum. The paper, as originally presented to the Royal Society, contained the results

obtained with 41 pendulums, the same body being counted as a different pendulum when

swung in a different manner. Out of these, 14 are of such forms as to admit of comparison

with theory. An addition to the paper contains the results obtained with 45 pendulums more,

of which 24 admit of comparison with theory. The details of these additional experiments

are omitted, the results only being given.

Baily has exhibited the results obtained with the several pendulums in each of two ways,

first, by the value of the factor n by which the correction for buoyancy must be multiplied

in order to amount to the whole effect of the air as given by observation, and, secondly, by

the weight of air which must be conceived to be attached to the centre of gyration of the

pendulum, adding to its inertia without adding to its weight, in order that the increased

inertia, combined with the buoyancy of the air, may account for the whole effect observed.

I shall uniformly write n for Baily's n, in order to distinguish it from the n of Part I. of the

present paper, which has a totally different meaning. In the case of a pendulum oscillating

in air, it will be sufficient, unless the pendulum be composed of extremely light materials, to

add together the effects of buoyancy and inertia. Hence if the pendulum consist of a sphere

attached to a fine wire of which the effect is neglected, or else of a uniform cylindrical rod, we

may suppose It = 1 + k, where k is the factor so denoted in Part I. ; so that if M' be the mass

of air displaced, kM' will be the mass which we must suppose collected at the centre of the

sphere, or distributed uniformly along the axis of the cylinder, in order to express the effect

of the inertia of the air. The second mode of exhibiting the effect of the air was suggested

by Mr Airy, and is better adapted than the former for investigating the effect of the several



[64] PROFESSOR STOKES, ON THE EFFECT OF THE INTERNAL FRICTION

pieces of which a pendulum of complicated form is composed. Since the value of the factor n
and that of the weight of air are merely two different expressions for the result of the same

experiment, it would be sufficient to compare either with the result calculated from theory.

In some cases, however, I have computed both. In almost all the calculations I have employed

4-figure logarithms. The experimental result is sometimes exhibited to four figures, but no

reliance can be placed on the last. In fact, in the best observations, the mean error in different

determinations of tt for the same pendulum appears to have been about the one-hundredth

part of the whole, and that it should be so small, is a proof of the extreme care with which

the experiments must have been performed.

55. I commence with the 13th set of experiments
—Results with plain cylindrical rods

page 441. This set contains three pendulums, each consisting of a long rod attached to a

knife-edge apparatus. The result obtained with each pendulum furnishes an equation for the

determination of #', and the theory is to be tested by the accordance or discordance of the

values so obtained. The principal steps of the calculation are contained in the following table.

Determination of -y'V
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2a2

(6
3 — a8

)
-1 or 2a*b~* nearly, which is obtained from the ordinary equations of hydrody-

namics, and therefore it cannot be regarded as more than a rude approximation. It will be

useful, however, as affording an estimate of the magnitude of the effect produced by confining

the air. The diameter of the vacuum tube (whether external or internal is not specified) is

stated to have been six inches and a half, whence 2 b = 6-5. The values of k given in the next

column are obtained by applying the correction for confined space to Baily's values of n, and

subtracting unity. The value of HI corresponding to each value of k was got by interpolation

from the table near the end of Section III. of the former part of this paper. For k = 1-Q23

the interpolation is easy. The value 3081 happens to be almost exactly found in the table.

For k = 6*530, a remark already made will be found to be of importance, namely, that the

first differences of ttt
2

(& — l) are nearly constant. The last column contains the value of ^//u'

obtained from the equation
a / 7r

m =
2
-V

Mv 0^7)

which contains the definition of tit.

It will be observed that the three values of -y/V' are nearly identical. Of course any

theory professing to account for a set of experiments by means of a particular value of a dis-

posable constant, when applied to the experiments would lead to nearly the same numerical

value of the constant if the experiments were made under nearly the same circumstances.

But in the present case the circumstances of the experiments are widely different. The dia-

meter of the steel rod is little more than the sixth part of that of the copper rod, and the

value of k obtained by experiment for the steel rod is more than three times as great as that

obtained for the copper rod. It is a simple consequence of the ordinary theory of hydro-

dynamics that in the case of a long rod oscillating in an unlimited fluid k =
I, and we see that

this value of k must be multiplied, in round numbers, by 2, by 3, and by 6^, in order to

account for the observed effect. The value 1-5445 of ttt is so large that the descending series

comes into play in the calculation of the function k, while 0-2822 is so small that the ascend-

ing series are rapidly convergent. Hence the near agreement of the values of -y/V deduced

from the three experiments is a striking confirmation of the theory. The mean of the three is

01 158, but of course the last figure cannot be trusted. I shall accordingly assume as the

value of the square root of the index of friction of air in its average state of pressure, tempe-

rature, and moisture

VV = 0'116.

It is to be remembered that .y/V expresses a length divided by the square root of a time,

and that the numerical value above given is adapted to an English inch as the unit of length,

and a second of mean solar time as the unit of time.

56. I now proceed to compare the observed values of tl with those calculated from

theory with the assumed value of
-y//a. I begin with the same cylindrical rods as before,

together with the long brass tubes Nos. 35 to 38. The diameter of this tube was 1-5 inch,

and its length 56 inches. The ends were open, but as the included air was treated by Mr

Baily in the reduction of his experiments as if it formed part of the pendulum, we may regard
Vol. IX. Part II. 33
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the pendulum as a solid rod. The tube was furnished with six agate planes, represented in

the wood-cut at page 417, which rested on fixed knife-edges. The pendulums Nos. 35, 36,

37, and 38 consisted of the same tube swung on the planes marked A, C, a, c. In air the pen-

dulum swung at the rate of about 90080 vibrations in a day, so that t = 0-9596 nearly.

The values of tl obtained with the end planes A, c were slightly though sensibly greater than

the values obtained with the mean planes C, a. I shall suppose the mean of the four values

of tt, namely 2*290, to be the result of the experiments. In the following table the difference

between the theoretical and experimental values of n is exhibited both by decimals and as a

fractional part of the former of these values.

Baily's results with a long brass tube and with long cylindrical rods.

No.
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spheres, Nos. 5, 6, and 7 ; and one 3-inch sphere, No. 66. Nos. 8 and 9 are the same spheres

as Nos. 5 and 7 respectively, swung by suspending the wire over a cylinder instead of attach-

ing it to a knife-edge apparatus. As this mode of suspension was not found very satisfactory,

and the results are marked by Baily as doubtful cases, I shall omit the pendulums Nos. 8 and

9, more especially as with reference to the present inquiry they are merely repetitions of Nos.

5 and 7.

In the case of a sphere attached to a fine wire of which the effect is neglected, and swung
in an unconfined mass of fluid, we have by the formula? (52)

**£</£. (148)2a v
2tt

V '

2 a being in this case the diameter of the sphere. Before employing this formula in the com-

parison of theory and experiment, it will be requisite to consider two corrections, one for the

effect of the wire, the other for the effect of the confinement of the air by the sides of the

vacuum tube.

I have already remarked at the end of Section IV., Part I., that the application of the

formula? of Section III. to the case of such fine wires as those used in pendulum experiments

is not quite safe. Be that as it may, these formulae will at any rate afford us a good estimate

of the probable magnitude of the correction.

Let I be the length, a, the radius, V
1
the volume of the wire, V the volume of the sphere,

/ the moment of inertia of the pendulum, / that of the air which we may conceive dragged

by it, H the sum of the elements of the mass of the pendulum multiplied by their respective

vertical distances below the axis of suspension, IT the same for the air displaced, <j the density

of the air. Then the length of the isochronous simple pendulum is IH~ l in vacuum, and

(/+ /') (H - H')~
l in air, and the time of vibration is increased by the air in the ratio of

liH~i to (I + I')i (H —
H')~i, or, on account of the smallness of <r, in the ratio of 1 to

l + ^ (/'/"' + H'H~ l

) nearly. Now ^H'H~
l

is the correction for buoyancy, and there-

fore

n "l =
^7-f (149)

We have also, if &, be the value of the function k of Section III., Part I.,

/' = kaV(l+ay+%k1 <TV1 l\ H' = aV(l + a) + ^aVJ, . . (150)

and HI' 1 = (/+a)
_1

very nearly. Substituting in (149), expanding the denominator, and

neglecting V*t we get

tt-l-ft+A^*,/- )
-l-±k—— ,

•* V \l + a) V l + a

Now V
l is very small compared with V, and it is only by being multiplied by the large factor

&! that it becomes important. We may then, without any material error, replace the last term

in the above equation by ^V^V~
l P {I + a)~

2
,
and if \ be the length of the isochronous simple

33—2
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pendulum, we may suppose I + a = \, and replace P (I + a)~
2

by 1 - 2aX~\ since a is small

compared with X. We thus get, putting AH for the correction due to the wire,

A^i^l-X)^
Substituting for A;,- 1 from (115), and for tn from (147), in which equations, however, At,,

a, must be supposed to be written for k, a, expressing Vlt V in terms of the diameters of the

wire and sphere, and neglecting as before a2 in comparison with X2
, we get

(2X - S x %a) ix t
Att=

7 TTTn
' (151)

where

- L m
log,
—V— - 0-5772 (152)2a

t
7r

It is by these formula? that I have computed the correction for the wire in the following

table. In the experiments, the time of oscillation was so nearly one second that it is sufficient

in the formulae (148), (151), and (152) to put t =
1, and take \ for the length of the seconds

pendulum, or 39
- 14 inches.

With respect to the correction for confined space, it seems evident that the vacuum tube

must have impeded the free motion of the air, and consequently increased the resistance experi-

enced by the pendulum when it was swung in air, and that the increase of resistance caused by
the cylindrical tube must have been somewhat less than that which would have been produced

by a spherical envelope of the same radius surrounding the sphere. The effect of a spherical

envelope has been investigated in Section II., Part I. ; but as we are obliged at last to have

recourse to estimation, it is needless to be very precise in calculating the increase of resistance

due to such an envelope, and we may accordingly employ the expression obtained from the

ordinary theory of hydrodynamics. According to this theory, the increase of the factor k, which

is due to the envelope, is equal to
||
a
3

(b
3 - a

3

)
-1

, or & a
3
b~

3

nearly, when b is large compared
with a. The increase due to a cylindrical envelope whose axis is vertical, and consequently

perpendicular to the direction of oscillation of the sphere, may be estimated at about two-thirds

of the increase due to a spherical envelope of the same diameter. I have accordingly taken

+ a3 b~
3
for the correction for confined space, and have supposed 26 = 6-5 inches.

The diameter of the wire employed in the pendulums Nos. 1, 2, 3, 5, 6, and 7, is stated to

have been about the ^th of an inch, and that of the wire employed with the heavy brass sphere

No. 66, about 0-023 inch. The ivory sphere No. 4 was swung with a fine wire weighing

rather more than half a grain. Taking the weight at half a grain, and the specific gravity of

silver at 105, we have for this wire 2a,= 0-00251 nearly. The diameters of the three brass

spheres in the following table are taken from page 447 of Baily's memoir. The several parts of

which, according to theory, tt is composed, are exhibited separately.
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Baity'a results with spheres suspended byjine wires.

[69]

No. and kind.
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have been obliged to calculate the time of oscillation from the ordinary formulae of dynamics,

but the results will no doubt be accurate enough for the purpose required. In all the calcu-

lations I have supposed the rod to reach up to the axis of suspension, and have conse-

quently added 1*55 inch (the length of the shank of the knife-edge apparatus) to the length of

the rod, and have added to the weight of the rod a quantity bearing to the whole weight the

ratio of T55 inch to the whole length.

In the case of the spheres attached to the ends of the rods (sets 14 and 16) the process of

calculation is as follows. Let I be the length of the rod increased by 1*55 inch, W, its weight,

increased as above explained, a the radius and W the weight of the sphere, X the length of the

isochronous simple pendulum. Then supposing the masses of the rod and sphere to be respec-

tively distributed along the axis, and collected at the centre, which will be quite accurate

enough for the present purpose, and putting a for the ratio of a to I, we have by the ordinary

formula

X -
iWl + (l + a)W

l > (153)

whence t, the time of vibration, is known. The formula (148) then gives k, which applies to

the sphere, and (147) gives HI, the a in this formula being the radius of the rod, from whence

ku which applies to the rod, may be got by interpolation from the table in Part I. Let Ah,

A&i be the corrections which must be applied to k, k x
on account of the confined space of the

vacuum apparatus, and let Su S be the specific gravities of the rod and sphere respectively ;

then we get by means of the formulae (149), (150)

The first of the two factors connected by the sign x in this equation is equal to a~ x I'I~ l

,

and if we want to calculate the weight of air which we must conceive attached to the centre

of gyration of the pendulum in order to allow for the inertia of the air, we have only to mul-

tiply the factor just mentioned by a and by the weight of the whole pendulum. The follow-

ing table contains the comparison of theory and experiment in the case of the 14th set. The

rods here mentioned are the same as those which composed the pendulums Nos. 21, 43, and

44, and the spheres are the three brass spheres of Nos. 3, 5, and 66. It appears from p. 432

of Baily's paper that his results are all reduced to a standard pressure and temperature, on

the supposition that the effect of the air on the time of vibration is proportional to its density.

The theory of the present paper shews that this will only be the case if p! be constant, which

however there is reason for supposing it to be when the pressure alone varies. Be that as it

may, no material error can be produced by reducing the observations in this way, because the

difference of density in any pair of experiments did not much differ from the density of air

at the standard pressure and temperature. The standard pressure and temperature taken

were 29*9218 inches of mercury and 32° F, and the assumed specific gravity of air at this pres-
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sure and temperature was the l-770th of that of water, so that in the calculations from theory

it is to be supposed that a-'
1 = 770.

If w be the weight of the whole pendulum, w that of the air which we must suppose

attached to the pendulum at its centre of gyration in order to express the effect of the inertia

of the air, S the vibrating specific gravity of the pendulum, the effects of buoyancy and inertia

are as aS' 1
to w'w~ l

; but they are also as 1 to It-1, according to the definition of the fac-

tor n, and therefore

w
(tt-l)^w,

(155)

a formula which may be employed to calculate w when tl is known.

Baily's results with spheres at the ends of long rods.

No. and nature of pendulum.
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Baily's results with the spheres at the end of the short rods.

No. and nature of pendulum.
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61. In the 14th set of experiments, the weight of adhesive air due to the spheres alone

has been computed by Baily by subtracting from the whole weight, as given by observation,

the weight due to the rods as given by the 13th set of experiments, taking account of the

change of weight corresponding to the change in the position of the centre of gyration, the

point at which the air is supposed to be attached. According to theory, this process is not

legitimate, inasmuch as the weight dragged by a rod in a function of the time of vibration,

which is altered when a sphere is attached to the end of the rod. But in the 15th set of

experiments the spheres did not materially affect the time of vibration, inasmuch as they were

inserted nearly at the centre of oscillation of the rods, and therefore in this case the process

is legitimate. Accordingly, I think it is a sufficient comparison between theory and experi-

ment in the case of the 15th set, to compare the weights of air due to the spheres alone, as cal-

culated by Baily, with the weights calculated according to the theory of this paper with the

assumed value of \Zfx. I have exhibited separately the weight corresponding to the correc-

tion for confined space, in order to enable the reader to form an estimate of the extent to

which the results may be affected by the uncertainty relating to the amount of this correc-

tion.

Weights of air dragged by the spheres alone, as deduced from Baily's results with the

spheres at the centre of oscillation of the long rods.

By Theory.
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the factor k, of which the meaning has been already explained. The value of this factor, as

Bessel remarked, will depend upon the form of the body ; but he does not seem, at least in his

first memoir, to have contemplated the possibility of its depending on the time of oscillation, and

consequently he supposed it to have the same value for the long as for the short pendulum.

When the factor k is introduced, the equation obtained from the known difference of length

of the two simple pendulums contains two unknown quantities, namely k, and the length of

the seconds' pendulum. To obtain a second equation, Bessel made another set of experiments,

in which the brass sphere was replaced by an ivory sphere, having as nearly as possible the

same diameter. The results obtained with the ivory sphere furnished a second equation, in

which k appeared with a much larger coefficient, on account of the lightness of ivory com-

pared with brass. The two equations determined the two unknown quantities.

Let \ be the length of the seconds' pendulum, tu t2 the times of oscillation of the brass

sphere when swung with the short wire and long wire respectively, /„ l2 the lengths

of the corresponding simple pendulums, corrected for everything except the inertia of the

air, m the mass of the sphere, m,i the mass of the fluid displaced ; then

X*,
2

(l +
t

^-k)-
l = l

l ;m

or, since m, is so small that we may neglect mf,

X*,
2

(l -—&) =
*,.m

The long pendulum furnishes a similar equation, and the result obtained from the brass

sphere is

X (,t?
-

t?) (1
- — k) = k ~ h, (156)

since L — l
t

is the quantity which is regarded as accurately known. The ivory sphere in

like manner furnishes the equation

.
x (<v - <?) (i

-^ *) - r,
- r» (157)m

where the accented letters refer to that sphere. The equation for the determination of k

results from the elimination of X between the equations (156) and (157).

Now, according to the theory of this paper, the factor k has really different values for

the long and short pendulums. Let k t refer to the short, and k2 to the long pendulum
with the brass sphere, k^ to the short, and k2

'

to the long pendulum with the ivory

sphere. Then

x#» (i
- 2»

&,) * /, \t» (i
_^ k2)

= h,m m
and therefore

h - h = \t2
*
(1
-— k2)

- \t? (1
! kj (158)m m

In the equation resulting from the elimination of X between (156) and (157), let the
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values of l2
- l t and //

—
/,' got from (158) and the similar equation relating to the ivory

sphere be substituted. The result is

& - mil I'gjij) ic(i
-
5*'^

- '« o - *
*'.)}

»» »» to

mm m J

This equation is of the form

i> + Qto, + Rm? = V + Q'to, + .R'to,
2
,

and P — f, and Rm*, R'rn* may be neglected, so that the equation is reduced to Q = Q'.

It is now no longer necessary to distinguish between t2 and t2 , and between tx and </, which

may be supposed equal. Also m : tri :: S : &, where S, S' are the specific gravities of the

brass and ivory spheres respectively. Substituting in the equation Q = Q', and solving with

respect to k, we get

, *
*
(Sk\ -

S'k,)
- t* (Sk\ -

S"k,)"^ w-w-o <159>

This equation contains the algebraical definition of that function k of which the numerical

value is determined by combining, in Bessel's manner, the results obtained with the four pen-

dulums. Since the equation is linear so far as regards k, ku &c, we may consider separately

the different parts of which these quantities are composed, and add the results. For the part

which relates to the spheres, regarded as suspended by infinitely fine wires, we have k'2 = k2

and k\ = &„ since the radii of the two spheres were equal, or at least so nearly equal that the

difference is insensible in the present enquiry. We get then from (159)

^"g*' ,
la —

l\

which gives

K -—
rtj K —— K2 K2

**** ni

/ 2
=

71
~
Vz TV \1°U

If2 G] t/2
—

&l

Since t2 >t 1 and k2 >k,, the equations (l6l) shew that the value of k determined by
Bessel's method is greater than the factor which relates to the short pendulum, which was a

seconds' pendulum nearly, and even greater than that which relates to the long pendulum, as

has been already remarked in Art. 6.

If ks be the factor relating to either sphere oscillating once in a second, and if the

effect of the confinement of the air be neglected, we have from the formula (148)

*!-£ :k,-^:ks -^::t1h:t2i:l,

and in Bessel's experiments f,
m 1*001, 4 = 1*721, 2 a = 2*143 in English inches. We thus

get from either of the equations (160) or (161), on substituting 0*1 16 for <\/n', k = 0*786.

The value of the factor k„ which relates to a sphere of the same size, swung as a seconds' pen-

dulum, is only 0*694, and k
x may be regarded as equal to k,. The formula (148) gives

k2
= 0*755.

34—2
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63. We have next to investigate the correction for the wire. The effect of the inertia of

the air set in motion by the wire was altogether neglected by Bessel, and indeed it would have

been quite insensible had the parts of the correction for inertia due to the wire and to the

sphere, respectively, been to each other in nearly the same ratio as the parts of the correction

for buoyancy. Baily, however, was led to conclude from his experiments that the effect of the

wire was probably not altogether insignificant, and the theory of this paper leads, as we

have seen, to the result that the factor It is very large in the case of a very fine wire.

The ivory sphere in Bessel's experiments was swung with a finer wire than the brass

sphere. It was for this reason that I did not from the first suppose k\=k l
and k'2= k2 .

Let Ak, A&j &c. be the corrections due to the wire. The values of Akly Ak2 , Ak\, Ak\,

may be got from the formula (151), in which it is to be remembered that \ denotes the length

of the isochronous simple pendulum, not, as in Bessel's notation, the length of the seconds' pen-

dulum. It is stated by Bessel (p. 131), that the wire used with the brass sphere weighed 10Q5

Prussian grains in the case of the long pendulum, and 3-58 grains in the case of the short.

This gives 7*37 grains for the weight of one toise or 72 French inches. The weight of one

toise of the wire employed with the ivory sphere was 6-28 — 204 or 4-24 grains (p. 141). The

specific gravity of the wire was 7'6 (p. 40), and the weight of a cubic line (French) of water is

about 0-1885 grain. From these data it results that the radii of the wires were 0-003867 and

0-002933 inch English. The formula (147) gives TO, whence L is known from (152). The

lengths of the isochronous simple pendulums were about 39'20 inches for the short pendulum,
and 116-94 for the long. On substituting the numerical values we get from (151), since

*i = n>
~ 1 an^ *2 = tl2

-
1,

A&! = 0-0107, Ak2
= 0-0286, Ak\= 0-0090, Ak\= 0-0244.

The specific gravities of the two spheres were about 8190 and 1*794, whence we get from

(159) Ak = 0-0308, or 0-031 nearly.

The value of k deduced by Bessel from his experiments was 0-9459 or 0-946 nearly, which

in a subsequent paper he increased to 0-956. In this paper he contemplates the
possibility of

its being different in the cases of the long and of the short pendulum, and remarks with justice

that no sensible error would thence result in the length of the seconds' pendulum, as deter-

mined by his method, but that the factor k would belong to the system of the two

pendulums.

The following is the result of the comparison of theory and experiment in the case of

Bessel's experiments on the oscillations of spheres in air.

Value of k belonging to the system of a long and a short pendulum, as

determined experimentally by Bessel 0-956

Value deduced from theory, including the correction for the wire, but

not the correction for confined space 0-817

difference + 0-139

I cannot find that Bessel has stated exactly the distance of the centre of the sphere

from the back of the frame within which it was swung, but if we may judge by the sketch of
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the whole apparatus which is given in Plate I., and by a comparison of figs. 2 and S, Plate

II., it must have been very small, that is to say, a small fraction of the radius of the sphere*.

If so, although the exact calculation of the correction for confined space would form a problem

of extreme difficulty, it may be shewn from theoretical considerations that the correction would

be by no means insensible, so that it might wholly or in part account for the difference + - 13Q

between the results of theory and observation. It is, however, not improbable, for a reason

which has been already mentioned, that the theoretical correction for the wire is not quite

exact.

64. The experiments performed by Bessel on a sphere vibrating in water will be more

conveniently considered after the discussion of some experiments of Coulomb's, to which I now

proceed. These experiments are contained in a memoir entitled Experiences destinies a deter-

miner la coherence des Jluides et les lois de leur resistance dans les mouvements tres-lents,

which will be found in the 3rd Volume of the Memoires de VInstitut, p. 246. The experi-

ments which I shall first consider are those which relate to the oscillations of disks suspended

in water with their planes horizontal. In these experiments the disk operated upon was attached

to the lower extremity of a vertical cylinder of copper, not quite half an inch in diameter, the

axis of which passed through the centre of the disk. The cylinder was suspended by a fine

wire attached to its upper extremity. The under portion of the cylinder, together with the

attached disk, were immersed in water, the disk at the bottom of the cylinder being immersed

to the depth of 4 or 5 centimetres below the surface. The upper portion carried a horizontal

metallic graduated disk, by means of which the arc of oscillation could be read off, and which,

on account of its size and weight, mainly determined the inertia of the system, so that the time

of oscillation in the different experiments was nearly the same. The observations were taken

as follows. The whole system was turned very slowly round by applying the hands of the

graduated disk, taking care not to derange the vertical position of the suspending wire. The

arc through which the system had been turned was read by means of the graduation, or rather

the system was turned through an arc previously fixed on ; the system was then left to itself,

and the arc again read off to a certain number of oscillations. Thus it was the decrement

of the arc of oscillation that was observed ; the time of oscillation was indeed also observed,

but only approximately, for the sake of determining a subsidiary quantity required in the cal-

culation. Indeed, it will be easily seen that the experiments were not adapted to determine the

effect of the fluid on the time of oscillation. The decrement of arc so determined had to be

corrected for the effect of the imperfect elasticity of the wire, and of the resistance of the air

against the graduated disk, and of the water against the portion of the copper cylinder

immersed. The amount of the correction was determined by repeating the observation when

the lower disk had been removed.

It appeared from the experiments, first, that with the same disk immersed, the successive

* The measurement of either of Bessel's figures, figs. 5 or 6,

Plate II. gives I'd inch for the distance of the centre of the

sphere from the surface of the broad iron bar which formed the

back of the frame, the surface of the bar being supposed truly

vertical ;
and the measurement of fig. 2 giving 2*06 inches for

the diameter of the sphere, it appears that the distance of the

surface of the sphere from the surface of the bar was barely

equal to half the radius of the sphere.
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amplitudes of oscillation decreased in geometric progression; secondly, that with different

disks the moment of the resisting force was proportional to the fourth power of the radius.

From these laws Coulomb concluded that each small element of any one of the disks expe-

rienced a resistance varying as the area of the element multiplied by its linear velocity. It

should be observed that Coulomb was only authorized by his experiments to assert this law to

be true in the case of oscillations of given period, inasmuch as the time of oscillation was

nearly the same in all the experiments.

Let a be the radius of the disk in the fluid, r the time of oscillation, the angular dis-

placement of the disk, measured from its mean position, i" the moment of inertia of the whole

system ; and let 1 : 1 — m be the ratio in which the arc of oscillation is diminished in one

oscillation. According to the formula (15) we have

e-»/3<

for the factor which expresses the ratio of the arc of oscillation at the end of the time t to the

initial arc. At the end of one oscillation t = t, and the value of the above factor is 1 — m,

which is given by observation. Putting for /3 its value, in which My° = I, and nr =
ir,

we get

lo&a-^-^V^ (162)

Let T be the time of oscillation, and I the moment of inertia, when the under disk is

removed : then /= I t* T~ 8
. Also if M be the mass and R the radius of the large graduated

disk, we have i~ = ^ MR'
2
, neglecting, as Coulomb did, the rotatory inertia of the copper cylin-

der. Substituting in (162), we get

loge (l -m)-
1 = 2-lTip fi'lT-lT

2aiR-'!M- 1

(163)

Let W be the weight of the disk in grammes. Then the mass of the disk is equal to that of

W cubic centimetres or 1000W cubic millimetres of water. Hence M => 1000 p W, a milli-

metre being the unit of length. Substituting in (163), and solving with respect to \Ztx',

we get

vV = 1000 x 2* log, 10 . Tr-i WR? T- 2a- 4 T* log10 (l
-

to)"
1

, . . ( 164)

and the same value of -y/V ought to result from different experiments.

The weight of the disk is stated to have been 1003 grammes, and its diameter 271 milli-

metres, and it made 4 oscillations in 91 seconds. Hence 1^=1003, R =» 135-5, T=2275.
The last three factors in (164) vary from one experiment to another. After making experi-

ments with three disks of different radii attached to the copper cylinder, Coulomb made

another set with nothing attached, for the purpose of eliminating the effect of the imperfect

elasticity of the wire. The following table contains the data furnished by experiment, together

with the value of \Z/i deduced from the several experiments. The latter is reduced to the

decimal of an English inch, by including 2*5952 (the logarithm of the ratio of a millimetre to

an inch) in the logarithm of the constant part of the 2nd member of equation (l64).
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Determination of the value of ^//x for water from Coulomb's experiments on the decre-

ment of the arc of oscillation of disks, oscillating in their own plane by the force of

torsion.

No.
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divide the sum of the products by 510 + 152 + 77 or 739, we get 0.05551. We may then take

0.555 as the result of the experiments. Assuming \Z/j.'= 0.0555 we have

log (1
-

rn)~
l from experiment 0.0568 in No. 1, 0.021 in No. 2, 0.0135 in No. 3,

from theory 0.0571 0.0206 0.0137

difference - 0.0003 + 0.0004 - 0.0002

65. So far the accordance of the theoretical and observed results is no very searching test

of the truth of the theory. For, in fact, the theory is involved in the result only so far as

this, that it shews that the resistance experienced by a given small element of a disk
oscillating

in a given period varies as the linear velocity ; since the difference of periods in Coulomb's

experiments was so small that the effects thence arising would be mixed up with errors of

observation. This law is so simple that it might very well result from theories differing in

some essential particulars from the theory of this paper. But should the numerical value of

\Zfi determined by Coulomb's experiments on disks be found to give results in accordance

with theory in totally different cases, then the theory will receive a striking confirmation.

Before proceeding to the discussion of other experiments, there are one or two minute

corrections to be applied to the value of
/y/ju.' given above, which it will be convenient to

consider.

In the first place, the result obtained in Art. 8 is only approximate, the approximation

depending upon the circumstance that the diameter of the revolving body is large compared
with a certain line determined by the values of p and t. In the particular case in which the

revolving solid is a circular disk, it happens that the approximate solution satisfies the general

equations exactly, except so far as relates to the abrupt termination of the disk at its

edge*. In consequence of this abrupt termination, the fluid annuli in the immediate

neighbourhood of the edge are more retarded by the action of the surrounding fluid than they

would have been were the disk continued, and consequently the resistance experienced by the

disk in the immediate neighbourhood of its edge is actually a little greater than that given by
the formula. I have not investigated the correction due to this cause, but it would doubtless

be very small.

In the second place, the formula (15) is adapted to an indefinite succession of oscillations,

whereas Coulomb did not turn the disk through an angle greater than the largest intended

to be observed, and suffer one or two oscillations to pass before the observation commenced,

but took for the initial arc that at which the disk had been set by the hand. Probably the

disk was held in this position for a short time, so that the fluid came nearly to rest. If so,

the resulting value of -y/V, as may readily be shewn, would be a little too small. For in the

course of an indefinite series of oscillations, the disk, in its forward motion, carries a certain

quantity of fluid with it, and this fluid, in consequence of its inertia, tends to preserve its

motion. Hence, when the disk, having attained its maximum displacement in the positive

direction, begins to return, it finds the fluid moving in such a manner as to oppose its return,

•
(See Note A at the end.)
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and therefore it experiences a greater resistance than if it had started from the same position

with the fluid at rest. In fact, it appears from the expression for G in Art. 8, that the

moment of the resistance vanishes, in passing from negative to positive, not when the disk has

reached the end of its excursion in the positive direction, but the eighth part of a period

earlier. Hence, had the observation commenced during a series of oscillations, a larger initial

arc would have been necessary, to overcome the greater resistance, in order to produce, after a

given number of oscillations, the same final arc as that actually observed. I have investigated

the correction to be applied on account of this cause, and find it to be about + 0.009, but I

must refer to a note for the demonstration, in order not to interrupt the present discussion*.

I shall assume then, in the following comparisons, that for water

yV = 0.0564,

the units being the same as before, namely, an English inch and a second. That y! is inde-

pendent of the pressure of the fluid, or at least very nearly so, appears from an experiment of

Coulomb's, in which it was found that the decrement of the arc of oscillation of a disk oscil-

lating in water was the same in an exhausted receiver as under the full atmospheric pressure.

I will here mention another experiment of Coulomb's which bears directly on one part of

the theory. On covering the disk with a thin coating of tallow, the resistance was found to

be the same as before ; and even when the tallow was sprinkled with powdered sandstone, by

means of a sieve, the increase of resistance was barely sensible. This strikingly confirms the

correctness of the equations of condition assumed to hold good at the surface of a solid.

66. I will now compare the formula (148) with the results obtained by Bessel for the

oscillations of the brass sphere in water, which will be found at page 65 of his memoir. This

sphere was suspended so as to be immersed in the water contained in a large vessel, and was

swung with two different lengths of wire, the same as those employed for the experiments in

air. The times of oscillation were 1-9085 second for the long pendulum, and 1-1078 for the

short. The results are

Long pendulum. Short pendulum.

k, by experiment 0-648 0-602

k, by theory 0-631 0-600

difference + 0-017 + 0-002

The depth to which the spheres were immersed is not stated, but it was probably sufficient to

render the effect of the free surface small, if not insensible. The vessel was three feet in

diameter, and the water 10 inches deep, so that unless the spheres were suspended near the

bottom, which is not likely to have been the case, the effect of the limitation of the fluid by
the sides of the vessel must have been but trifling. The agreement of theory and observation,

as will be seen, is very close.

67. In the same memoir which contains the experiments on disks, Coulomb has given

the results of some experiments in which the disk immersed in the fluid was replaced by a

•
(Am Note B at the end.)
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long narrow cylinder, placed with its axis horizontal and its middle point in the prolongation

of the axis of the vertical copper cylinder. In these experiments, the arcs did not decrease

in geometric progression, as would have been the case if the resistance had varied as the

velocity; but it was found that the results of observation could be satisfied by supposing the

resistance to vary partly as the first power, and partly as the square of the velocity. In

Coulomb's notation, 1 : 1 - m denotes the ratio in which the arc of oscillation would be

altered after one oscillation, if the part of the resistance varying as the square of the velocity

were destroyed. The several experiments performed with the same cylinder were found to be

sufficiently satisfied by the formula deduced from the above-mentioned hypothesis respecting

the resistance, when suitable numerical values were assigned to two disposable constants m
and p, of which p related to the part of the resistance varying as the square of the velocity.

Conceive the cylinder divided into elementary slices by planes perpendicular to its axis.

Let r be the distance of any slice from the middle point, 9 the angle between the actual and

the mean positions of the axis, dF that part of the resistance experienced by the slice which

varies as the first power of the velocity. Then calculating the resistance as if the element

in question belonged to an infinite cylinder moving with the same linear velocity, we have by

the formulae of Art. 31

dF = k'M'n-± ,
where M' = irptfdr,

-i = r— .

dt r dt dt

If G be the moment of the resistance, I the whole length of the cylinder, we have, putting

n = 7TT
-1

,

G = ^Jc'paH
3 d9

12 T dt*

whence

loge (l-m)-'= J7
(165)

/ being the moment of inertia.

Expressing / in terms of the same quantities as in the case of the disk, we get from (147)

and (165)

log, (l-m)-' = log10 e.
7

^^.^.^.tn% . . . (166)

and gp is the weight of a cubic millimetre of water, or the 1000th part of a gramme. The

numerical values of p.', T, R, Whave been already given, but p! must be reduced from square

inches to square millimetres. The cylinders, of which three were tried in succession, had all the

same length, namely, 249 millimetres. Their circumferences, calculated from their weights

and expressed in millimetres, were 21.1, 11.2, and 0.87, and the time of four oscillations was

92
s

, 9l"» 91
s
- The values of m calculated from these data by means of the formula (147) are

0.4332, 0.2312, and 0.01796. For the first and second of these values, Wk' may be obtained

by interpolation from the table given in Part I. ; for the third it will be sufficient to employ

the second of the formulae (115).
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The following are the results :

Cylinder, No. 1. No. 2. No. 3.

m, by experiment 0.0400 0.0260 0.0136

»w, by theory 0.0413 0.0291 0.0113

Difference - 0.0013 - 0.0031 + 0.0023

The differences between the results of theory and experiment are perhaps as small as could

reasonably be expected, when it is considered that, notwithstanding the delicate nature of the

experiments, the numerical values of two constants, m and p, had to be deduced from their

results.

68. This memoir of Coulomb's contains also a notice of a set of experiments with disks

and cylinders in which the water was replaced by oil. The experiments with disks shewed

that with a given disk the arc of oscillation decreased in geometric progression, and that with

different disks the moments of the resistances were as the fourth powers of the diameters. The

absolute resistances were greater than in the case of water in the ratio of about 17
-5 to 1.

The details of Coulomb's experiments on cylinders oscillating in oil are entirely omitted. It

is merely stated that on making the same cylinders as before, or shorter cylinders when the

resistance was too great, oscillate in oil, it was found, conformably with the results obtained

with planes, that the coherence of oil was to that of water as 17 to 1. The coherence is here

supposed to be measured by that part of the resistance which is proportional to the first power
of the velocity. On making a rough calculation of the ratio of the resistances to cylinders

oscillating in oil and in water, on the supposition that /y/V for oil is to ^/fi for water as

17'5 to 1, as would follow from the experiments on disks if the difference of the specific

gravities of the two fluids be neglected, I found that the ratio in question ought to have been

somewhere about 100 to 1, instend of only 17 to 1. It would seem from this that the theory

of the present paper is not applicable to oil ; but fresh experiments would be required before

this point can be considered as established, on account of the theoretical doubt respecting the

application of the formulae of Section III. Part I., to extremely fine cylinders, especially

in cases in which (/ is large, so that VI is very small. It would be interesting to make

out whether what I have called internal friction is or is not of the same nature as
viscosity.

Coulomb and Dubuat apply the term viscosity to that property of water by virtue of which

certain effects are produced which have been shewn in this paper to be perfectly explicable on

the theory of internal friction ; whereas Poisson, in one of his memoirs, expressly asserts that

the terms in the equations of motion which result from what has been called in this paper
internal friction belong to perfect fluids, and have nothing to do with viscosity*. Poisson

does not give the slightest hint as to the grounds on which he rested his opinion.

69. I come now to the experiments of Dubuat, which are contained in an excellent work

of his entitled Principes <THydraulique, of which the second edition was published in 1786.

• Journal de I'Ecole Poli/technique, Tom. XIII. p. 95. >
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The first edition does not contain the experiments in question. Dubuat justly remarked that

the time of oscillation of a pendulum oscillating in a fluid is greater than it would be in vacuum,

not only on account of the buoyancy of the fluid, which diminishes the moving force, but also on

account of the mass of fluid which must be regarded as accompanying the pendulum in its

motion ; and even determined experimentally the mass of fluid which must be regarded as

carried by the oscillating body in the case of spheres and of several other solids. Thus

Dubuat anticipated by about forty years the discovery of Bessel ; but it was not until after

the appearance of Bessel's memoir that Dubuat's labours relating to the same subject attracted

attention.

Dubuat's method was as follows. Imagine a body suspended by a fine thread or wire and

swung in vacuum, and let a be the length of the pendulum, reckoned from the centre of sus-

pension to the centre of oscillation. Now imagine the same body swung in a fluid, in which

its apparent weight is p, so that if P denote the weight of fluid displaced, the true weight of

the body will be p + P. Since the moving force is diminished in the ratio of p + P to p, if

the inertia of the body were all that had to be overcome, it would be necessary to diminish the

length of the pendulum in the same ratio, in order to preserve the same time of oscillation.

But since the mass in motion consists not only of the mass of the body itself, but also of that

of the fluid which it carries with it, the pendulum must be shortened still more, in order that

the time of oscillation may be unaltered. Let I be the length of the pendulum so shortened,

and ft (which for the same reason as before I write instead of Dubuat's n,) a factor greater

than unity, such that p + TIP is the weight of the mass in motion ; then

uu , p (a \—
, whence n =

^ I- - ll • . . . (167)
ap

Dubuat's experiments on this subject consist of 44 experiments on spheres oscillating in

water, (Tom. 11. p. 236) ; 31 experiments on other solids oscillating in water, (p. 246) ; and

3 experiments on spheres oscillating in air, (p. 283). The following table contains a compa-
rison of the formula (148) with Dubuat's results for spheres oscillating in water. The value

of \Zfi employed in the calculation is 0.0564 inch English, or 0.05291 inch French.
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Dubuafs experiments on spheres oscillating in water.

—————^——

T
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satisfy them both. The numbers in the last column of the preceding table are, however,

far too regular to be attributable to mere fortuitous errors of observation. If we suppose

Bessel's results to have been nearly exact, there must have been something in the mode either

of making or of reducing Dubuat's experiments which caused a tendency to error in one

direction.

With respect to the reduction of the experiments it may be observed that the length I was

measured from the centre of oscillation, whereas in the formula (148) it is supposed that the mass

of which the weight is IcP or (tl
—

1) P is collected at the centre of the sphere. If h be the

distance of the centre of the sphere from the axis of suspension, the observed value of 11 - 1

ought in strictness to be increased in the ratio of h? to I
8
,
or the calculated value diminished in

the ratio of P to h2
, before comparing the results of theory and experiment. In the case of

the loaded spheres especially, the theoretical value of II would thus be a little diminished ; but

except in a very few cases, in which either I or a — I is small, the diminution is hardly worth

considering. After having been for a good while at a loss to account for the regular occur-

rence of rather large negative errors, the following occurred to me as the probable solution

of the difficulty.

When a pendulum oscillates in water, the arc of oscillation rapidly decreases ; this rapid

diminution forms in fact the grand difficulty in experiments of this kind. In Dubuat's experi-

ments, it will be remembered, the suspending thread was lengthened or shortened till the time of

oscillation was an exact number of seconds, or occasionally half a second. Now, it is probable

that the observer occasionally gave the suspending thread a slight push as the pendulum was

commencing its return, in order to keep the oscillations going for a sufficient time to allow of

tolerable precision in rendering the time of oscillation equal to what it ought to be. If so,

these pushes would slightly accelerate the oscillations, and therefore cause the length of thread

fixed on by observation to be a little too great, which would make the effect of the water in

retarding the oscillations appear a little too small. On inspecting the table of differences,

it may be observed that sometimes when the same sphere differently loaded is swung in the same

time as before, the numbers in the table of differences are altered more than appears to be

attributable to merely fortuitous errors of observation. This accords very well with the con-

jecture just mentioned, and seems difficult to account for in any other way, inasmuch as

everything relating to the fluid must have been almost exactly the same in the two

cases.

The occurrences of positive differences in the case of the large wooden sphere may be

accounted for by the limitation of the fluid mass by the sides and bottom of the vessel, and by
the free surface, which, except in the case of very short oscillations, would have much the same

effect as a rigid plane, inasmuch as it would be preserved almost exactly horizontal by the

action of gravity. The vessel which contained the water was 51 inches long and 17 broad,

the water was 14 inches deep, and the spheres were plunged to about 3 inches below the

surface, so that the effect of the confinement of the fluid mass would have been quite sensible

in the case of such large spheres. If it be objected that the same sphere gave negative differ-

ences in the case of the first group of experiments, it must be observed, that when the appa-

rent weight of so large a sphere was only 2102 French grains, the resistance would quickly
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have caused the oscillations to subside if an extraneous force had not frequently been

applied.

71. In Dubuat's experiments on spheres oscillating in air, the lightness of the fluid was

compensated by the extreme lightness of the spheres, which were composed, the first two of

paper, and the third of gold-beater's skin. In the following table the diameter 2 a of the

sphere is expressed in French inches. The value of ^/p employed in the reduction is the

same as was before used in the reduction of observations made in air, namely 0.1 16 inch

English, or 0.1088 inch French.

Dubuat's experiments on light spheres oscillating in air.

No.
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than k. Hence, if the formulae of that section applied to such fine wires, the effect of the wire

on the arc of vibration would be much greater than its effect on the time of vibration, and

therefore would be quite sensible. But it has been shewn in Section IV., that the effect of the

wire in diminishing the arc of vibration is probably greater than would be given by the

formula, and therefore the uncertainty depending on the wire is likely to amount to a very

sensible fraction of the whole amount. Again, since Bessel's experiments were all made in air,

no data are afforded whereby to eliminate the portion of the observed result which was due to

friction at the point of support, imperfect elasticity of the wire, or gradual dissipation of vis

viva by communication of motion to the supporting frame. Moreover in the case of the long

pendulum the observations were made with rather too large arcs, for the law of the decrease of

the arc of vibration deviated sensibly from that of a geometric progression. In Baily's

experiments, only the initial and final arcs are registered, and not even those in the case of the

" additional experiments." Hence these experiments do not enable us to make out whether it

would be sufficiently exact to suppose the decrease to take place in geometric progression.

Moreover, the final arc was generally so small, that a small error committed in the measure-

ment of it would cause a very sensible error in the rate of decrease concluded from the

experiment. For these reasons it would be unreasonable to expect a near accordance between

the formulae and the results of the experiments of Bessel and Baily. Still, the formulas might

be expected to give a result in defect, and yet not so much in defect as not to form a large

portion of the result given by observation. On this account it will not be altogether useless to

compare theory and observation with reference to the decrement of the arc of vibration.

73. Let us first consider the case of a sphere suspended by a fine wire. Let the notation

be the same as was used in investigating the expression for the effect of the air on the time of

vibration, except that the factors k', k\ come in place of k, &,. Considering only that part of

the resistance which affects the arc of vibration, we have for the portions due respectively to

the sphere and to the element of the wire whose length is ds, and distance from the axis of

suspension s,

kMnil+a) — , «, ds.ns—-,v * dt I dt

and if we take the moment of the resistance, and divide by twice the moment of inertia, the

dQ
coefficient of — in the result, taken negatively, and multiplied by t, will be the index of e in

the expression for the arc. Hence if a be the initial arc of vibration, and at the arc at the

end of the time t

k'M'jl + ay+^k^M.'P vt
log< a°- log«

a'
—

jf(i+«)«4*»*» •*?
' ' ' (m

M' (I + ay being as before taken for the moment of inertia of the sphere, which will be

abundantly accurate enough. If then we put I for the Napierian logarithm of the ratio of the
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arc at the beginning to the arc at the end of an oscillation, we must put t = t in (168),

whence, neglecting the effect of the wire, we obtain

wft cr , - .

l -Y-s (169)

If now A ft' be the correction to be applied to k' in this formula on account of the wire,

since k', ft/ are combined together in the expression for the arc just as ft, ki in the expression

for the time, we get
ft'

Aft' =
-J- Aft, (170)
fti

and the approximate formulae (115) give
4L

Aft = Aft, (171)
7T

whence the numerical value of Aft' is easily deduced from that of Aft, which has been already

calculated. We get also from (52)

ft'=ft-l+|(ft-l)
8

(172)

whence ft' may be readily deduced from ft,
which has been already calculated.

74. Before comparing these formula? with Bessel's experiments, it will be proper to

enquire how far the latter are satisfied by supposing the arcs of oscillation to decrease in

geometric progression. In Bessel's tables the arc is registered in the column headed /m.

This letter denotes the number of French lines read off on a scale placed behind the wire,

and a little above the sphere, and is reckoned from the position of instantaneous rest of the

wire on one side of the vertical to the corresponding position on the other side. The distance

of the scale from the axis of suspension being given, as well as the correction to be applied

to /n on account of parallax, the arc of oscillation may be readily deduced. However, for

our present purpose, any quantity to which the arc is proportional will do as well as the

arc itself, and fx, though strictly proportional to the tangent of the arc, may be regarded as

proportional to the arc itself, inasmuch as the initial arc usually amounted to only about 50'

on each side of the vertical.

Now we may form a very good judgment as to the degree of accuracy of the geometric

formula by comparing the arc observed in the middle of an experiment with the geometric

mean of the initial and final arcs. I have treated in this way Bessel's experiments, Nos. 1, 2,

3, 4, and 5. Each of these is in fact a group of six experiments, four with the long pendulum
and two with the short, so that the whole consists of 20 experiments with the long pendulum,
and 10 with the short. In the case of the long pendulum, the observed value of fx regularly

fell short of the calculated value, and that by a tolerably constant quantity. The mean differ-

ence amounted to 0.688 line, and the mean error in this quantity to 0.109. This mean error

was not due entirely to errors of observation, or variations in the state of the air, &c, but

partly also to slight variations in the initial arc, larger differences usually accompanying larger

initial arcs. The initial arc usually corresponded to y.
= 39 or 40 lines, and the final to /u

= 15

Vol. IX. Part II. 36
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or 16 lines. In the case of the short pendulum, the differences in 8 cases out of 10 had the

same sign as before. The mean difference was 0.025, and the mean error 0.043. The arcs of

oscillation were nearly the same as before ; but inasmuch as the axis of suspension was nearer

to the scale than before, the initial value of n was only about 12 or 13 lines, and the final

value about 7 lines. When the results of some of the experiments were laid down on paper, by
abscissas taken proportional to the times and ordinates to the logarithms of /u, it was found that

in the case of the long pendulum the line so drawn was decidedly curved, the concavity being

turned toward the side of the positive ordinates. The curvature of the line belonging to

the short pendulum could hardly be made out, or at least separated from the effects of

errors of observation. The experiments 9, 10, 11, having been treated numerically in the

same way as the experiments 1—5, led to much the same result. In the 16 experiments with

the ivory sphere and short pendulum contained in the experiments Nos. 12, 13, 14, and 15,

the excess of the calculated over the observed value of fi was more apparent, the mean

excess amounting to 0.129. The reason of this probably was, that the observations with the

ivory sphere were made through a somewhat wider range of arc than those with the brass

sphere.

It appears then that at least in the case of the long pendulum a correction is necessary, in

order to clear the observed decrease in the arc of oscillation from the effect of that part of the

resistance which increases with the arc more rapidly than if it varied as the first power of the

velocity, and so to reduce the observed rate of decrease to what would have been observed in

the case of indefinitely small oscillations.

75. In Coulomb's experiments it appeared that the resistance was composed of two terms,

one involving the first power, and the other the square of the velocity. If we suppose the

same law to hold good in the present case, and denote the amplitude of oscillation at the end

of the time t, measured as an angle, by a, we shall obtain

Tf- A«-**> • • • 073)

where A and B are certain constants. We must now endeavour to obtain A from the results

of observation. Since the substitution for a of a quantity proportional to a will only change
the constant B in (173), and the numerical value of this constant is not required for com-

parison with theory, we may substitute for a the number of lines read off on the scale as

entered in Bessel's tables in the columns headed p.

I have employed four different methods to obtain A from the observed results. The

one I am about to give is the shortest of the four, and is sufficiently accurate for the

purpose.

The equation (173) gives after dividing by a

d log a , _

-g A- Ba (174)
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Now, as has been already observed, the arcs of vibration decrease nearly in geometric pro-

gression. If this law were strictly true, we should have

t

a © T
'.

<""

where a denotes the initial and a2 the final arc, and T denotes the whole time of obser-

vation. We may, without committing any material error, substitute this value of a in

the last term of (174). The magnitude of the error we thus commit is not to be judged

of merely by the smallness of B. The approximate expression (175) is rather to be

regarded as a well-chosen formula of interpolation, and in fact T~ x

log6 (a a2
_I

) differs

very sensibly from A. Making now this substitution in (174), integrating, and after inte-

gration restoring a in the last term by means of (175), we get

BTa , _
loga=-^-, -. +C, (176)

log a2
-

log a

C being an arbitrary constant. To determine the three constants A, B, C, let c^ be the

arc observed at the middle of the experiment, apply the last equation to the arcs a , «,, c^,

and take the first and second differences of each member of the equation. Let A! denote

the sum of the two first differences, so that Ajtf is the same thing as T. Then we may
take for the two equations to determine A and B

A, loga = - A A, t —
; A2

log et = -^ .

A, log a„ A' log a

Eliminating B, and passing from Napierian to common logarithms, which will be denoted

by Log., we get

= -A.Logq, f
_ A»Logq .A,a.l

Loge.A,* 1 A, Log « . A2

aj'
' V '

da.
If we suppose the part of — — which does not varv as the first power of a to be

CLZ

a2

(p'(a)
instead of Ba", we shall get in the same way

J = -A,Logq,, f A 2

Logao .A 1 0(ao)
j

Loge.A^ 1 A 1 Loga„.A
2

^(a )J*

76. I have not attempted to deduce evidence for or against the truth of equation (173)

from Bessel's experiments. The approximate formula (175) so nearly satisfied the obser-

vations, that almost any reasonable formula of interpolation which introduced one new

disposable constant would represent the experiments within the limits of errors of obser-

vation. It may be observed, that the factor outside the brackets in equations (177) and

(178) is the first approximate value of A got by using only the initial and final arcs,

and supposing the arcs to decrease in geometric progression. In the case of the long

pendulum, the value of A, corrected in accordance with the formula (178), would be very

sensibly different according as we supposed (p(a) to be equal to Ba, in which case (178)

36—2
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would reduce itself to (177), or equal to Ba%
. In the case of the long pendulum with

the brass sphere, the corrected value of A, deduced from the formula (177), was equal to

about 0.77 of the first approximate value.

I have not considered it necessary to go through all Bessel's experiments, as it was

not to be expected that the formula should account for the whole observed decrement. I

have only taken four experiments for each kind of pendulum, namely, I. a, b, e, and /
for the long pendulum with the brass sphere ; I. c and d and II. c and d for the short

pendulum with the brass sphere; XII. a, b, c, and d for the long pendulum with the ivory

sphere, and XII. a, b\ c, and d" for the short pendulum with the ivory sphere. The

formula (177) gave the following results. First case, Log e. tA = .0000759; mean error

= .0000020. Second case, Log e.tA = .0000504; mean error =.0000075. Third case, L,oge.A
= .000631; mean error = .000046. Fourth case, Loge . A = .000167; mean error = .000074.

Now |ari| and therefore, to get the values of I deduced from experiment, it will be

sufficient to divide the numbers above given by the modulus of the common system of

logarithms. The theoretical value of \ will be got from (169), if we add to k' the

correction Ak' depending upon the wire. The following are the results:

long p. brass s. short p. brass s. long p. ivory s. short p. ivory s.

1000000 I for sphere alone in an unlimited

mass of fluid, by theory 67 50 298 222

additional for wire 27 9 114 39

94 59 412 261

1000000 I by experiment 175 116 1453 384

It appears then that the calculated rate of decrease of the arc amounts on the average

to about half the rate deduced from observation. This is about what we might have

expected, considering the various circumstances, all tending materially to augment the rate

of decrease, which were not taken into account in the calculation.

77- Of Baily's pendulums I have compared the following with theory in regard to the

decrement of the arc of vibration. No. 1 (the 1 J-inch platina sphere), experiments 1 to 8 ;

No. 3 (the brass l^-inch sphere), experiments 9 to 16; No. 6 (the 2-inch brass sphere), experi-

ments 33 to 40 ; No. 21 (the 0.410 inch long copper cylindrical rod), experiments 109 to 112 ;

and No. 35—38 (the 1^-inch long brass tube), experiments 167 to 174. I have'not thought it

worth while to compute the results obtained with the other 1^-inch and 2-inch spheres, inas-

much as they were of the same size as the brass spheres, and moreover the observation of the

decrement of the arc was not the object Baily had in view in making the experiments. The

3-inch sphere, and all the other cylindrical rods and combinations of cylindrical rods and

spheres, belong to the " additional experiments'''' for which the arcs are not given.

The mode of performing the calculation will best be explained by an example. Take, for

instance, the pair of experiments Nos. 1 and 2. In No. 1 the total interval was 4.22 hours, the

initial arc was 0°.77> the final arc 0°.29, the mean height of the barometer 30.24 inches, and the

temperature about 38^° F. The difference of the common logarithms of the initial and final
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arcs is 0.424, and this divided by the total interval gives 0.1005 for the difference of logarithms

for one hour. The second experiment, treated in a similar way, gives 0352, which expresses

the effect of friction at the point of support, communication of motion to the support itself,

&c, together with the resistance of highly rarefied air at a pressure of only O.97 inch of mer-

cury. Since we have reason to believe that p' is independent of the density, we may get the

effect of air at a pressure of 30.24 - O.97 or 29.27 inches of mercury by subtracting 0.0352 from

0.1005, which gives 0.0653. Reducing to 29 inches of mercury for convenience of comparison,

we get O.0649. Each pair of experiments is to be treated in the same way. Since the tempe-
rature was nearly the same in the experiments made with the same pendulum, we may suppose
it constant, and equal to the mean of the temperatures in the experiments made under the

full atmospheric pressure. The experiments reduced consist of four pair for each pendulum,

except No. 21, for which only two pair were performed. The following are the results. For

the ll-inch platina sphere 0.0644, mean error 0.0044. For the 1^-inch brass sphere 0.180,

mean error 0.024. For the 2-inch brass sphere O.O94, mean error 0.013. For the copper rod

0.486, mean error 0.113. For the brass tube the results were 0.145, 0.363, 0.338, 0.305.

Rejecting the first result as anomalous, and taking the mean of the others, we get 0.335, mean

error 0.030. To obtain I from the mean results above given we have only to divide by 3600

times the modulus, and multiply by t, and for the experiments with spheres we may suppose
t = 1.

The mode of calculating I from theory in the case of a sphere suspended by a fine wire

has already been explained. For the sake of exhibiting separately the effect of the wire, I will

give one intermediate step in the calculation.

1.44 inch sphere.

k', for sphere alone 0.326

Ak', the correction for the wire... 0.130

1.46 inch sphere.
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was to be expected beforehand that the results of calculation would fall short of those of

observation, inasmuch as only two arcs were registered in each experiment, so that no data

were afforded for eliminating the effect of that part of the resistance which did not vary as the

first power of the velocity.

78. I have now finished the comparison between theory and experiment, but before con-

cluding this Section I will make a few general remarks.

When a new theory is started, it is proper to enquire how far the theory does violence to

the notions previously entertained on the subject. The present theory can hardly be called

new, because the partial differential equations of motion were given nearly thirty years ago by

Navier, and have since been obtained, on different principles, by other mathematicians ; but

the application of the theory to actual experiment, except in some doubtful cases relating to

the discharge of liquids through capillary tubes, and the determination of the numerical value

of the constant xi', are, I believe, altogether new. Let us then, in the first instance, examine

the magnitude of the tangential pressure which we are obliged by theory to suppose capable

of existing in air or water.

For the sake of clear ideas, conceive a mass of air or water to be moving in horizontal

layers, in such a manner that each layer moves uniformly in a given horizontal direction,

while the velocity increases, in going upwards, at the rate of one inch per second for each inch

of ascent. Then the sliding in the direction of a horizontal plane is equal to unity, and there-

fore the tangential pressure referred to a unit of surface is equal to xi or
/x'p.

The absolute

magnitude of this unit sliding evidently depends only on the arbitrary unit of time, which is

here supposed to be a second. In the case supposed, it will be easily seen that the particles

situated at one instant in a vertical line are situated at the expiration of one second in

a straight line inclined at an angle of 45° to the horizon. Equating the tangential pressure

xi'p
to the normal pressure due to a height h of the fluid, we get h = g'

1

xi, g being the force

of gravity. Putting now g = 386, xt'= (0J16)
2 for air, xi = (0.0564)

2
for water, we get

h = 0.00003486 inch for air, and h = 0.000008241 inch for water, or about the one thirty-thou-

sandth part of an inch for air, and less than the one hundred-thousandth part of an inch for

water. If we enquire what must be the side of a square in order that the total tangential

pressure on a horizontal surface equal to that square may amount to one grain, supposing the

density of air to be to that of water as 1 to 836, and the weight of a cubic inch of water to be

252.6 grains, we get 25 feet 8 inches for air, and 1 foot 10 inches for water. It is plain that

the effect of such small forces may well be insignificant in most cases.

79. In a former paper I investigated the effect of internal friction on the propagation of

sound, taking the simple case of an indefinite succession of plane waves*. It appeared that

the effect consisted partly in a gradual subsidence of the motion, and partly in a diminution of

the velocity of propagation, both effects being greater for short waves than for long. The

second effect, as I there remarked, would be contrary to the result of an experiment of

• Camb. Phil. Trans. Vol. VIII. p. 302.
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M. Biot's, unless we supposed the term expressing this effect to be so small that it

might be disregarded. I am now prepared to calculate the numerical value of the term in

question, and so decide whether the theory is or is not at variance with the result of M. Biot's

experiment.

According to the expression given in the paper just mentioned, we have for the propor-

tionate diminution in the velocity of propagation

8 ^m'2

9\"V*'

A being the length of a wave, and V the velocity of sound. To talce a case as disadvantageous

as possible, suppose X only equal to one inch, which would correspond to a note too shrill to

be audible to human ears. Taking the velocity of sound in air at 1000 feet per second, there

results for the common logarithm of the expression above written 11.0428, so that a wave would

have to travel near 100000000000 inches, or about 1578000 miles, before the retardation due

to friction amounted to one foot. It is plain that the introduction of internal friction leaves

the theory of sound just as it was, so far as the velocity of propagation is concerned, at least

if the sound be propagated in free air.

The effect of friction on the intensity of sound depends on the first power of
y.'. In the

case of an indefinite succession of plane waves, it appears that during the time t the amplitude

of vibration is diminished in the ratio of 1 to e_c ', and therefore the intensity in the ratio of

l to e~'
ict

,
where

8wV

Putting A = 1 and t - l we get 1 to 0*4923, or 2 to 1 nearly, for the ratio in which the intensity

is altered during one second in the case of a series of waves an inch long. The rate of dimi-

nution decreases very rapidly as the length of wave increases, so that in the case of a series of

waves one foot long the intensity is altered in one second in the ratio of 1 to 0'995095, or 201

to 200 nearly. It appears then that in all ordinary cases the diminution of intensity due to

friction may be neglected in comparison with the diminution due to divergence. If we had

any accurate mode of measuring the intensity of sound it might perhaps be just possible, in

the case of shrill sounds, to detect the effect of internal friction in causing a more rapid dimi-

nution of intensity than would correspond to the increase of distance from the centre o*f diver-

gence.
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Section II.

Suggestions with reference to future experiments.

80. I am well aware that the mere proposal of experiments does not generally form a

subject fit to be brought before the notice of a scientific society. Nevertheless, as it frequently

happens in the division of labour that one person attends more to the theoretical, another to

the experimental investigation of some branch of science, it is not always useless for the theo-

rist to point out the nature of the information which it would be most important to obtain

from experiment. I hope, therefore, that I may be permitted to offer a few hints with refer-

ence to experiments in which the theory of the internal friction of fluids is concerned.

I shall omit all details, since they would properly come in connexion with the experi-

ments.

Experiments with which the theory of internal friction in fluids has more or less to do may
be performed for either of the following objects : first, to test still further the truth of the

theory ; secondly, to determine the index of friction of various gases, liquids, or solutions ; to

investigate the dependance of the index of friction of a gas on its state of pressure, tempera-

ture, and moisture ; or to endeavour to make out the law according to which the index of fric-

tion of a mixture of gases depends upon the indices of friction of the separate gases ; thirdly,

to measure the length of the seconds' pendulum, or its variation from one part of the earth's

surface to another.

81. First object. The theory has been already put to a pretty severe test by means of the

experiments of Baily and others. Nevertheless there are some uncertainties in the comparison of

theory and experiment arising from the influence of modifying causes of which the effect could

only be estimated from theory, and yet was not so small as to be merged in errors of obser-

vation. Moreover, experiments on the decrement of the arc of vibration are almost wholly

wanting. The following system of pendulums, meant to be swung in air and in vacuum, would

afford a very good test of the theory.

No. 1. A 2-inch or 1^-inch sphere swung with a fine wire.

No. 2. A very small sphere swung with the same kind of wire.

No. 3. A long cylindrical rod, a few tenths of an inch in diameter.

No. 4. A cylinder only three or four inches long, of the same diameter as No. 3, swung
with the same kind of wire as No. 1.

The vacuum tube ought to be of sufficient size to render the estimated correction for con-

fined space less than, or at most comparable with, errors of observation. The vacuum appa-
ratus used by Col. Sabine would do very well. If the vacuum tube be not of sufficient

size, it ought to admit of removal, and to be removed when the pendulums are swung in

air.

In all the experiments the arc of oscillation ought to be carefully observed several times

during the motion, the observation of the arc being quite as important for the purposes of
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theory as the observation of the time. Indeed, if it should be inconvenient to observe the

time, the observation merely of the arc would be very valuable as a test of theory. In that

case an approximate value of the time of oscillation in air would be required.

In the system proposed, Nos. 1 and 3 are the principal pendulums, Nos. 2 and 4 are intro-

duced for the sake of making certain small corrections to the results of Nos. 1 and 3. No. 2

is meant for the elimination from No. 1 of the effect of the wire, and No. 4 for the elimination

from No. 3 of the effect of the resistance experienced by a small portion of the rod near its

end. The times of vibration of the four pendulums ought to be nearly the same, although

for that purpose slightly different lengths of wire would be required in Nos. 1, 2, and 4.

It follows from theory that for a given pendulum the factor It is a function of the time of

vibration. This is a result which seems to have been hardly so much as suspected by those

who were engaged in pendulum experiments, or at most to have been mentioned as a mere

possibility*, and therefore it might be thought advisable to verify it by direct experiment.

For my own part I regard it as so intimately connected with the fundamental principles of the

theory, that if the theory be confirmed in other respects I think this result may be accepted on

the strength of theory alone. The direct comparison with experiment would be inconvenient,

because it would require a clock which kept excellent time, and yet admitted of being adjusted

so as to make widely different numbers of vibrations in a day. The result could, however, be

confirmed indirectly by observing the arc of vibration, an observation which is as easy with one

time of vibration as with another.

82. Second object. According to theory, the index of friction may be deduced from

experiments either on the arc or on the time of vibration. It must be left to observation to

decide which give the more consistent results. Should the results obtained from the arc appear

as trustworthy as those obtained from the time, it would apparently be much the easiest way of

determining p for an elastic fluid to observe the arc, because no particular accuracy would then

be required in the observation of time. As to the form of the pendulum, a cylindrical rod

would apparently be the best if only a single pendulum were employed. The observation of

the arc seems the only practicable way of determining the influence of temperature on the index

of friction, unless the pendulum be extremely light, or unless the observer be content with the

limited range of temperature which may be procured by making observations at different times

of year. For in an apparatus artificially heated or cooled, it would be difficult to prevent

small unknown variations of temperature, which would cause variations in the rate of vibra-

tion, in consequence of the expansion and contraction of the pendulum ; and these variations

would vitiate the result of the experiment, so far as the time of vibration is concerned, because

the effect of the gas on the time of vibration is deduced from the small difference between two

large quantities which are directly observed. But the effect of the gas on the arc of vibration

produces by far the greater part of the whole diminution observed, and therefore small fluc-

tuations of temperature would not be of much consequence, except so far as they might

* It should be observed however that in a subsequent I deduced from other experiments that the value of k was larger

memoir ( Astronomhche Nachrichten, No. 223, p. 106), Bcssel for the long than for the short pendulum.
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occasion gentle currents; and even then would not be very important, because the forces

thence arising would not be periodic, and dependent upon the phase of vibration of the

pendulum.

The grand difficulty which besets the observation of the time of vibration of a pendulum

oscillating in a liquid consists in the rapidity with which the oscillations subside. The best

form of a pendulum to oscillate in a liquid would be a sphere suspended by a fine wire. The

vessel containing the liquid and the sphere immersed in it ought to be so large as to render

the correction for confined space insensible. But the index of friction of a liquid would pro-

bably be better determined by experiments more of the nature of those of Coulomb, or perhaps

by the slow discharge of liquids through narrow tubes.

Among the gases for which •

n' ought to be determined experimentally should be

mentioned coal-gas, on account of the practical application which it appears possible to make

of the result to the laying down of gas-pipes. The calculation of the resistance in a circular

pipe is very simple, and is given in Art. 9 of my former paper. According to the equations

of condition assumed in the present paper we must put U = 0, U denoting in that article the

velocity close to the surface. It appears that the pressure spent in overcoming friction varies

as the mean velocity divided by the square of the diameter of the pipe, or as the rate of supply

divided by the fourth power of the diameter. This goes on the supposition that the motion is

sufficiently slow to allow of our neglecting the pressure which may be spent in producing

eddies, in comparison with that spent in overcoming what really constitutes internal friction.

83. Third object. With respect to experiments for determining the length of the

seconds' pendulum, the theory of internal friction rather enables us to calculate for certain

forms of pendulum the correction due to the inertia of the air than points out any particular

mode of performing the experiments. Even the ordinary theory of hydrodynamics points out

the importance of removing all obstacles to the free motion of the air in the neighbourhood

of the pendulum if we would calculate from theory the whole correction for reduction to a

vacuum.

Since the theoretical solution has been obtained in the case of a long cylindrical rod, or of

such a rod combined with a sphere, we may regard a pendulum formed in this manner, and

which is convertible in air, as also convertible in vacuum, for it is of small consequence

whether the pendulum be or be not really convertible in vacuum, provided that if it be not we

know the correction to be applied in consequence.
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Note A, Article 65.

Let us apply the general equations (2), (3) to the fluid surrounding a solid of revolution

which turns about its axis, with either a uniform or a variable motion, supposing the fluid to

have been initially either at rest, or moving in annuli about the axis of symmetry.
In the first place we may observe, that the fluid will always move in annuli about the axis

of symmetry. For let P be any point of space, and L any line passing through P, and

lying in a plane drawn through P and through the axis of symmetry ; and at the end of the

time t let u be the velocity at P resolved along L. Now consider a second case of motion,

differing from the first in having the angular velocity of the solid and the initial velocity of

the fluid reversed, every thing else being the same as before. It follows from symmetry, that

at the end of the time t the velocity at P resolved along L will be equal to u, since the

motion of the solid and the initial motion of the fluid, which form the data of the one problem,
differ from the corresponding quantities in the other problem only as regards the distinction

between one way round and the other way round, which has no relation to the distinction

between to and fro in the direction of a line lying in a plane passing through the axis of

rotation. But since all our equations are linear as regards the velocity, it follows that in the

second problem the velocity will be the same as in the first, with a contrary sign, and therefore

the velocity at P in the direction of the line L will be equal to - u . Hence u = — u, and

therefore u = 0, and therefore the whole motion takes place in annuli about the axis of

rotation.

Let the axis of rotation be taken for the axis of z ; let w be the angle which a plane

passing through this axis and through the point P makes with the plane of xy, and let v be

the velocity at P. Then

u = - v sin a), v = v cos w, w = 0,

and all the unknown quantities of the problem are functions of t, z, and ar, where

z«r = \/ (tf
2 + y

s

). Substituting in equations (2) the above values of w, v, and w, and after

differentiation putting u> = 0, as we are at liberty to do, we get

dor dz

'drv <Pv 1 dv v \ dv'[d'v d-v 1 dv v\ dv

Md? +^ + - d^-^)
=
P~dT (179)

The first two of these equations give p = a constant, or rather p = a function of t, which for

the same reason as in Art. 7 we have a right to suppose to be equal to zero. The third

equation combined with the equations of condition serves to determine v.

Now in the particular case of an oscillating disk, the equation (179) becomes according to

the mode of approximation adopted in Art. 8

dV dv
fi d^

=
PTt' (180>
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which in fact is the same as the second of the equations (8). The solution thus obtained is as

we have seen

«' = wf(z, t), (181)

/denoting a function the form of which there is no need to write down, which satisfies (180)

when written for v. Now it will be seen at once that the expression (181) satisfies the exact

equation (179), and therefore the approximate solution obtained by the method of Art. 8 is in

fact exact, except so far as regards the termination of the disk at its edge, which is what it was

required to prove.

Passing from semi-polar to polar co-ordinates, by putting z = r cos 6, -sr = r sin 8, we get

from (179), after writing /x'p
for fx,

dV 2 dv l d I . dv'\ v 1 dv

l? +
r'd^

+ 7^8 dlV
me

de)
'
?~^e "f/lF

(182)

Suppose now the solid to be a sphere, having its centre at the origin. Let a be its

radius, a its angular velocity, and suppose the fluid initially at rest. Then v' is to be deter-

mined from the general equation (182) and the equations of condition

«'= when t = 0, v' = as sin 9 when r = a, v = when r • «o .

All these equations are satisfied by supposing

v = v sin Q,

v" being a function of r and t only. We get from (182)

dV' 2 dv" 2w" _ l dv"

17 +
r "d7 ^~^~dJ (,83)

If we suppose 8 constant, v" will tend indefinitely to become constant as t increases inde-

dv"
finitely, and in the limit — = 0, whence we get from (188) and the equations of condition

at

«"= aH when r = a, v"= when r = <»
,

v =
~zr>

v =
ii~

sin0.

This is the solution alluded to in Art. 8 of my paper On the Theories of the Internal

Friction of Fluids in motion, fyc.

Note B, Article 65.

Let us resume the problem of Art. 7, but instead of the motion of the plane being

periodic, let us suppose that the plane and fluid are initially at rest, and that the plane is

then moved with a constant velocity V, and let the notation be the same as in Art. 7.
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The general equations (8) remain the same as before, but the equations of condition

become in this case

v = when t = from x = to at = oo
,

v = V when x = from / = to < = w .

By Fourier's theorem and another theorem of the same kind, v may be expanded between

the limits and oo of a? in the following form :

2 /»CO /» CO 2 Z* 00 /"CO

v = - / cos ax cos ax' <b(x', t)dx'da + -
/ sin aa? sin

aa/\J/ (#', J) dat'da. . (184)

In fact, u could be expanded by means of either of these expressions separately, and of course

can be expanded in an infinite number of ways by the sum of the two. If however v had been

expanded by means of the first expression alone, its derivatives with respect to at could not

have been obtained by differentiating under the integral signs, inasmuch as the derivatives of

an odd order do not vanish when at = 0, but would have been given by certain formulae which I

have investigated in a former paper.* A similar remark applies to the second expansion, in

consequence of the circumstance that v itself and its derivatives of an even order do not vanish

with at. But by combining the two expansions we may obtain the derivatives of v, up to any

order i that we please to fix on, by merely differentiating under the integral signs. For we

may evidently express the finite function v, and that in an infinite number of ways, as the sum

of two finite functions
(f> (x, t), \J/ (x, t) which like v vanish when x = oo

, and which are

such that the odd derivatives of the first, and the even derivatives of the second, up to the

order i, as well as
\|/ (x, t) itself, vanish when x = 0. Substituting now in the second equa-

tion (8) the expression for v given by (184), we see that the equation is satisfied provided

dt
M r '

dt
* Y

These equations give

d) (*?',
= x (x) e-»'

aH
, ^ (x\ t) m o- (*') e ->*'aH

,

where ^, a denote two new arbitrary functions. Substituting in (184), and then passing to the

first of the equations of condition, we get

=
x(tf) +"-(a')>

whence <r (at)
= —

X (•) an<^

«=-/ / cos a(x + x) e'^'^'x (*0 dx'da
it Jo

Jo

(x' +xf

VTTfl t J

The second of the equations of condition requires that

F- -7=== f «~«7*X(*0 dx m—r f 6
-''

x (2s y/^t) de.

• On the critical values of the sums of periodic series. Camb. Phil. Trans. Vol. VIII. p. 533.
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Since the second member of this equation must be independent of t, we get y (#')
=

a constant, and this constant must be equal to V, since

e" s ds= 1.

Substituting in (185) we get

V /•»
(*+*')'

o = —— / e in't dw (186)
V7TM '

For the object of the present investigation nothing is required but the value of — for m = 0,
doo

which we may denote by (
—

)
. We get from (186)

\dool

/dv\ V
(

—
)

= 7= (187)
\dx/o y/ tt fit

Now suppose the plane to be moved in any manner, so that its velocity at the end of the

time t is equal to f(t). We may evidently obtain the result for this case by writing

/' (t') dt' for V, and t - t' for t in (187), and integrating with respect to t'. We thus get

A 1 /•«-,, ,v dt' 1 /« . , , dt.

dB
To apply this result to the case of an oscillating disk, let r— = rF(t) be the velocity of

any annulus, and G the moment of the whole force of the fluid on the disk. Then

fdv,

G-**»'pf
m

*(P) dr;
J \da!jo

and (—\ wiH be got from (188) by substituting rF{t) for f{t). We find thus
\dxj

dt
t

G=-^Tr»'.pa* [ F'(t-tO-± (1 89)

If we suppose the angular velocity of the disk to be expressed by A sin nt, where A is

constant, we must put F(t) = A sin nt in (189), and we should then get after integration the

same expression for G as was obtained in Art. 8 by a much simpler process. Suppose,

however, that previously to the epoch from which t is measured the disk was at rest, and

that the subsequent angular velocity is expressed by At
sin nt, where A t is a slowly varying

function of t. Then

.F(£)=0 when t<0, F(t) = A, sin nt when t>0.

On substituting in (189) we get

dt
x

V~t
G= -

\Arfx'.pa*n f At _ h cos n(t -
«,)
—~. . . . (190)
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Now treating At
as a slowly varying parameter, we get from a formula given by Mr Airy, and

obtained by the method of the variation of parameters,

dAt G . , .__= _sin«#, (191)

where / denotes the moment of inertia. In the expression for G we may replace A t_ tj
under

the integral sign by At outside it, because At
is supposed to vary so slowly that A

t ~t does not

much differ from A
t
while t y is small enough to render the integral of importance. Making

this simplification and substituting in (191) we get

dA t , . r* . , . dt,——-= - c slant
/ cosn(t -

tj
—

j- , . . . . (192)A
t
at J

Q \/*i

where c =
\/(irn') . po*»/"

1
. If then A^ be the initial and A the final value of J„ we get

from (192)

A r*[ . r* , . dtx \
,

log
— = c / I sinn t cos n(t - ti) ——\dt (193)A J

[
J -vhi

Let now A^ + AA be what A
a
would become if, while the final arc A and the whole time

t remained the same, the motion had been going on for an indefinite time before the epoch

from which t is measured, in which case the superior limit in the integral involved in the

expression for G would have been oo in place of t. Then

!°g
Jo+^

A° - c /"'(sin
nt

/"*
'cos n (t

-
*,) -A) dt, . . (194)A J

a [
J V #

ij

whence by subtracting, member from member, equation (193) from equation (194), we get

A +AA rtj . /•» d*i\j,
log = c

/
< sin n t I cos n{t — tj

—
j- >dt,A J I J

t V *J

which becomes after integration by parts

A + AA c f / 7r , /•» dt
log ;

—— =— \\/ 2*/* . cos nt - cos Znt / cosnt—-
s A 4>n \

v 2« v
J, y/t

. /•" . d# 1
+ (2«£ - sin2n<) /

sin «£—— V. . (195)J
t y/t)

Now < is supposed to be very large : in Coulomb's experiments in fact 10 oscillations were

observed, so that nt = IO7J-. But when t is at all large the two integrals

dt r 00
. dt

cos n tf
—

j- , I want—7-

can be expressed under the forms

- P sin nt + Q cos nt, P cos ntf + Q sin n#,
where

P=n- 1
t~i -1 .3.2- 2M- 3rS+ ..., Q-l.fl-1*-'*-**- l.S.J 2- sw" 4ri +...,
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series which are at first rapidly convergent, and which enable us to calculate the numerical

values of the integrals with extreme facility. These expressions were first given by M.

Cauchy, in the case of Fresnel's integrals, to which the integrals just written are equivalent.

They may readily be obtained by integration by parts, though it is not thus that they were

demonstrated by M. Cauchy. If now the above expressions be substituted for the integrals

in (195) the terms containing $ destroy each other, and for general values of t the most im-

portant term after the first contains t~l. Since however t is supposed to correspond to the

end of an oscillation, so that nt is a multiple of ir, the coefficient of this term vanishes, and the

most important term that actually remains contains only £~4. Hence neglecting insensible

quantities we get from (195)

A + AA c / 7T

J°S^7^
=^V 2

-
096)

We get from (194) by performing the integrations

jL + A A„ / t r* •

log = c \r — / sin nt (cos nt + sin nt) dt
A *>n •*/.

C / TT , . .

= — V/ — <2nt + 1 - cos 2nt — sm 2nt>,
4rc

v 2» l 5

which becomes since nt is a multiple of tt

. Aa + A A c / tt
log—

-j

— -ttV ^r- 2nt (197)A in v 2»

We get from (196) and (197)

whence

*nt log dtt*4 = log^t^ = log^
+AJ

? + log
4

,B A B A * A s A'

,
A + A A^ A,.

log --. = (int - I)"
1

log -j (198)A -*•"• *' "'*A'

and the same relation exists between the common logarithms of the arcs, which are propor-
tional to the Napierian logarithms. Now Log A - Log A is the quantity immediately deduced

from experiment, and Log (A + A^„) - Log AQ is the correction to be applied, in consequence
of the circumstance that the motion began from rest. Instead of applying the proportionate

correction + (2nt -
I)"

1
to the difference of the logarithms, we may apply it to the deduced

value of
ySfjL, which is proportional to the difference of the logarithms. In Coulomb's

experiments 10 oscillations were observed, and therefore 2nt = 20tt, and (2nt -
1)

_1 = 0.01617,

and the uncorrected value of y/j/ being 0.0555, we get 0.0009 for the correction, giving

yV = 0.0564.
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Note C. Article 50.

The results mentioned in this article were originally given without demonstration ;
but as

the mode in which they were obtained is short, and by no means obvious, I have thought,

it advisable to add the demonstrations.

In order that the right-hand members of equations (138) may be perfect differentials, we

must have

(Id dwdo dw

dy dx

do dw

dm dx

dw dw

dy dss

dx dy

dS

dx dy
= 0,

dw dw

dx dx

The equations (c) give

= 0,

dw
= 0.

di

do dw"
T + ST " °»
dx dx

dS dw

dy dx

dw dw
+ o.

dx dy

= 0.

(a)

(6)

(<0

(d)dx dy dx

In the particular case in which 5 = 0, the equations (a), (b), and (d) give

dw = 0, dw = 0, dw —
0,

and therefore w', w", and w" are constant as stated in Art. 50. In the general case the equa-

tions (a), (6), and (d) give for the differentials of w, w", and w" the following expressions:

A >
dl A dl A \dw = —— dy + —- dx,
dx dy

dS A dS Adw = —— dx + — dx, I (e)dx dx

,„ dl dl
dw = ——dx + — dy.

dy dx

In order that the right-hand members of these equations may be perfect differentials, we must
have

tPS

dydx
= 0,

dxdx
= 0,

<Fl

dxdy
= 0, (/)

d?l d^_ <PS^
<Pl _ d'l d*l _

dtf
+
dx*'

'

dx*
+
dx^~°' dx~2

+
df~°'

and therefore

d^
dx*

d*l d?8
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The equations (/), (g) give

d— =0, d— = 0, o— =0,
dec dy ax

so that — ,
—

, and — are constant. Substituting in (c) and integrating, and then
dx dy dss

substituting in (138) the resulting expressions for «', w", and w", and integrating again, we

shall obtain the results given in Art. 50.

G. G. STOKES.




