X. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums.
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JSessor of Mathematics in the University of Cambridge.

[Read December 9, 1850.]

Tue great importance of the results obtained by means of the pendulum has indnced
philosophers to devote so much attention to the subject, and to perform the experiments with
such a scrupulous regard to accuracy in every particular, that pendulum observations may
justly be ranked among those most distinguished by modern exactness. It is unnecessary here
to enumerate the different methods which have been employed, and the several corrections
which must be made, in order to deduce from the actual observations the result which would
correspond to the ideal case of a simple pendulum performing indefinitely small oscillations
in vacuum. There is only one of these corrections which bears on the subject of the present
paper, namely, the correction usually termed the reduction to a vacuum. On account of
the inconvenience and expense attending experiments in a vacuum apparatus, the observations
are usually made in air, and it then becomes necessary to apply a small correction, in order
to reduce the observed result to what would have been observed had the pendulum been
swung in a vacuum. The most obvious effect of the air consists in a diminution of the moving
force, and consequent increase in the time of vibration, arising from the buoyancy of the
fluid. The correction for buoyancy is easily calculated from the first principles of hydro-
statics, and formed for a considerable time the only correction which it was thought neces-
sary to make for reduction to a vacuum. But in the year 1828 Bessel, in a very important
memoir in which he determined by a new method the length of the seconds’ pendulum, pointed
out from theoretical considerations the necessity of taking account of the inertia of the air as
well as of its buoyancy. The numerical calculation of the effect of the inertia forms a
problem of hydrodynamics which Bessel did not attack; but he concluded from general
principles that a fluid, or at any rate a fluid of small density, has no other effect on the
time of very small vibrations of a pendulum than that it diminishes its gravity and increases
its moment of inertia. In the case of a body of which the dimensions are small compared
with the length of the suspending wire, Bessel represented the increase of inertia by that of a
mass equal to & times the mass of the fluid displaced, which must be supposed to be added
to the inertia of the body itself. This factor % he determined experimentally for a sphere a
little more than two inches in diameter, swung in air and in water. The result for air,
obtained in a rather indirect way, was k = 0°9459, which value Bessel in a subsequent paper
increased to 0'956. A brass sphere of the above size having been swung in water with two
different lengths of wire in succession gave two values of k, differing a little from each
other, and equal to only about two-thirds of the value obtained for air.
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The attention of the scientific world having been called to the subject by the publication
of Bessel’s memoir, fresh researches both theoretical and experimental soon appeared. In
order to examine the effect of the air by a more direct method than that employed by Bessel,
a large vacuum apparatus was erected at the expense of the Board of Longitude, and by
means of this apparatus Captain (now Colonel) Sabine determined the effect of the air on
the time of vibration of a particular invariable pendulum. The results of the experiments
are contained in a memoir read before the Royal Society in March 1829, and printed in the
Philosophical Transactions for that year. The mean of eight very consistent experiments
gave 1655 as the factor by which for that pendulum the old correction for buoyancy must
be multiplied in order to give the whole correction on account of the air. A very remark-
able fact was discovered in the course of these experiments. While the effects of air at the
atmospheric pressure and under a pressure of about half an atmosphere were found to be
as nearly as possible proportional to the densities, it was found that the effect of hydrogen at
the atmospheric pressure was much greater, compared with the effect of air, than corresponded
with its density. In fact, it appeared that the ratio of the effects of hydrogen and air
on the times of vibration was about 1 to 5;};, while the ratio of the densities is only about
1 to 18. In speaking of this result Colonel Sabine remarks, ¢ The difference of this ratio
from that shewn by experiment is greater than can well be ascribed to accidental error in the
experiment, particularly as repetition produced results almost identical. May it not indicate
an inherent property in the elastic fluids, analogous to that of viscidity in liquids, of resistance
to the motion of bodies passing through them, independently of their density ? a property, in
such case, possessed by air and hydrogen gas in very different degrees; since it would appear
from the experiments that the ratio of the resistance of hydrogen gas to that of air is more
than double the ratio following from their densities. Should the existence of such a distinct
property of resistance, varying in the different elastic fluids, be confirmed by experiments
now in progress with other gases, an apparatus more suitable than the present to investigate
the ratio in which it is possessed by them, could scarcely be devised: and the pendulum,
in addition to its many important and useful purposes in general physics, may find an
application for its very delicate, but, with due precaution, not more delicate than certain,
determinations, in the domain of chemistry.” Colonel Sabine has informed me that the
experiments here alluded to were interrupted by a cause which need not now be mentioned,
but that as far as they went they confirmed the result of the experiments with hydrogen, and
pointed out the existence of a specific action in different gases, quite distinct from mere
variations of density.

Our knowledge on the subject of the effect of air on the time of vibration of pendulums
has received a most valuable addition from the labours of the late Mr Baily, who erected
a vacuum apparatus at his own house, with which he performed many hundreds of careful
experiments on a great variety of pendulums. The experiments are described in a paper
read before the Royal Society on the 81st of May 1832. The result for each pendulum is
expressed by the value of n, the factor by which the old correction for buoyancy must be
multiplied in order to give the whole effect of the air as deduced from observation. Four

spheres, not quite 1} inch in diameter, gave as a mean n = 1-864, while three spheres, a little
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more than 2 inches in diameter, gave only 1-748. The latter were nearly of the same size
as those with which Bessel, by a different method, had obtained % = 0946 or 0956, which
corresponds to n = 1946 or 1°956. Among the ¢ Additional Experiments” in the latter
part of Baily’s paper, is a set inwhich the pendulums consisted of plain-cylindrical rods.
With these pendulums it was found that n regularly increased, though according to an
unknown law, as the diameter of the rod decreased. While a brass tube 1% inch in
diameter gave n equal to about 23, a thin red or thick wire only 0072 inch in diameter,
gave for » a valne as great as 7-530.

Mathematicians in the meanwhile were not idle, and several memoirs appeared about this
time, of which the object was to determine from hydrodynamics the effect of a fluid on the
motion of a pendulum. The first of these came from the pen of the celebrated Poisson.
It was read before the French Academy on the 22nd of August 1831, and is printed in the
11th Volume of the Memoirs. In this paper, Poisson considers the case of a sphere suspended
by a fine wire, and oscillating in the air, or in any gas. He employs the ordinary equations
of motion of an elastic fluid, simplified by neglecting the terms which involve the square of
the velocity ; but in the end, in adapting his solution to practice, he uneglects, as insensible,
the terms by which alone the action -of an elastic differs from that of an incompressible fluid,
so that the result thus simplified is equally applicable to fluids of both classes. He finds
that when insensible quantities are neglected 7 =1°5, so that the mass which we must sup-
pose added to that-of the pendulum is equal to half the mass of the fluid displaced. This
result does not greatly differ from the results obtained experimentally by Bessel in the case
of spheres oscillating in water, but differs materially from the result he had obtained for air.
It agrees pretty closely with some experiments which had been performed about fifty years
before by Dubuat, who had in fact anticipated Bessel in shewing that the time of vibration
of a pendulum vibrating in a fluid would be affected by the inertia of the fluid as well as
by its density. Dubuat’s labours on this subject had been altogether overlooked by those
who were engaged in pendulum experiments; probably because such persons were not
likely to seek in a treatise on hydraulics for information connected with the subject of their
researches. Dubuat had, in fact, rather applied the pendulum to hydredynamics than hy-
drodynamics to the pendulum.

In the Philosophical Magazine for September 1833, p. 185, is a short paper by Professor
Challis, on the subject of the resistance to a ball pendulum. After referring to a former
paper, in which he had shewn that no sensible error would be committed in a problem of
this nature by neglecting the compressibility of the fluid even if it be elastic, Professor Challis,
adopting a particular hypothesis respecting the motion, obtains 2 for the value of the factor
n for such a pendulum. This mode of solution, which is adopted in several subsequent
papers, has given rise to a controversy between Professor Challis and the Astronomer Royal,
who maintains the justice of Poisson’s result.

In a paper read before the Royal Society of Edinburgh on the 16th of December 1833,
and printed in the 13th Volume of the Society’s T'ransactions, Green has determined from
the common equations of fluid motion the resistance to an ellipsoid performing small oscil-
lations without rotation. The result is expressed by a definite integral; but when two of
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the principal axes of the ellipsoid become equal, the integral admits of expression in finite
terms, by means of circular or logarithmic functions. When the ellipsoid becomes a sphere,
Green’s result reduces itself to Poisson’s.

In a memoir read before the Royal Academy of Turin on the 18th of January 1835,
and printed in the 87th Volume of the memoirs of the Academy, M. Plana has entered at
great length into the theory of the resistance of fluids to pendulums. This memoir contains,
however, rather a detailed examination of various points connected with the theory, than the
determination of the resistance for any new form of pendulum. The author first treats the
case of an incompressible fluid, and then shews that the result would be sensibly the same in
the case of an elastic fluid. In the case of a ball pendulum, the only one in which a com-
plete solution of the problem is effected, M. Plana’s result agrees with Poisson’s.

In a paper read before the Cambridge Philosophical Society on the 29th of May 1843,
and printed in the 8th Volume of the Transactions, p. 105, I have determined the resistance
to a ball pendulum oscillating within a concentric spherical envelope, and have pointed out
the source of an error into which Poisson had fallen, in concluding that such an envelope
would have no effect. When the radius of the envelope becomes infinite, the solution agrees
with that which Poisson had obtained for the case of an unlimited mass of fluid. I have
also investigated the increase of resistance due to the confinement of the fluid by a distant
rigid plane. The same paper contains likewise the calculation of the resistance to a long
cylinder oscillating in a mass of fluid either unlimited, or confined by a cylindrical envelope,
having the same axis as the cylinder in its position of equilibrium. In the case of an un-
confined mass of fluid, it appeared that the effect of inertia was the same as if a mass equal
to that of the fluid displaced were distributed along the axis of the cylinder, so that n =2
in the case of a pendulum consisting of a long cylindrical rod. This nearly agrees with
Baily’s result for the long 14 inch tube; but, on comparing it with the results obtained with
the cylindrical rods, we observe the same sort of discrepancy between theory and observation
as was noticed in the case of spheres. The discrepancy is, however, far more striking in the
present case, as might naturally have been expected, after what had been observed with
spheres, on account of the far smaller diameter of the solids employed.

A few years ago Professor Thomson communicated to me a very beautiful and powerful
method which he had applied to the theory of electricity, which depended on the consideration
of what he called electrical images. 'The same method, I found, applied, with a certain modi-
fication, to some interesting problems relating to ball pendulums. It enabled me to calculate
the resistance to a sphere oscillating in presence of a fixed sphere, or within a spherical enve-
lope, or the resistance to a pair of spheres either in contact, or connected by a narrow rod,
the direction of oscillation being,.in all these cases, that of the line joining the centres of the
spheres. The effect of a rigid plane perpendicular to the direction of motion is of course
included as a particular case. 'The method even applies, as Professor Thomson pointed out
to me, to the uncouth solid bounded by the exterior segments of two intersecting spheres,
provided the exterior angle of intersection be a submultiple of two right angles. A set of
corresponding problems, in which the spheres are replaced by long cylinders, may be solved
in a similar manner. These results were mentioned at the meeting of the British Association

26—2
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at Oxford in 1847, and are noticed in the volume of reports for that year, but they have
not yet been published in detail.

The preceding are all the investigations that have fallen under my notice, of which the
object was to calculate from hydrodynamics the resistance to a body of given form oscillating
as a pendulum. They all proceed on the ordinary equations of the motion of fluids. They
all fail to account for one leading feature of the experimental results, namely, the increase
of the factor n with a decrease in the dimensions of the body. They recognize no distinction
between the action of different fluids, except what arises from their difference of density.

In a conversation with Dr Robinson about seven or eight years ago on the subject of the
application of theory to pendulums, he noticed the discrepancy which existed between the
results of theory and experiment relating to a ball pendulum, and expressed to me his con-
viction that the discrepancy in question arose from the adoption of the ordinary theory of
fluid motion, in which the pressure is supposed to be equal in all directions. He also de-
scribed to me a remarkable experiment of Sir James South’s which he had witnessed. This
experiment has not been published, but Sir James South bhas kindly allowed me to mention
it. When a pendulum is in motion, one would naturally have supposed that the air near the
moving body glided past the surface, or the surface past it, which comes to the same thing
if the relative motion only be considered, with a velocity comparable with the absolute velocity
of the surface itself. But on attaching a piece of gold leaf to the bottom of a pendulum, so
as to stick out in a direction perpendicular to the surface, and then setting the pendulum in
motion, Sir James South found that the gold leaf retained its perpendicular position just as
if the pendulum had been at rest; and it was not till the gold leaf carried by the pendulum
bad been removed to some distance from the surface, that it began to lag behind. This
experiment shews clearly the existence of a tangential action between the pendulum and the
air, and between one layer of air and another. The existence of a similar action in water is
clearly exhibited in some experiments of Coulomb’s which will be mentioned in the second
part of this paper, and indeed might be concluded from several very ordinary phenomena.
Moreover Dubuat, in discussing the results of his experiments on the oscillations of spheres
in water, notices a slight increase in the effect of the water corresponding to an increase in
the time of vibration, and expressly attributes it to the viscosity of the fluid.

Having afterwards occupied myself with the theory of the friction of fluids, and arrived
at general equations of motion, the same in essential points as those which had been pre-
viously obtained in a totally different manner by others, of which, however, I was not at
the time aware, I was desirous of applying, if possible, these equations to the calculation
of the motion of some kind of pendulum. The difficulty of the.problem is of course
materially increased by the introduction of internal friction, but as I felt great confidence in
the essential parts of the theory, I thought that labour would not be ill-bestowed on the
subject. I first tried a long cylinder, because the solution of the problem appeared likely
to be simpler than in the case of a sphere. But after having proceeded a good way towards
the result, I was stopped by a difficulty relating to the determination of the arbitrary con-
stants, which appeared as the coefficients of certain infinite series by which the integral of a
certain differential equation was expressed. Having failed in the case of a cylinder, I tried
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a sphere, and presently found that the corresponding differential equation admitted of integra-
tion in finite terms, so that the solution of the problem could be completely effected. The
result, I found, agreed very well with Baily’s cxperiments, when the numerical value of a
certain constant was properly assumed ; but the subject was laid aside for some time. Having
afterwards attacked a definite integral to which Mr Airy had been led in considering the
theory of the illumination in the neighbourhood of a caustic, I found that the method which
T had employed in the case of this integral would apply to the problem of the resistance to a
cylinder, and it enabled me to get over the difficulty with which I had before beeen baffled.
I immiediately completed the numerical calculation, so far as was requisite to compare the
formulze with Baily’s experiments on cylindrical rods, and found a remarkably close agreement
between theory and observation. ‘ These results were mentioned at the meeting of the British
Association at Swansea in 1848, and are briefly described in the volume of reports for that
year.

The present paper is chiefly devoted to the solution of the problem in the two cases of
a sphere and of a long cylinder, and to a comparison of the results with the experiments of
Baily and others. Expressions are deduced for the effect of a fluid both on the time and on
the arc of vibration of a pendulum consisting either of a sphere, or of a cylindrical rod, or of a
combination of a sphere and a rod. These expressions contain only one disposable constant,
which has a very simple physical meaning, and which I propose to call the index of friction
of the fluid. This constant we may conceive determined by one observation, giving the effect
of the fluid either on the time or on the arc of vibration of any one pendulum of one of the
above forms, and then the theory ought to predict the effect both on the time and on the
arc of vibration of all such pendulums. The agreement of theory with the experiments of
Baily on the time of vibration is remarkably close. Even the rate of decrease of the arc of
vibration, which it formed no part of Baily’s object to observe, except so far as was necessary
for making the small correction for reduction to indefinitely small vibrations, agrees with the
result calculated from theory as nearly as could reasonably be expected under the circum-
stances.

It follows from theory that with a given sphere or cylindrical rod the factor 7 increases
with the time of vibration. This accounts in a good measure for the circumstance that Bessel
obtained so large a value of & for air, as is shewn at length in the present paper; though it
unquestionably arose in a great degree from the increase of resistance due to the close prox-
imity of a rigid plane to the swinging ball.

I have deduced the value of the index of friction of water from some experiments of Cou-
lomb’s on the decrement of the arc of oscillation of disks, oscillating in water in their own
plane by the torsion of a wire. When the numerical value thus obtained is substituted in
the expression for the time of vibration of a sphere, the result agrees almost exactly with
Bessel’s experiments with a sphere swung in water.

The present paper contains one or two applications of the theory of internal friction to
problems which are of some interest, but which do not relate to pendulums. The resistance
to a sphere moving uniformly in a fluid may be obtained as a limiting case of the resistance to
a ball pendulum, provided the circumstances be such that the square of the velocity may be
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neglected. The resistance thus determined proves to be proportional, for a given fluid and a
given velocity, not to the surface, but to the radius of the sphere; and therefore the accele-
rating force of the resistance increases much more rapidly, as the radius of the sphere
decreases, than if the resistance varied as the surface, as would follow from the common
theory. Accordingly, the resistance to a minute globule of water falling through the air with
its terminal velocity depends almost wholly on the internal friction of air. Since the index of
friction of air is known from pendulum experiments, we may easily calculate the terminal
velocity of a globule of given size, neglecting the part of the resistance which depends upon
the square of the velocity. The terminal velocity thus obtained is so small in the case of
small globules such as those of which we may conceive a cloud to be composed, that the
apparent suspension of the clouds does not seem to present any difficulty. Had the resistance
been determined from the common theory, it wonld have been necessary to suppose the globules
much more minute, in order to account in this way for the phenomenon. Since in the case of
minute globules falling with their terminal velocity the part of the resistance depending upon
the square of the velocity, as determined by the common theory, is quite insignificant compared
with the part which depends on the internal friction of the air, it follows that were the pres-
sure equal in all directions in air in the state of motion, the quantity of water which would
remain suspended in the state of cloud would be enormously diminished. The pendulum
thus, in addition to its other uses, affords us some interesting information relating to the
department of meteorology.

The fifth section of the first part of the present paper contains an investigation of the
effect of the internal friction of water in causing a series of oscillatory waves to subside. It
appears from the result that in the case of the long swells of the ocean the effect of friction is
insignificant, while in the case of the ripples raised by the wind on a small pool, the motion
subsides very rapidly when the disturbing force ceases to act.




PART I
ANALYTICAL INVESTIGATION.

Section 1.

Adaptation of the general equations to the case of the fluid surrounding a body which
oscillates as a pendulum. General laws which follow from the form of the equations. Solu-
tion of the equations in the case of an oscillating plane.

1. 1In a paper ¢ On the Theories of the Internal Friction of Fluids in Motion, &c.,”
which the Society did me the honour to publish in the 8th Volume of their Transactions, 1
have arrived at the following equations for calculating the motion of a fluid when the internal
friction of the fluid itself is taken into account, and consequently the pressure not supposed
equal in all directions:
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with two more equations which may be written down from symmetry. In these equations
%, v, w are the components of the velocity along the rectangular axes of @, y, 3 X, ¥, Z are
the components of the accelerating force; p is the pressure, ¢ the time, p the density, and u
a certain constant depending on the nature of the fluid.

The three equations of which (1) is the type are not the general equations of motion which
apply to a heterogeneous fluid when internal friction is taken into account, which are those num-
bered 10 in my former paper, but are applicable to a homogeneous incompressible fluid, or to
a homogeneous elastic fluid subject to small variations of density, such as those which accom-
pany sonorous vibrations. It must be understood to be included in the term homogeneous
that the temperature is uniform throughout the mass, except so far as it may be raised or
lowered by sudden condensation or rarefaction in the case of an elastic fluid. The general
equations contain the differential coefficients of the quantity u with respect to @, y, and x;
but the equations of the form (1) are in their present shape even more general than is required
for the purposes of the present paper.

These equations agree in the main with those which had been previously obtained, on
different principles, by Navier, by Poisson, and by M. de Saint-Venant, as I have elsewhere
observed®*. The differences depend only on the coefficient of the last term, and this term
vanishes in the case of an incompressible fluid, to which Navier had confined his investiga-
tions.

The equations such as (1) in their present shape are rather complicated, but in applying

*® Report on recent researches in Hydrodynamics. Report of the British Association for 1846, p. 16,
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them to the case of a pendulum they may be a good deal simplified without the neglect of any
quantities which it would be important to retain. In the first place the motion is supposed
very small, on which account it will be allowable to neglect the terms which involve the
square of the velocity. In the second place, the nature of the motion that we have got to
deal with is such that the compressibility of the fluid has very little influence on the result, so
that we may treat the fluid as incompressible, and consequently omit the last terms in the
equations. Lastly, the forces X, ¥, Z are in the present case the components of the force of
gravity, and if we write
P+l +pf(Xdo + Ydy + Zdxz)

for p, we may omit the terms X, ¥, Z.

If &' be measured vertically downwards from a horizontal plane drawn in the neighbourhood
of the pendulum, and if g be the force of gravity, [(Xda + Ydy + Zdz) = g/, the arbitrary
constant, or arbitrary function of the time if it should be found necessary to suppose it to be
such, being included in II. The part of the whole force acting on the pendulum which
depends on the terms IT + gps’ is simply a force equal to the weight of the fluid displaced,
and acting vertically upwards through the centre of gravity of the volume. .

When simplified in the manner just explained, the equations such as (1) become
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which, with the equation of continuity,
du dv dw
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are the only equations which have to be satisfied at all points of the fluid, and at all instants
of time.

In applying equations (2) to a particular pendulum experiment, we may suppose u con-
stant ; but in order to compare experiments made in summer with experiments made in winter,
or experiments made under a high barometer with experiments made under a low, it will be
requisite to regard p as a quantity which may vary with the temperature and pressure of the
fluid. As far as the result of a single experiment*, which has been already mentioned,
performed with a single elastic fluid, namely air, justifies us in drawing such a general
conclusion, we may assert that for a given fluid at a given temperature u varies as p.

2. For the formation of the equations such as (1), I must refer to my former paper;

*® The first of the experiments described in Col. Sabine’s | been made stanch it is perhaps hardly safe to trust this
paper, in which the gauge stood as high as 7 inches, leads to experiment in a question of such delicacy.
the same conclusion ; but as the vacuum apparatus had not yet
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but it will be possible, in a few words, to enable the reader to form a clear idea of the meaning
of the constant u.

Conceive the fluid to move in planes parallel to the plane of 2y, the motion taking place
in a direction parallel to the axis of y. The motion will evidently consist of a sort of con-

X . dv
tinuous sliding, and the differential coefficient 75 may be taken as a measure of the rate of
: ¥

sliding. In the theory it is supposed that in general the pressure about a given point is com-
pounded of a normal pressure, corresponding to the density, which being normal is necessarily
equal in all directions, and of an oblique pressure or tension, altering from one direction to
another, which is expressed by means of linear functions of the nine differential coefficients of
the first order of u, v, w with respect to @, ¥, %, which define the state of relative motion at
any point of the fluid. Now in the special case considered above, if we confine our attention
to one direction, that of the plane of xy, the total pressure referred to a unit of surface is
compounded of a normal pressure corresponding to the density, and a tangential pressure

dv L . .
expressed by Pt which tends to reduce the relative motion.
%

In the solution of equations (2), u always appears divided by p. Let p=p'p. The
constant p’ may conveniently be called the index of friction of the fluid, whether liquid or gas,
to which it relates. As regards its dimensions, it expresses a moving force divided by the
product of a surface, a density, and the differential coefficient of a velocity with respect to a
line. Hence u’ is the square of a line divided by a time, whence it will be easy to adapt the
numerical value of i’ to a new unit of length or of time.

3. Besides the general equations (2) and (8), it will be requisite to consider the equations
of condition at the boundaries of the fluid. For the purposes of the present paper there will
be no occasion to consider the case of a free surface, but only that of the common surface of
the fluid and a solid. Now, if the fluid immediately in contact with a solid could flow past it
with a finite velocity, it would follow that the solid was infinitely smoother with respect to
its action on the fluid than the fluid with respect to its action on itself. For, con-
ceive the elementary layer of fluid comprised between the surface of the solid and a
parallel surface at a distance A, and then regard only so much of this layer as corresponds
to an elementary portion d.§ of the surface of the solid. The impressed forces acting on
the fluid element must be in equilibrium with the effective forces reversed. Now conceive
h to vanish compared with the linear dimensions of d.§, and lastly let d.§ vanish*, It
is evident that the conditions of equilibrium will ultimately reduce themselves to this, that
the oblique pressure which the fluid element experiences on the side of the solid must be equal
and opposite to the pressure which it experiences on the side of the fluid. Now if the fluid
could flow past the solid with a finite velocity, it would follow that the tangential pressure

® To be qnite precise it wonld be necessary to say, Conceive | ture of the elementary surface. Such extreme precision in
h and dS to vanish together, h vanishing compared with the | unimportant matters tends, I think, only to perplex the reader,
linear dimensions of d.§; for so long as d.§ remains finite we | and prevent him from entering so readily into the spirit of an
cannot suppose 4 to vanish altogether, on acconnt of the curva- | investigation,
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called into play by the continuous sliding of the fluid over itself was no more than counter-
acted by the abrupt sliding of the fluid over the solid. As this appears exceedingly improba-
ble a priori, it seems reasonable in the first instance to examine the consequences of supposing
that no such abrupt sliding takes place, more especially as the mathematical difficulties of the
problem will thus be materially diminished. I shall assume, therefore, as the conditions to be
satisfied at the boundaries of the fluid, that the velocity of a fluid particle shall be the same,
both in magnitude and direction, as that of the solid particle with which it is in contact. The
agreement of the results thus obtained with observation will presently appear to be highly
satisfactory.  When the fluid, instead of being confined within a rigid envelope, extends indefi-
nitely around the oscillating body, we must introduce into the solution the condition that
the motion shall vanish at an infinite distance, which takes the place of the condition to be
satisfied at the surface of the envelope.

To complete the determination of the arbitrary functions which would be contained in the
integrals of (2) and (8), it would be requisite to put # =0 in the general expressions for u, v,
w, obtained by integrating those equations, and equate the results to the initial velocities sup-
posed to be given. But it would be introducing a most needless degree of complexity into the
solution to take account of the initial circumstances, nor is it at all necessary to do so for the
sake of comparison of theory with experiment. For in a pendulum experiment the pendulum
is set swinging and then left to itself, and the first observation is not - taken till several oscilla-
tions have been completed, during which any irregularities attending the initial motion would
have bad time to subside. It will be quite sufficient to regard the motion as already going on,
and limit the calculation to the determination of the simultaneous periodic movements of the
pendulum and the surrounding fluid. The arc of oscillation will go on slowly decreasing, but
it will be so nearly constant for several successive oscillations that it may be regarded as
strictly such in calculating the motion of the fluid ; and having thus determined the resultant
action of the fluid on the solid we may employ the resnlt in calculating the decrement of the
arc of oscillation, as well as in calculating the time of oscillation. Thus the assumption of
periodic functions of the time in the expressions for w, v, w will take the place of the determi-
nation of certain arbitrary functions by means of the initial circumstances,

4. Imagine a plane drawn perpendicular to the axis of @ through the point in the
fluid whose co-ordinates are x, y, . Let the oblique pressure in the direction of this plane
be decomposed into three pressures, a normal pressure, which will be in the dircction of @, and -
two tangential pressures in the directions of y, %, respectively. Let P, be the normal pressure,
and T the tangential pressure in the direction of y, which will be equal to the component in
the direction of @ of the oblique pressure on a plane drawn perpendicular to the axis of y.
Then by the formula (7), (8) of my former paper, and (3) of the present,

du
Pmp=%pu—, . «. .« « « . 0@

da’

du dv
= - _—— . - o trewd Sedms 5
u(dy =) ®)

These formule will be required in finding the resultant force of the fluid on the pendulum, after
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the motion of the fluid has been determined in terms of the quantities by which the motion of
the pendulum is expressed.

5. Before proceeding to the solution of the equations (2) and (8) in particular cases, it
will be well to examine the general laws which follow merely from the dimensions of the several
terms which appear in the equations.

Consider any number of similar systems, composed of similar solids oscillating in a
similar manner in different fluids or in the same fluid. Let a, ¢/, a”... be homologous lines in
the different systems; T, 77, T"... corresponding times, such for example as the times of
oscillation from rest to rest. Let @, y, ¥ be measured from similarly situated origins, and in
corresponding directions, and ¢ from corresponding epochs, such for example as the com-
mencements of oscillations when the systems are beginning to move from a given side of the
mean position.

The form of equations (2), (8) shews that the equations being satisfied for one system will
be satisfied for all the systems provided

% pux

m
UxcVaW, T« and poc——ed—t—-,
&

The variations @ oy =  merely signify that we must compare similarly situated points in
inferring from the circumstance that (2), (3) are satisfied for one system that they will be satis-
fied for all the systems. If ¢, ¢, ¢”... be the maximum excursions of similarly situated points

of the fluids

c
uoc-j:, reca, tel,

and the sole condition to be satisfied, in addition to that of geometrical similarity, in order
that the systems should be dynamically similar, becomes
C g2 '
—ccﬁoroc,u,. 5 & o o o o o o @
T »p
This condition being satisfied, similar motions will take place in the different systems, and we
shall have .

pm”_T“;f. Y (0

It follows from the equations (4), (5), and the other equations which might be written
down from symmetry, that the pressures such as P,, 7 vary in the same manner as p, whence
it appears from (7) that the resultant or resultants of the pressures of the fluids on the solids,
acting along similarly situated lines, which vary as pa? vary as pa® and ¢7'~* conjointly.
In other words, these resultants in two similar systems are to one another in a ratio com-
pounded of the ratio of the masses of fluid displaced, and of the ratio of the maximum
accelerating effective forces belonging to similarly situated points in the solids.

6. In order that two systems should be similar in which the fluids are confined by
envelopes that are sufficiently narrow to influence the motion of the fluids, it is necessary that
27—2
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the envelopes should be similar and similarly situated with respect to the solids oscillating
within them, and that their linear dimensions should be in the same ratio as those of the
oscillating bodies. In strictness, it is likewise necessary that the solids should be similarly
situated with respect to the axis of rotation. If however two similar solids, such as two
spheres, are attached to two fine wires, and made to perform small oscillations in two
unlimited masses of fluid, and if we agree to neglect the effect of the suspending wires, and
likewise the effect of the rotation of the spheres on the motion of the fluid, which last will
in truth be exceedingly.small, we may regard the two systems as geometrically similar, and
they will be dynamically similar provided the condition (6) be satisfied. @~ When the two
fluids are of the same nature, as for example when both spheres oscillate in air, the condition
of dynamical similarity reduces itself to this, that the times of oscillation shall be as the
squares of the diameters of the spheres,

If, with Bessel, we represent the effect of the inertia of the fluid on the time of oscillation
of the sphere by supposing a mass equal to & times that of the fluid displaced added to the
mass of the sphere, which increases its inertia without increasing its weight, we must expect
to find & dependant on the nature of the fluid, and likewise on the diameter of the sphere.
Bessel, in fact, obtained very different values of X for water and for air. Baily’s experiments
on spheres of different diameters, oscillating once in a second nearly, shew that the value of
k increases when the diameter of the sphere decreases. Taking this for the present as the
result of experiment, we are led from theory to assert that the value of % increases with the
time of oscillation ; in fact, & ought to be as much increased as if we had left the time of
oscillation unchanged, and diminished the diameter in the ratio in which the square root of
the time is increased. It may readily be shewn that the value of % obtained by Bessel’s
method, by means of a long and short pendulum, is greater than what belongs to the long
pendulum, much more, greater than what belongs to the shorter pendulum, which oscillated
once in a second nearly. The value of & given by Bessel is in fact considerably larger than
that obtained by Baily, by a direct method, from a sphere of nearly the same size as those
employed by Bessel, oscillating once in a second nearly.

The discussion of the experiments of Baily and Bessel belongs to Part II. of this paper.
They are merely briefly noticed here to shew that some results of considerable importance
follow readily from the general equations, even without obtaining any solution of them.

7. Before proceeding to the problems which mainly occupy this paper, it may be well to
exhibit the solution of equations (2) and (8) in the extremely simple case of an oscillating plane.

Conceive a physical plane, which is regarded as infinite, to be situated in an unlimited
mass of fluid, and to be performing small oscillations in the direction of a fixed line in the
plane. Let a fixed plane coinciding with the moving plane be taken for the plane of yz, the
axis of y being parallel to the direction of motion, and consider only the portion of fluid
which lies onthe positive side of the plane of ys. In the present case, we must evidently
have w = 0, w = 0; and p, v will be functions of @ and ¢, which have to be determined. The
equation (3) is satisfied identically, and we get from (2), putting u = u'p,

dp . dv ,d'v

dm= 2 (ﬁ—:ua—;é. e TUR e Sl 1oe (8)
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The first of these equations gives p = a constant, for it evidently cannot be a function of #,
since the effect of the motion vanishes at an infinite distance from the plane; and if we include
this constant in II, we shall have p = 0. Let V be the velocity of the plane itself, and suppose

V =c¢sinnt. ST o s bl ()
Putting in the second of equations (8)
v=X, sinnt + X,cosnt, . . . . . . . (10
we get

¢ X, , X, 2d‘)('
d.z; nXy= -] — = —— N ¢ 1))

da® n da*
The last of these equations gives
‘ Vi
Eomc 2" (Asln \/i,.z'+Bcos\/i,w)+e 3 (CS]n\/l,w{-Dcos/\/ﬁ.’w).
2 2u 2u 2u

Since X, must not become infinite when # = «, we must have C =0, D =0. Obtaining X,
from the first of equations (11), and substituting in (10), we get

n
’D=e— 2”Ix{~ASin(nt~/\/ﬁ',m)'*'Bcos(nt—l\/—l’f—lw)}'
21 2w

Now by the equations of conditions assumed in Art. 3, we must have v = V when z=0,

nX1‘=,U~

whence
_\/21",z i \/ n
v=¢ sin (nf — — &) . ., s 12
€ ( 2”" ) ( )

To find the normal and tangential components of the pressure of the fluid on the plane, we
must substitute the above value of v in the formule (4), (5), and after differentiation pl.it
2#=0. P, T; will then be the components of the pressure of the solid on the fluid, and
therefore — P;, — T, those of the pressure of the fluid on the solid. We get

1 7
P, =0, Ts—cp\/—(smm‘+cosnt) p'\/n#( nddIt) . (13)

The force expressed by the first of these terms tends to diminish the amplitude of the
oscillations of the plane. The force expressed by the second has the same effect as increasing
the inertia of the plane.

8. The equation (12) shews that a given phase of vibration is propagated from the plane
into the fluid with a velocity 4/ (2u'n), while the amplitude of oscillation decreases in geometric
progression as the distance from the plane increases in arithmetic. If we suppose the time of
oscillation from rest to rest to be one second, 7 = = ; and if we suppose 4/u’= .116 inch, which,
as will presently be seen, is about its value in the case of air, we get for the velocity of propa-
gation .2908 inch per second nearly. If we enquire the distance from the plane at which the

amplitude of oscillation is reduced to one half, we have only to put L v=lo .2, which
SN 2 8

gives, on the same suppositions as before respecting numerical values, # = .06415 inch nearly.
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For water the value of u’ is a good deal smaller than for air, and the corresponding value of «
smaller likewise, since it varies ceeteris paribus as /p. Hence if a solid of revolution of
large, or even moderately large, dimensions be suspended by a fine wire coinciding with the
axis of revolution, and made to oscillate by the torsion of the wire, the effect of the fluid may
be calculated with a very close degree of approximation by regarding each elecment of the
surface of the solid as an element of an infinite plane oscillating with the same linear velocity.
For example, let a circular disk of radius @ be suspended horizontally by a fine wire
attached to the centre, and made to oscillate. Let » be the radius vector of any element of
the disk, measured from its centre, 6 the angle through which the disk has turned from its

: P de
mean position. Then in equation (18), we must put V=1 a2 whence

ny (de 1 dze)

B=pN o5 \G; t nap

The area of the annulus of the disk comprised between the radii » and » + d» is 4=xrdr,
both faces being taken, and if G be the whole moment of the force of the fluid on the disk,

G=-~ 4qrf r°* T, dr, whence
0

o 1 b, ~ 0
o it " naf

Let M~*® be the moment of inertia of the disk, and let #», be what » would become if the
fluid were removed, so that — n,* M ~*6 is the moment of the force of torsion. Then when the

n__:’ (de 1 d29)

fluid is present the equatlon of motion of the disk becomes

do
(M'y +7rpa4\/—) Fri at n—-——+n12M729==0, . . (19
or, putting for shortness )
7
mpa' \/a = 2B M~

(1 +2ﬁ)dt‘ + 2nﬁ—9+n, *0 = o,

which gives, neglecting (3%,
9 = 00 G*“pl Sin (nt + a), N . ohd Lo . . Y (15)

n=mn (1 -0).

The observation of # and n,, or else the observation of z and of the decrement of the arc
of oscillation, would enable us to determine 3, and thence »’. The values of 3 determined in

where

these two different ways ought to agree.

There would be no difficulty in obtaining a more exact solution, in which the decrement of
the arc of oscillation should be taken into account in calculating the motion of the fluid, but
I pass on to the problems, the solution of which forms the main object of this paper.
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SectIioN II.

Solution of the equations in the case of a sphere oscillating in a mass of fluid either
unlimited, or confined by a spherical envelope concentric with the sphere in its position of
equilibrium.

9. Suppose the sphere suspended by a fine wire, the length of which is much greater
than the radius of the sphere. Neglect for the present the action of the wire on the fluid, and
consider only that of the sphere. The motion of the sphere and wire being supposed to take
place parallel to a fixed vertical plane, there are two different modes of oscillation possible.
We have here nothing to do with the rapid oscillations which depend mainly on the rotatory
inertia of the sphere, but only with the principal oscillations, which are those which are
observed in pendulum e;(periments. In these principal oscillations the centre of the sphere
describes a small arc of a curve which is very nearly a circle, and which would be rigorously
such, if the line joining the centre of gravity of the sphere and the point of attachment of the
wire were rigorously in the direction of the wire, In calculating the motion of the fluid, we
may regard this arc as a right line. In fact, the error thus introduced would only be a small
quantity of the second order, and such quantities are supposed to be neglected in the investi-
gation. Besides its motion of translation, the sphere will have a motion of rotation about a
horizontal axis, the angular motion of the sphere being very nearly the same as that of the
suspending wire. This motion, which would produce absolutely no effect on the fluid according
to the common theory of hydrodynamics, will not be without its influence when friction is taken
into account; but the effect is so very small in practical cases that it is not worth while to take
it into account. TFor if a he the radius of the sphere, and / the length of the suspending wire,
the velocity of 2 point in the surface of the sphere due to the motion of rotation will be a
small quantity of the order al~' compared with the velocity due to the motion of translation.
In finding the moment of the pressures of the fluid on the pendulum, forces arising from these
velocities, and comparable with them, have to be multiplied by lines which are comparable
with a, I, respectively. Hence the moment of the pressures due to the motion of rotation of
the sphere will be a small quantity of the order a*/~? compared with the moment due to the
motion of translation. Now in practice [ is usually at least 20 or 30 times greater than @, and
the whole effect to be investigated is very small, so that it would be quite useless to take
account of the motion of rotation of the sphere,

The problem, then, reduces itself to this. The centre of a sphere performs small periodic
oscillations along a right line, the sphere itself having a motion of translation simply: it is
required to determine the motion of the surrounding fluid.

10. Let the mean position of the centre of the sphere be taken for origin, and the
direction of its motion for the axis of @, so that the motion of the fluid is symmetrical with
respect to this axis. Let % be the perpendicular let fall from any point on the axis of @, ¢
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the velocity in the direction of =, the angle between the line z and the plane of #y. Then
p, u, and g will be functions of @, w, and #, and we shall have

v=QCosSw, W=¢qsiNw, Y=wCosw, %= sinow,
whence

&
w =y + 25 w=tan‘1!;

We have now to substitute in equations (2) and (3), and we are at liberty to put
w = 0 after differentiation. We get

- cos 4 N when 0
—_— = e —_— = — W =
dy Ydw T = do’ do g it
< ¢ hen 0
— = —— whe =
dy ~ da* ]
d cosw d 1 d ¢
=sinw — — = —— when w =0,
i dw 7T do wdo "

ds
a 1 d 1 4
asz? 'E'Er-l-;dwz

whence we obtain

dp (d"’u 1S du i 1 du) du (16)
de "\ " dz T wdw) ~Par’
dp dq & &g 1dg gq dq
Bl A i % o s s RN 1|
dw ~ (dw’ e dz* & wdw wz) P ae 2
d d
__1.1, .—q— 4 g = 0. (]8)

Eliminating p from (16) and (17), and putting for u its equivalent u’p, we get
, 4 (& d2+1d) ¢1c12+d2 1 d 1) _d_(du dq)__
"Zi?r(é?*dw? =SB (dw do* " mdw @) !

2 (dz+ d2+1 d 1 1 d) du dq) A (19)
* wdw w4 dt (d'w dz b 4y} it

By virtue of (18), @ (udw — qda) is an exact differential. Let then
Tudw ~qda)=dy. . . . . . . . . (20)
Expressing % and g in terms of \, we get

du dqg 1 (d2 a 1 d)
dw de = \do* dw’—;d—; V-

Substituting in (19), and operating separately on the factor =, we obtain

(d2 & 1 d 1d)(d2 d’ 11_)\!/:'0' .. (e0)

T da .

—t—r - = —— e —

+
da? d*w wdw udt
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Since the operations represented by the two expressions within parentheses are evidently

convertible, the integral of this equation is

where \;, \, are the integrals of the equations

(d’ d?

\,'/=\!fl+\l’2’* e o sl o MR (21)

1
Rt S N L N &
_____;d_t)\pz_o e e .. (29)

(d2 d? 1 d
d'w’ Tdw

1 d

By means of the last three equations, the expression for dp obtained from (16) and

el .o (24)

11.
(17) is greatly simplified. We get, in the first place,
1dp { , ( S
pda \*\dz " am *

Eél;) dt}wdw

but by adding together equations (22) and (23), and taking account of (21), we get

oy _ @y
da*

1dy 1
dw’ 'E'd@' p. dt’

Ly,

On substituting in (24), it will be found that all the terms in the right-hand member of

the equation destroy one another, except those which contain

is reduced to
dp
dax

dy

E-t—' and

A,
di

,» and the equation

&,

Twdtdwm’

The equation (17) may be reduced in a similar manner, and we get finally

: e

dp= dtda

which is an exact differential by virtue of (22).

T ) (25)

T dtdw

* 1f we denote for shortness the operation
a2 d2 1 d
i7" e ada
by D, our equation becomes
1 d
e e
which gives by the separation of symbols

(o= B
() -k

ay .
so that ?‘g is composed of two parts, which are separately the

—D"%O, .. (@)

integrals of (22), (28). Hence we have for the integral of (20')
Y=Y+ Y+ ¥, ¥ being a function of 2 and & without ¢
which satisfies the equation D*¥ =0, For the equations (22),

Vor. IX. Part II.

(23) will not be altered if we put S\, d¢, firadt for yr, Yy
the arbitrary functions which would arise from the integration
with respect to ¢ being supposed to be included in ¥. The
function ¥, which taken by itself can only correspond to steady
motion, is excluded from the problem under consideration by
the condition of periodicity. But we may even, independently
of this condition, regard (21) as the compiete integral of (20°),
provided we suppose included in (21) terms which wonld be
obtained by supposing s at first to vary slowly with the
time, employing the integrals of (22) and (23), and then
making the rate of variation diminish indefinitely. By treat-
ing the symbolical expression in the right-hand member of

equation (a) as a vanishing fraction, Ed? being supposed to

vanish, we obtain in fact D-20; go that under the convention
just mentioned the function ¥ may be supposed to be in-
cluded in v, + 1y, The same remarks will apply to the
equation in Section 1Il. which answers to (20').

28
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12. Passing to polar co-ordinates, let » be the radius vector drawn from the origin, 8 the
angle which 7 makes with the axis of , and let B be the velocity along the radius vector,
O the velocity perpendicular to the radius vector: then

x=rcosl, @w=1rsinf, w=Rcos@—0Osinf, ¢=Rsinb + O cos .

Making these substitutions in (20), (22), (28), and (25), we obtain

r sin@ (Rrdf - 6dr) = d, A AR S
dyn  sinf d (1 din)
ar T 30 (sin 0 71_5) e @)

&Y, sin@d (1 dy, 1dy,
dr? r? c_i_é(sinO d9>—;'W—O’ SRRLE )

r — —

w3 dtdr " rdtdd

P dz\!’l d 1 dl\p] )
“rsing ( il 3 (29)

We must now determine y; and s, by means of (27) and (28), combined with the equa-
tions of condition. When these functions are known, p will be obtained by integrating the
exact differential which forms the right-hand member of (29), and the velocities R, ©, if
required, will be got by differentiation, as indicated by equation (26). Formule deduced

from (4) and (5) will then make known the pressure of the fluid on the sphere.

13.  Let £ be the abcissa of the centre of the sphere at any instant. The conditions to
be satisfied at the surface of the sphere are that when » = r,, the radius vector of the surface,

3

d
dt’

we have

d
R=cos€-—g, O = —sinf
dt
Now 7, differs from a by a small quantity of the first order, and since this value of 7 has
to be substituted in functions which are already small quantities of that order, it will be suffi-
cient to put r = . Hence, expressing B and O in terms of \, we get
d s d¢’ d : d
lef = a sin 923-5—:, E\%= a* sm@cosOd—g, whenr=a. . . (30)
When the fluid is unlimited, it will be found that certain arbitrary constants will vanish
by the condition that the motion shall not become infinite at an infinite distance in the fluid.
‘When the fluid is confined by an envelope having a radius b, we have the equations of con-
dition
d d
%:0, E\—g.—_o, when negllE BWE S, © 5, L i(S1)

14. We must now, in accordance with the plan proposed in Section I., introduce the con-
dition that the function « shall be composed, so far as the time is concerned, of the circular
functions sin n¢ and cos n#, that is, that it shall be of the form Psinn¢ + Q cos nt, where P
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and Q are functions of » and 6 only. An artifice, however, which has been extensively
employed by M. Cauchy will here be found of great use. Instead of introducing the circular
functions sinn?¢ and cos n¢, we may employ the exponentials eV-int, and e-V-int. Since
our cquations are linear, and since each of these exponential functions reproduces itself at each
differentiation, it follows that if all the terms in any one of our equations be arranged in two
groups, containing as a factor eV-int in one case, and e-V-Int in the other, the two groups
will be quite independent, and the equations will be satisfied by either group separately.
Hence it will be sufficient to introduce one of the exponential functions, We shall thus have
only half the number of terms to write down, and half the number of arbitrary constants to
determine that would have been necessary had we employed circular functions. When we have
arrived at our result, it will be sufficient to put each equation under the form U + v/ -1V =0,

and throw away the imaginary part, or else throw away the real part and omit 4/ — 1, since
the system of quantities U, and the system of quantities ¥ must separatcly satisfy the equa-
tions of the problem. Assuming then

df  Sine
ik D

we have to determine P as a function of » and 6.

e\/—_lntp

b

15. The form of the equations of condition (80) points out sin®@ as a factor of P, and

1
since the operation sin @ — — — performed on the function sin?@ reproduces the same
P d@ sin@ dO P P

function with a coefficient —~ 2, it will be possible to satisfy equations (27) and (28) on the sup-
position that sin*@ is a factor of \, and \*.

Y = o ol sin® 6 f,(r),

Putting for convenience

Assume then

\1’2 - fs\/--_lnt

nA/~1=pu'ms, . . . . . . . .

and substituting in (27) and (28), we get

e -20=0.

sin® 6 f, (7).
(32)

(33)

ﬁ"(r)—%ﬁ(r)—m‘*’ﬁ(r):& e

® When this operation is performed on the function
; ed Yi
sin o,
—i(i+1). Y; here denotes a Laplace’s coefficient of the ith
order, which contains only one variable angle, namely 0.

Now {» may be expanded in a series of quantities of the

the function is reproduced with a coefficient

dY;

o -
with the differential coefficients of » with respect to » and
6, we have a right to suppose yr to vanish at whatever point
of space we please. Let then y =0 when »=a and 0 = 0.
To find the value of  at a distance » from the origin, along
the axis of « positive, it will be sufficient to put 0 =0, d0=0
in (26), and integrate from r=a to 7, whence ¢'=0. To

general form sin 6 For, since we are only concerned

find the value of vr at the same distance 7 along the axis of
xr negative, it will be sufficient to leave » constant, and in-
tegrate dyy from 6=0 to O=m=. Referring to (26), we see
that the integral vanishes, since the total flux across the
surface of the sphere whose radins is » mnst be equal to zero.
Hence s vanishes when 6 =0 or ==, and it appears from
(26) that wben 0 is very small or very nearly equal o m,
varies ultimately as sin?§ for given values of » and £ Hence
Jrcosec 6, and therefore Sy cosec 0 d0, is finite even when
sin 6 vanishes, and therefore fyr cosecd 40 may be expanded
in a series of Laplace’s coefficients, and tberefore v itself in
a series of quantities of the form sin § %’l 5
in this way that I first obtained the form of the function V.

28—=2

It was somewhat
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The equations of condition (80), (81) become, on putting f(r) for f,(r) + f,(r),
@) =g, "f(a) = da%c, . . t. ToTrONEL LSS
f@®)=o, Ji(0) =m0, oo orm B sagrdl van cnif)

We may obtain p from (29) by putting for \, its value e”*!sin?@f, (r), replacing
after differentiation 2 f,(r) by its equivalent r°f,” (), and then integrating. It is unnecessary
to add an arbitrary function of the time, since any such function may be supposed to be
included in [1. We get

p = - PI_L,mzel"‘Im't COS 0 fl’ (T)o . . . . . . (37)

16. The integration of the differential equation (33) does not present the least difficulty,
and (34) comes under a well known integrable form. The integrals of these equations are

Le)=2 4B, ]
: (58)

)= C'e"’"’(l + ;’%-r) + De""(l = _), [

mr
and we have to determine 4, B, C, D by the equations of condition.

The solution of the problem, in the case in which the fluid is confined by a spherical
envelope, will of course contain as a particular case that in which the fluid is unlimited, to
obtain the results belonging to which it will be sufficient to put b= . As, however, the
case of an unlimited fluid is at the same time simpler and more interesting than the general
case, it will be proper to consider it separately.

Let +m denote that square root of uw'~'n4/ -1 which has its real part positive; then
in equations (88) we must have D =0, since otherwise the velocity would be infinite at an
infinite distance. We must also have B = 0, since otherwise the velocity would be finite when
r = , as appears from (26). We get then from the equations of condition (85)

3a’c 1 3ac
A=23dc+ (1 +_) C= =22 gma
% 2m mal’ 2m ’
whence

(4 .
g=ﬂ,m2ef*"'", - L WA

o L, 3 1
\],=%a2cef”’"sm”9{(l+i+ %);—————(1 +——) G_m(r_a)}, . (40)

ma m°a ma mr
3 38 o™i a®
p=%pacp.’m’(l+;1—‘-z+m2a2) e""“cose;z. S e - & - (At

17. The symbolical equations (40), (41) contain the solution of the problem, the motion
of the sphere being defined by the symbolical equation (39). If we wish to exhibit the
actual results by means of real quantities alone, we have only to put the right-hand members
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of equations (39), (40), (41) under the form U ++/ T V, and reject the imaginary part.

Putting for shortness
V2
ZL-,=V,.........(4-2)

we have m =» (1 +\/_——l-), and we obtain

c .
f=-n-’smnt, B ()

. 3 3 1 . T a
\!,.-_-—é-a”csmze [(l G —— ) cosnt 4+ — (1 + — smntJ -
2va 2va va r

3 1 N
- az_e—v(r—a) [cos (nt—vr +va) + (1 + ;;) sin (nt — vr + ua)]}, . (44)

va

1 1 3 )sin nt 3 (1 l)cos nt; cos O & 45
= - — - — cosf.—. . . . .
p g pach ( +2ua 2 +va r2 (54

The reader will remark that the £, \, p of the present article are not the same as the
£ v p of the preceding. The latter are the imaginary expressions, of which the real parts
constitute the former, It did not appear necessary to change the notation,

When i’ =0, v=», and  reduces itself to
a’c a® d
—sin?0 cosné, or —sin®’f —= £
2r 2r dt’

In this case we get from (26)

df cos 0 df sin 9

e 3
k= dtﬁ’e% 7

and Rdr + ©rd@ is an exact differential d¢ where

which agrees with the result deduced directly from the ordinary equations of hydrodynamics *.

18. Let us now form the expression for the resultant of the pressures of the fluid on the
several elements of the surface of the sphere. Let P, be the normal, and T’y the tangential,
component of the pressure at any point in the direction of a plane drawn perpendicular to
the radius vector. The formule (4), (5) are general, and therefore we may replace @, y in
these formulae by #', y', where &', y" are measured in any two rectangular directions we please.
Let the plane of &’ y" pass through the axis of @ and the radius vector, and let the axis of 2’
be inclined to that of @ at an angle 3, which after differentiation is made equal to . Then
P,, T, will become P,, T, respectively. We have

wW=Rcos(@0-3)-Osin(0-93), v =Rsin(@—-93)+06cos(@-93),

* See Camb. Phil, Trans. Vol VIII. p. 119.
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and when 0 =9
4 _d d4_d
do _ dr’ dy  rdo’
du' dR dd’ dR © dv’  dO
do dr’ dy rd@ r’ da  dr’
whence
dR dR d6 ©
PR S et _--)..
il o dr Ts S (rdB a dr r (46)
In these formule, suppose r put equal to a after differentiation. Then P,, T, will be the
components in the direction of 7, @ of the pressure of the sphere on the fluid. The resolved
part of these in the direction of @ is

P,cos @ — Tysin 0,

which is equal and opposite to the component, in the direction of @, of the pressure of the
fluid on the sphere. Let F be the whole force of the fluid on the sphere, which will evidently
act along the axis of @. Then, observing that 2w a®sin6d@ is the area of an elementary
annulus of the surface of the sphere, we get

F= 27ra’f7r(— P,cos O + Tysinf),sinfdd, . . . . (47)
0

the suffix ¢ denoting that r is supposed to have the value a in the general expressions for
P, and T.

The expression for F' may be greatly simplified, without employing the solution of equa-
tions (27), (28), by combining these equations in their original state with the equations of
condition (30). We have, in the first place, from (26)

1 dy 1 dy

T rtsing dO’ rsin@ dr° - T (48)

: d -
Now the equations (80) make known the values of v, and d—\’/, and of their differential
4 r

coefficients of all orders with respect to 6, when r=a. 'When the expressions for R and O are
substituted in (46), the result will contain only one term in which the differentiation with
respect to r rises to the second order. But we get from (21), (27), (28)

>\ sin@ d ( il d\b) 1dvy,

@t 7 ab\sn0d0) T i di’

and the second of equations (80) gives the value for r = a of the first term in the right-hand
member of the equation just written. We obtain from (48) and (80)

dR 2

).

(i]j __sin@df_ 0
rd9)a_ Ta—(?)a’

(s s (22
dr)a_—,u.'asinG dt /.
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Substituting in (47), and writing u'p for u, we get

- d .
F = 27raf {—- ap, COSO+P (E‘I;—z) }Sl[l 9d6.

0

With respect to the first term in this expression, we get by integration by parts

d
fpcos 6 sin0d9=12—sin29.p—%fsin29Egd@.

g dp
The first term vanishes at the limits. Substituting in the second term for 76 the

expression got from (29), and putting » = a, we get

- , d refdy .
=-Llp— - 2
_/o-pacosesmed(? det-/a- (dr)asm9d9

Substituting in the expression for 7, we get
d pxf (d .
F= Tpa—, : {a (%)a+ 2(\[/2)a} sin6df. . . . . (49

19. The above expression for F, being derived from the general equations (27), (28),
combined with the equations of condition (30), holds good, not merely when the fluid is con-
fined by a spherical envelope, but whenever the motion is symmetrical about an axis, and that,
whether the motion of the sphere be or be not expressed by a single circular function of the
time. It might be employed, for instance, in the case of a sphere oscillating in a direction
perpendicular to a fixed rigid plane.

When the flnid is either unconfined, or confined by a spherical envelope concentric with
the sphere in its position of equilibrium, the functions Y1, . consist, as we have seen, of
sin” @ multiplied by two factors independent of §. If we continue to employ the symbolical
expressions, which will be more convenient to work with than the real expressions which
might be derived from them, we shall have

V-1 nt £ (r), e“/:‘_l”tfg (),

for these factors respectively. Substituting in (49), and performing the integration with
respect to 0, we get

F=4%mpany/=1 {af)(a) + 2fu(@)} V=00 . . . . (50)

20. Consider for the present only the case in which the fluid is unlimited. The arbitrary
constants which appear in equations (38) were determined for this case in Art. 16, Substi-
tuting in (50) we get

ma®

9 9 —
=2 3 — ) N <Ine,
F gwpacny/ 1(1+ a+ )e
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Putting for m its value v(1 + 4/ —1), and denoting by M’ the mass of the fluid displaced by
the sphere, which is equal to & 7pa’, we get

F=-Mcn{(%+_g_) _—]+i(1+i)}e\/-—lnt;
dva

dva va

whence
9 dcE 9 1 43
Pon (AI)acfE_ 0\ 1) ap B
(2 t 4va d#?  4ypa 1 +ua M”dt “wal (51)
Since \/ "1 has been eliminated, this equation will remain unchanged when we pass from the
symbolical to the real values of F and §.
Let + be the time of oscillation from rest to rest, so that n+ = «, and put for shortness

k, K for the coefficients of M’ in (51); then

,,.—.\/"' k=%+—9— k’=9—(1+1). aiy . ove (B0

e’ 4va’ 4va va

The first term in the expression for the force F has the same effect as increasing the inertia
of the sphere. To take account of this term, it will be sufficient to conceive a mass &M’
collected at the centre of the sphere, adding to its inertia without adding to its weight. The
main effect of the second term is to produce a diminution in the arc of oscillation: its effect
on the time of oscillation would usnally be quite insensible, and must in fact be neglected
for consistency’s sake, because the motion of the fluid was determined by supposing the motion
of the sphere permanent, which is only allowable when we neglect the square of the rate of
decrease of the arc of oscillation.

If we form the equation of motion of the sphere, introducing the force F, and then
proceed to integrate the equation, we shall obtain in the integral an exponential ¢~%* multi-

plying the circular function, & being half the coefficient of % divided by that of ?i_g—tg Let

M be the mass of the sphere, M«* its moment of inertia about the axis of suspension, then
nkM (I + a)? =23 {M~*+ kM (I + a)?}.

In considering the diminution of the arc of oscillation, we may put I + a for «. During ¢

oscillations, let the arc of oscillation be diminished in the ratio of 4, to 4;, then

AU wi KM
log,— =i7d =
4;

g D NS R AP

For a given fluid and a given time of oscillation, both % and %’ increase as e decreases.
Hence it follows from theory, that the smaller be the sphere, its density being supposed given,
the more the time of oscillation is affected, and the more rapidly the arc of oscillation
diminishes, the alteration in the rate of diminution of the arc due to an alteration in the radius
of the sphere being more conspicuous than the alteration in the time of oscillation.

21. Let us now suppose the fluid confined in a spherical envelope. In this case, we have
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to determine the four arbitrary constants which appear in (88) by the four equations (85) and
(386). We get, in the first place,

A 1 1
—+ Ba'+ Ce™™ (1+—-—)+De""‘ (1———) =1ad', . N 1))
a ma

ma
4 » 1 ,,, 1
- =+2Ba*-Ce™ (ma +1+—) + De™ ma—l+—-)=a’c,. . (55)
a ma ma

A4 1 1
= b - mb (1 ___) '”b( _——) = o
3 + Bb + Ce + mb +De™ (1 y o, S )]

4 ] -mb 1 mb 1
_;+2Bb-—03 (mb+l+m)+1)e (mb—l'{'—’;b—b):()- . (57)

Putting a*cK for afi'(a) + 2f:(a), which is the quantity that we want to find, we get
from (38) and (54)

34
K=I-E°""""' (58)

Eliminating in succession B from (54) and (55), from (56) and (57), and from (54) and (56),
we shall obtain for the determination of 4, C, D three equations which remain unchanged
when @ and b are interchanged, and the signs of 4, C, and D changed. Hence -4, — C, - D
are the same functions of & and @ that 4, C, D are of @ and b. It will also assist in the
further elimination to observe that C' and D are interchanged when the sign of m is changed.
The result of the elimination is

=1 — 8b n(a’ b) = n(b: a) ]
K=1 am*a® " 12mab + g(a’ b) + g(b’ a)’ N ()]

the functions {, # being defined by the equations
n(a, b) = (m*a* + 3ma + 3) (m*b* - 3mb + 3) ™(6-a),
{(a, b) = §b(m*b* - 8mb + 8) — a (m*a® + 3ma + 8)} em(8-a), }

(60)

It turns out that K isa complicated function of m and «b~', and the algebraical expressions
for the quantities which answer to % and kK in Art. 20 would be more complicated still, because
v(1 +4/ = 1) would have to be substituted for m in (60) and (59), and then K reduced to the
form -k + \/ —1K. 'To obtain numerical results from these formulse, it would be best to
substitute the numerical values of a, b, and » in (60) and (59), and perform the reduction of
K in figures.

22. If the distance of the envelope from the surface of the sphere be at all considerable,
the exponential ¢'(3-9), which arises from ¢™(=4), will have so large a numerical value that
we may neglect the terms in the numerator and denominator of the fraction in the expression
for K which contain ¢~ -9), as well as the term in the denominator which is free from expo-
nentials, in comparison with the terms which contain ¢"(6-4), Thus, if b — a be two inches,
7 one second, and 4/u'=.116, we have ¢”(*-%) = 2424000000, nearly; and if b — @ be only an

VoL. IX. Parr II. 29
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inch or half an inch, we have still the square or fourth root of the above quantity, that is,
about 49234 or 222, for the value of that exponential. Hence, in practical cases, the above
simplification may be made, which will cause the exponentials to disappear from the expression
for K. We thus get

8b (m*a® + Sma + 3) (m*D* — 8mb + 38) "
2m*a® b(m*b* — Smb + 3) — a (m*a® + 3ma + 3)" =~ 1Y,

K=1-

If we assume
Sva + 3 + (20%a® + 3va)n/— 1 = A'(cos a + v/ —1 sina),
- 3vb + 8 + (20 — 3vD) v/=1 = R'(cos B +1/—1 sin B),
bB cos 3 —ad cosa= C'cosey,
bB'sin3 —ad sina=C'sinvy,
we get from (61)

3ba/ -1 A'B

K=1+__4u_gar.-b—,—{cos(d+B—'y)+\/—1Sin(a"‘ﬁ—')’)}’
whence
bA4'B
=32L‘,B-sin(a+ﬁ—'y)—1,
4v°a*C (62)
, 8bA'B
k=mcos(a+ﬁ—'y),

and, as before, kM’ is the imaginary mass which we must conceive to be collected at the centre

d
of the sphere, in order to allow for the inertia of the fluid, and — %' M'n Eft‘ the term in F on

which depends the diminution in the arc of oscillation.

23. If we suppose u’ = 0, and therefore m = o, we get from (61)

b +2d

K=—m, . . . . . . . . (63)

and, in this case, k& is the same as K with sign changed, and %'= 0, which agrees with the
result obtained directly from the ordinary equations of hydrodynamics*. If, on the other
hand, we make b= , we arrive at the results already obtained in Art.20. In both these
cases it becomes rigorously exact to neglect in the expression for X — 1 given by (59) all the
terms which are not multiplied by ¢?(®—).

If the effect of the envelope be but small, which will generally be the case, it will be
convenient to calculate # and %’ from the formula (52), which apply to the case in which
b=, and then add corrections A%k, Ak’ due to the envelope. We get from (61)

(m*a® + 8ma + 8)*

1Al =
Ak—n/-1Ak 2m?a b(m*b* — 3mb + 8) — a(m?e® + 3ma + 3)’

. (64)

* See Camb, Phil. Trans. Vol. VIII. p. 120..



OF FLUIDS ON THE MOTION OF PENDULUMS. [35]

which may be treated, if required, as the equation (61) was treated in the preceding article.
If, however, we suppose m large, and are content to retain only the most important term in
(64), we get simply

3a’

M=o -

AK' =0, . . . . . (65)

so that the correction for the envelope may be calculated as if the fluid were destitute of
friction.

SECTION IIi.

Solution of the equations in the case of an infinite cylinder oscillating in an unlimited
mass of fluid, in a direction perpendicular to its axis.

24. Suppose a long cylindrical rod suspended at a point in its axis, and made to oscillate
as a pendulum in an unlimited mass of fluid. The resistance experienced by any element
of the cylinder comprised between two parallel planes drawn perpendicular to the axis will
manifestly be very nearly the same as if the element belonged to an infinite cylinder oscillating
with the same linear velocit)'r. For an element situated very near either extremity of the rod,
the resistance thus determined wonld, no doubt, be sensibly erroneous; but as the diameter of
the rod is supposed to be but small in comparison with its length, it will be easily seen that the
error thus introduced must be extremely small.

Imagine then an infinite cylinder to oscillate in a fluid, in a direction perpendicular to its
axis, so that the motion takes place in two dimensions, and let it be required to determine the
motion of the fluid. The mode of solution of this problem will require no explanation, being
identical in principle with that which has been already adopted in the case of a sphere. In
the present instance the problem will be found somewhat easier, up to the formation of the
equations analogous to (33) and (84), after which it will become much more difficult.

25. Let a plane drawn perpendicular to the axis of the cylinder be taken for the plane of
2y, the origin being sitnated in the mean position of the axis of the cylinder, and the axis of
2 being measured in the direction of the cylinder’s motion. The general equations (2), (3)
become in this case

dp (@ deu) du

do "\az T Ey—z T Pde’
(66)
dp (dzv 3 d"’v) dv
dy “\da? dy* Pat’
du dv

d—;-;-a—y--:O. W o+ cheadienll . . (67)

By virtue of (67), udy — vd is an exact differential. Let then
. ‘udy ~vdoe=dy. . . . . .« . (63)
20—2
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Eliminating p by differentiation from the two equations (66), and expressing % and v in
terms of x in the resulting equation, we get

. o e (dz +—5d—2-) =0 (69)
(?z?*”dyﬂ ,L'dt) Fr ] G, R <01 3 5
and, as before
X=X1tXes o o e o e .. (70)

where

(;_;2+-(;iz—y2)x,=0, s, ol el o R

(dz d? 1d) é (12)
.d—‘;ﬁ-*-dyg—ﬂldt XZ Sl S . . . 0 . .

We get from (66) and (68)

p dd(d’ dzld) d(d2 dz'ld)
B=pes By 3 Xy SR aa T %

which becomes by means of (70), (71), and (72)

& deI dle )
dp_p(dtdwdy-dtdydw N

26. Passing to polaf co-ordinates 7, @, where 0 is supposed to be measured from the axis
of @, we get from (68), (71), (72), and (73)

erG—Gdr:dx, o L0 BTSSRt (74
dia 1,.d 1 4
(74.;%-]-;-(1—92) Xl=0’ . . & . . . (75)
at 1_d_+1 ¢ 1d 6
(dr._,-i-;dr Pd_éz——ﬂ.’ d_t) RO, o el 4eCEED
dxl de
dp = pdt( rdO—Tod) et Y

R, © in (74) being the velocities along and perpendicular to the radius vector.

27. Let a be the radius of the cylinder; and as before let the cylinder’s motion be
defined by the equation

d_E \/—lnt
di¢

then we have for the equations of condition which relate to the surface of the cylinder

= o™ DI O S =0 )

d
R=2"X _ cos8 E—ccose ™,

rd@
whenr=a. . . . (79

=__X__ 1 ‘g,_ 3 'mt
(¢S] 7 smedt ¢ sin @ ™,
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The general equations (75), (76), as well as the equations of condition (79), may be

satisfied by taking
X1= e*™'t sin @ F, (1), X2 = e™tsin@F,(r). . . . . (80)

Substituting in (75), (76), and (79), we get

P/ + RO -SF@ =0, . . . @)

E@+1 FEO) -5 RO -mh@©=0 . . . . ()

F\(a) + Fy(a) =ac, Fl(a) + Fy(@)=¢, . . . . (89)

besides which we have the condition that the velocity shall vanish at an infinite distance.

28. The integral of (81) is
4
F,(r)=;+Br. I €:2)

"The integral of (82) cannot be obtained in finite terms.

To simplify the latter equation, assume Fy(r) = F'5(r). Substituting in (82), and inte-

grating once, we get

Fa"(r)+;F3’(r)—m”Fs(fr)=0. N )

It is unnecessary to add an arbitrary constant, because such a constant, if introduced, might

be got rid of by writing F;(r) + C for F; (7).

To integrate (85) by series according to ascending powers of 7, let us first, instead of (85),
take the equation formed from it by multiplying the second term by 1 — 4. Assuming in this
new equation Fy(r) = 4,2* + B,2* + ..., and determining the arbitrary indices a, B...and the

arbitrary constants 4,, B,...so as to satisfy the equation, we get-

m2r? mtrt
2(2-93) S 2.4(2-0)(4-9) T

F,(r)=4,1{1+

m?r? mirt,
2(2+9) +2.4(2 +90) (4 +9) <ot

+ 4,741+

mr®  mirt

=(4,+4,+4,logr) {1 + St v
m?r? mirt mtr®
+%(AI_AH)3{ 92 S1+2Q'42S2+22.42.6283+Occ}

+ terms involving &2, & ...

In this expression
S;=1"T4e 148 o 4+d7h L . . . . . . (86)
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Putting now .
A/ =C- Au’ ‘A// = Ds_l’

substituting in the above equation, and then making ¢ vanish, we get

m2r2  mirt
Fy(r)=(C+ Dlogr)(1 + ey + 29—.4‘5+...)
m2re mirt mers
‘T ( o 1 22.4282 +22.4«2.62S3 +n-)o - o o (87)

The series in this equation are evidently convergent for all valnes of », however great; but,
nevertheless, they give us no information as to what becomes of Fi(r) when » becomes infinite,
and yet one relation between C and D has to be determined by the condition that F;(r) shall
not become infinite with ». :

The equation (85) may be integrated by means of descending series combined with expo-
nentials, by assuming F,(r) = ™" (4,r* + B,r*...). Ihave 'already given the integral in this
form in a paper, On the numerical calculation of a class of definite integrals and infinite
series®. 'The result is

1 12. 82 Bt 8t51
2. amr T 2.a(amr)?  2.4.6(amr)} T <

Fy()=Ce ™ r 4 {1~

: Demrr=d {1+ DAY & o < i 88
7= ot I
AR 2.4mr  2.4(4mr)*  2.4,6(4mr)’ fs- b (%8

These series, althongh ultimately divergent in all cases, are very convenient for numerical
calculation when the modulus of mr is large. Moreover they give at once D'= 0 for the con-
dition that F5(r) shall not become infinite with 7, and therefore we shall be able to obtain the
required relation between C and D, provided we can express D’ as a function of C and D.

29. This may be effected by means of the integral of (85) expressed by definite integrals.
This form of the integral is already known. It becomes, by a slight transformation,

Fy(r) = ./'3 {C"+D" log (r sin® w)} (emreosw g—mresw) g, (89)
0

C’, D' being the two arbitrary constants. If we expand the exponentials in (89), and integrate
the terms separately, we obtain, in fact, an expression of the same form as (87). This trans-
formation requires the reduction of the definite integral

wa
P = f’ cos* w log sin w de.
0

If we integrate by parts, integrating cosw log sin wdw, and differentiating cos ?*~1w, we shall
make P; depend on P;_;. Assuming Py=Q,, P,=1Q,..., and generally

1.8...(2i~1)

P, -
2.4...21

Qi

* Camb. Phil. Trans. Vol. 1X, p, 182.
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we get
- - Ned T T T
Qi=Q, — {271+ 47+ (20) }§= Elog(%)-zs{.*

The equivalence of the expressions (87) and (89) having been ascertained, in order to find
the relations between C, D and C”, D", it will be sufficient to write down the two leading terms
in (87) and (89), and equate the results. We thus get

C+Dlogr=xC"+aD"logr +2xD"log (3),
whence
C=xC"+2xlog(}).D", D==xD". . . . . . (90)

There remains the more difficult step of finding the relation between D" and C”, D". For
this purpose let us seek the ultimate value of the second member of equation (89) when r
increases indefinitely. In the first place we may observe that if Q, Q' be two imaginary quan-
tities having their real parts positive, if the real part of Q be greater than that of Q, and if
" 7 be supposed to increase indefinitely, ¢2” will ultimately be incomparably greater than ¢, or
even than logr.e27, or, to speak more precisely, the modulus of the former expression will
ultimately be incomparably greater than the modulus of either of the latter. Hence, in finding
the ultimate value of the expression for Fy(r) in (89), we may replace the limits 0 and L of
w by 0 and w,, where w, is a positive quantity as small as we please, which we may suppose to
vanish after » has become infinite. 'We may also, for the same reason, omit the second of the
exponentials. Let cosw =1 =}, so that

__d_)_\____:_-(l.f.)_\.*. )__dL.
NZTESY 4 AN

then the limits of X will be 0 and X\;, where A\, =1 - cosw,. Since log (1 —%) ultimately

sinfw = 2\ (1 —%), dw=

vanishes, and 1 + } + ... becomes ultimately 1, we get from (89)
dx '
V@V
If now we put A =\'r~!, we shall have 0 and A,» for the limits of A, and the second of
these becomes infinite with ». Hence

limit of Fy(r) =™ x limit of f)“(C” 4+ D"log 2\7) e~ ™A
0o

limit of Fy(r) = (27r)~te™” fw(C'"+ D’ log2\)e~™MN'-3dN. . . (91)

Q

=]
Now f e~*a~3do =7}, and if we differentiate both sides of the equation
0

fwe"w“’ dz =T'(s)

[

* A demonstration by Mr Ellis of the theorem + The word limit is here used in the sense in which f(r)
fz . - may be called the limit of ¢ (r) when the ratio of ¢ (7) to £(r)
o2 log sin0df = 3 log (3) is ultimately a ratio of equality, though f(r) and ¢(r) may

due to Euler will be found in the 2nd volume of the Cam- | Vanish or become infinite together, in which case the limit of

bridge Mathematical Journal, p. 282, or in Gregory’s Ex- ¢ (r), according to the usual sense of the word limit,' would be
amples, p. 484, said to be zero or infinity.
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with respect to s, and after differentiation put s = 4, we get

fme"m‘a log vda = I"(}).

0

Putting @ = m)\’ in these eqnations we get
g q g

fcoe"")"k"a d\ = 7im-3, fwe‘”‘)" N-3log N dN = m-} {T'(}) - =t logm)},

0 0
where that value of m~} is to be taken which has its real part positive. Substituting in
(91) we get
e m \} " m ”
limit of Fy(r) = (%) T {07 4 (,,-ar% Cilog E) p"}.

Comparing with (88) we get
J ) T & - m "’
.D = (2—m) {C"+("" il"%-log-e—)D }. o G REaE™ (92)

30. We are now enabled to find the relation between C and D arising from the condition
that the motion of the fluid shall not become infinitely great at an infinite distance from the
cylinder. The determination of the arbitrary constants 4, B, C, D will present no further
difficulty. We must have B =0, since otherwise the velocity would be finite at an infinite
distance, and then the two equations (83), combined with the relation above mentioned, will
serve to determine 4, ¢, D. The motion of the fluid will thus be completely determined, the
functions F,(r), Fs(r) being given by (84) and (87). When the modulus of mr is large, the
series in (87), though ultimately hypergeometrically convergent, are at first rapidly divergent,
and in calculating the numerical value of F;(r) in such a case it would be far more convenient
to employ equation (88). The employment of this equation for the purpose would require the
previous determination of the constant C'. It will be found however that in calculating the
resultant pressure of the fluid on the cylinder, which it is the main object of the present
investigation to determine, a knowledge of the value of C’ will not be required, and that, even
though the equation (88) be employed.

Putting D'= 0in (92), and eliminating C” and D" between the resulting equation and the
two equations (90), we get

C= (log% -z} D; s It e T ()
and we get from (83) and (84), observing that F;(r) = Fy (r), and that B =0,

A 4 5
;+F3'(a)=ac, -—(;+an OEF S h N

whence .
ac+ 4 aF(a)
aic-4 F/ (@@ (95)

This equation will determine 4, because if F;(a) be expressed by (87) the second member of
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(95) will only contain the ratio of C' to D, which is given by (93), and if F;(a) be expressed
by (88) C' will disappear, inasmuch as D'=o0.

31. Let us now form the expression for the resultant of the forces which the fluid exerts
on the cylinder. Let F be the resultant of the pressures acting on a length d7 of the cylinder,
which will evidently be a force acting in the direction of the axis of #; then we get in the
same way as the expression (47) was obtained

F=adl [7(- P,cos@+ Tysin6),do, . . . . . (96
[1]

and P,, Ty are given in terms of R and © by the same formule (46) as before. When the
right-hand members of these equations are expressed in terms of y, there will be only one
term in which the differentiation with respect to r rises to the second order, and we get from

(70), (75), and (76)

dgx ldx ld2x 1dy,

drt - rdr 1 d92 dt ¥

We get from this equation and the equations of condition (79)

().~ 1 (.- 7GX) -
dr do drdb d
dny _ Ly il o
(rdea (d_e_z)" a dt o’
SR RET O REC R
(dr (dr e dr)a-i-a2 (d92 a dt PAYT; L

Hence ) .
2T d .
F= adlfo § - pa cosf 4+ p (d—x;)asm 0}do. . . . . (o7)
We get by integration by parts
d
[pgcos0dl =p,sinQ - f(-(%) sin 0 d6.

3 d
The first term vanishes at both limits; and putting for :l% its value given by (77), and

substituting in (97), we get

_ d 27 dX1 .
F= padla-ifo {a (d_r)a+ (x2)q} sin 0 d6,

or

F=mpadl.na/ -1 {aF/(a) + F/(a)} ¢ V-la,

Observing that F)/(a) or F,(a)=ac — F,(a) from (83), and that F,(a) = Aa~!, where
4 is given by (95), and putting M’ for wpadl, the mass of the fluid displaced, we get

= Mens/ =1 {1 - an"(a) Fy (“)} VZInt,

aFy (a) + F; (@)f ¢
Vor. IX, Part II, 30
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which becomes by means of the differential equation (85) which F; satisfies

4 = 4F3’(a) V=1t .
F Mcn\/—l{l—m}e . o 3 . g (98)

Let

4F (a) i
R E Y R e ()

g

where & and % are real, then, as before, 50" == will be the part of F which alters the time

d
of oscillation, and K’ M'n :fi: the part which produces a diminution in the arc of oscillation.
When 4’ vanishes, m becomes infinite, and we get from (88) and (99), remembering that
D'=0; k=1, k=0, a result which follows dn'ectly and very simply from the ordinary equa-
tions of hydrodynamics *.

32. Every thing is now reduced to the numerical calculation of the quantities %, &', of
which the analytical expressions are given. The series (87) being always convergent might be
employed in all cases, but when the modulus of ma is large, it will be far more convenient to
employ a series according to descendiug powers of a. Let us consider the ascending series first.

Let 2m be the modulus of ma; then

'l'
ma=2Me* —1, m=—\/———/\/—— L1 (100)

+ being as before the time of oscillation from rest to rest. Substituting in (99) the above
expression for ma, we get

v/ = 1aF{(a)
k=of —1k=14+— 227 |, | ., @o1
| w* Fa(a) 0%
Putting for shortness .
log 4 +x73'@)=-A . . . . . . . (109
we get from (87) and (93)

%)Fs(a)=(10gm+A+E\/—l)(l+—\/ —'ls-—\/—_u...)

2‘_1”.2".32
mG i - .
( Sv/ -1 ETH 2“S2_12.22.32S3\/—1+"')’
4

1 A Bl — S 4
Ban'(a)=1 +%\/—1—%§—...+2(logm+A+g\/—1)(n-l\/—l— L —...)

1 12.2

2 AL 4
—2(’"7.5"\/—1-'" . A RRV SN LA )

12.22. 8 2g

* See Camb, Phil. Trans. Vol. VIII. p. 116.
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Let . \ . .
._nll._lg._';:_:.é_*.,, =M,, I?Q—ﬁm-}-"..:ﬂ[”
T‘: - 1%,::6,32 4o = Mo, 121;2 B 2:‘.‘832. R
. (103)
'“Tzsl-ﬁ“;—:-ﬁ S, + oo = N, IT;SQ-—I%S4+...=NC, *
‘:—‘:S‘ '1_‘*.2]—:.33'5"“ O e G 1:‘;’ 2T 12.2:‘;2.4’ Set o= N,

loggm+A=L: . . . . . . . . (104)
then substituting in (101), changing the sign of 4/ — 1, and arranging the terms, we get

—LMO"'%AIC_%MO’-" No + {;’Mo"‘ LMe—%'(l - Mg’)—Ne}v——l

)
k+d/ -1K=14+— (105)
m ™ ’ ’ ' )y T ’ ’ =

33. Before going on with the calculation, it will be requisite to know the numerical
value of the transcendental quantity A. Now

2 d d 1
TG = (THTTR) = - logT(e) = ~logI'(1 +5) - —, for s =1,

and the value of di log I'(1 + s) may be got at once from Legendre’s table of the common
8

logarithms of ['(1 + ), in which the interval of sis .001. Putting /, for the tabular number
corresponding to s, we have

d :
= 1ogT'(1 + 6) = 1000 log, 10 { AL ~ JA*L +  A*L - LAY, + ... }.
For s =1
Al = + 16050824, Al = + 405620, A%l,=— 359, A'l, =+ 6%
the last figure being in each case in the 12th place of decimals. We thus get

7w 3T'() = - 1.9685102, A=+ .5772158. . . . . . (106)

34. When m is large, it will be more convenient to employ series according to
descending powers of a. Observing that the genecral term of Fj(a) as given by (88), in
which D'=o0, is )
—wa L1-8...(28 — P

- ’. 3
(=1Cs 2.4...2i (4ma)iat’

*® These numbers are copied from De Morgan’s Differential and Integral Calculus, p. 588,
30—2
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\

we get for the general term of Fy'(a)

o n-! [1.8...(2¢ - 3)]? (2e -1 2i-1})
([ 0 2.4-...(2i-2)(4ma)‘-’a5{m 2i.4ma  2a }’

and the expression within brackets is equivalent to

(2i - 1)(2¢ + 1)
e 8ia g

whence
1.3 12.8.5

4 — -ma B e
ST HQRICRREY 1 2.4ma+2.4(4nza)” by

and we find by actual division
a F;/(a)
F3(a)

=-ma - %+ (ma)-'...

35. When many terms are required, the calculation of the coefficients may be facilitated
in the following manner. .
Assuming o Fy(a) = v(a) Fy(a), we have
F(@) =a"'v(a) Fi(a), Fy(a) = {a 'V (a) - a 2v(a) + a~2(va)’} Fi(a).

Substituting in the differential equation (85) which Fj has to satisfy, we get

av'(e) + v (@)} - mPa®=0. . . . . . . . (107)
Assuming ]
v(a) = -ma+ 4, + 4,(ma)"'+ 4,(ma)*+..., o 1Tl OB

and substituting in the above equation, we get
-ma —14,(ma)"'- 24;,(ma)* - 34;(ma)~3...
+{-2ma+ 4+ 4i(ma)~ +...} {4, + 4;(ma) +...} =0,
which gives on equating coefficients, 4=~ 1, and for i >0
A= —id; + A4, + A4, ...+4; 4,

or, assuming to avoid fractions,
Bl e 2557 LB)  leni s e Rl el Sentd

B;.,= -2iB;+ BB, + B\B;_,...+ B;B,, . . . . (110

a formula by means of which the coefficients B,, B,, B,... may be readily calculated one
after another, We get . : ‘

(111)

. Bo= -1, Bi=+1, B,=-4, B;= +25, B;= -208, B;=+ 2146, }
B; = - 26368, B, =+ 375733, B; = — 60920382.

We get now from (100), (101), (108), and (iOQ)

IS

v ~224/1 : m-s..., (112)

™
g 8 — 1
k—\/—lk’=‘1+2c~' 4 m'-1Be 1 m'2—2—4B,e
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whence if we calculate
wy=2M,  wy=-—3B M w=JeBmMIL, u=(-1)*1B 87 m
. . _ . Iva
we shall have, changing the sign of v/ —1in (112), and writing 8 for ¢* s
Ic+\/—-1 EF=1+ w8 + u,8% —~ w8 + 0,8 - u,8° + ... l
k=1 +'\/-]2~u1+'\/%-u3—u4+'\/%u5—'\/-%u7+us—»\/%ug... . (113)
E=a/Tuy+us~ /I + A/ 3t~ s+ 2/ 1= 7/ ... ]
If 7, I.... be the common logarithms of the coefficients of m~!, m~2... in the last two
of the formule (113),

L= .1505150; 1, = 2.4948500 ; 1, = 2.3646348 ;
I, = 1.6989700 ; 1, = 2.2871251 ; I, = 2.7019316;
1, = 2.6453650 ; Iy = 2.4046734 ; Iy = 2.6017045 ;

and if the logarithms of the coefficients of m~!, m~%... in u;, %,... be required, it will be
sufficient to add .1505150 to the 1st, 8rd, 5th, &c. of the logarithms above given.

36. It will be found that when m is at all large, the series (118) are at first convergent,
and afterwards divergent, and in passing from convergent to divergent the quantities %; become
nearly equal for several successive terms. If after having calculated i terms of the first of the
series (113) we wish to complete the series by a formula involving the differences of u, we
have

U8 — U 8 g, 87 - =818+ A)+E A+ AP~y

=8{1+801+A)} "y

g 8 8 \?
= {l“' A+( )Az—...}ui,
1+38 1+8 1+8
am w —
T ! T =vV=-1 T V=
and 1+8=1+cosz+ --lsm';—r-_—2cos§e8 ] 8(]+8)-1=12~SGC§.63 .

so that the quantities to be added to X, ¥/, are

21 -1

T T 21
tok, (- 1)‘%sec-§{cos qr.ui—%sec§ cos — . A

2o2i41
+ (%sec 7—1.) cos — w. Ay}
8 8

; . . (1)
21 -1 T . 2t
m-.u,---%secg sin — . Ay,

tok'y (~1)'% sec% §sin

2t +1

. Aty,...}

/

37. The following table contains the values of the functions % and % calculated for
40 @iﬁ'erent values of M. From Wi =.1 to M =1.5 the calculation was performed by means

2
+ (-'Ql sec 7—;) sin
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of the formula (105); the rest of the table was calculated by means of the series (113).
In the former part of the calculation, six places of decimals were employed in calculating the
functions M,, &c. given by (108). The last figure was then struck out, and five-figure loga-
rithms were employed in multiplying the four functions M, ﬂ['o, M, and 1 - M, by

E, and by L, as well as in reducing the right-hand member of (105) to the form k + 4/ —1¥.

The terms of the series (118) were calculated to five places of decimals, That these series are
sufficiently convergent to be employed when Mt =15, might be presumed from the numerical
values of the terms, and is confirmed by finding that they give k& = 1952, and k'= 1-153. For
M =15 and a few of the succeeding values, the second and third of the series (113) were
summed directly as far as M~° inclusively, and the remainders were calculated from the formule
(114). Two columns are annexed, which give the values of M?% and M*X/, and exhibit the law
of the variation of the two parts of the force F, when the radius of the cylinder varies, the
nature of the fluid and time of oscillation remaining unchanged. Four significant figures are
retained in all the results.

m k 4 m*k nex m k K mik ner
0 ® o 0 0 21 | 1677 | ‘7822 7:395 | 8450
‘1 | 1970 48'63 1970 4863 || 22 | 1646 | ‘7421 7966 | 8°592
2 9166 | 1673 3666 6691 || 2:3 | 1'618 | *7059 8557 | 3784
*3 6°166 9258 *5549 8332 || 24 | 1°'502 | '67%0 | 9168 | 3877 |
4 4°771 6-185 7638 ‘0896 || 2:5 | 1*568 | *6480 | 9799 | 4019
<5 3968 4567 *0920 | 1°142 26 | 1'546 | ‘6154 | 10'45 4°160
6 3445 3589 | 1240 1-292 27 | 1°526 | 5902 | 11-12 4°303
7 3082 2:936 | 1°510 1439 2:8 | 1°507 | *5669 | 11-81 4444
8 2'812 2-477 1'800 1°585 29 | 1489 | *5458 | 12'52 4°586
‘0 2:604 2:187 | 2110 1°781 80 | 1°478 | *5253 | 1325 4728

1'0 2439 1-876 2439 1-876 81 | 1457 | 5068 | 14°01 4°870
11 2'306 1°678 2:790 2:021 32 | 1448 | *4895 | 14°78 5012
1°2 2°194 1508 3160 2:164 3'3 | 1430 | 4732 | 15°57 5154
1-3 2:102 1°865 3552 2:307 34 | 1°417 | *4581 | 1688 5296
14 2:021 1-250 3961 2450 35 | 1405 | 4439 | 17'21 5437
15 1°951 1153 4°389 2:595 36 | 1804 | -4305 | 18:06 5580
16 1'891 1-069 4°841 2'739 37 | 1'383 | 4179 | 1893 5721

17 1°838 0965 | 5312 2'880 38 | 1378 | *4060 | 19-82 5863
18 1791 *0332 | 5804 3:024 39 | 1-868 | *8948 | 2073 6-005
19 1749 8767 | 6°314 8165 40 | 1'854 | 3841 | 2167 6-145

2°0 1'711 -8268 | 6845 3:307 ==} 1 0 =] ®

The numerical calculation by means of the formule (108), (104), (105) becomes very
laborious when many values of the functions are required. The difficulty of the calculation
increases with the value of M for two reasons, first, the calculation of the functions M, &e.
becomes longer, and secondly, the moduli of the numerator and denominator of the fraction in
the right-hand member of (105) go on decreasing, so that greater.and greater accuracy is



OF FLUIDS ON THE MOTION OF PENDULUMS. 47]

required in the calculation of the functions M, &c., and of the products LM, &c., in order to
ensure a given degree of accuracy in the result. The calculation by the descending series
(118) is on the contrary very easy.

It will be found that the first differences of M2k and of m? (k- 1) are nearly constant,
except near the very beginning of the table. Hence in the earlier part of the table the value of &
or ¥/ for a value of M not found in the table will be best got by finding ™k — W* or M*%’ by
interpolation, and thence passing to the value of k or £’. Very near the beginning of the table,
interpolation would not succeed, but in such a case recourse may be had to the formule (103),
(104), (105), the calculation of which is comparatively easy whem M is small. It did not seem
worth while to extend the table beyond W = 4, because where W is greater than 4, the series
(118) are so rapidly convergent that £ and %" may be calculated to a sufficient degree of accu-
racy with extreme facility.

38. Let us now examine the progress of the functions % and &'

When 1t is very small, we may neglect the powers of W in the numerator and denominator
of the fraction in the right-hand member of equation (105), retaining only the logarithms and
the constant terms. We thus get

m-2y/ -1

E+yv -1k =1-

’

i, —aegy =]
4
whence
7
4 , - L
mﬁ(k—])=—;-§, mk = 2’ (115)
s (—) L'+ (—)
4 4,

L being given by (102) and (104), or (104) and (106). When W vanishes, L, which involves the
logarithm of WM, becomes infinite, but ultimately increases more slowly than if it varied as m
affected with any negative index however small, Hence it appears from (115), that ¥ —1 and
k' are expressed by m~* multiplied by two functions of W which, though they ultimately vanish
with W, decrease very slowly, so that a considerable change in ™ makes but a small change in
these functions. Now when the radius @ of the cylinder varies, everything else remaining the
same, W varies as @, and in general the parts of the force 7 on which depend the alteration
in the time of vibration, and the diminution in the arc of oscillation, vary as a*k, a*k/, respec-
tively. Hence in the case of a cylinder of small radius, such as the wire used to support a
sphere in a pendnlum experiment, a considerable change in the radius of the cylinder produces
a comparatively small change in the part of the alteration in the time and arc of vibration
which is due to the resistance experienced by the wire. The simple formule (115) are accurate
enough for the fine wires usually employed in such experiments if the theory itself be appli-
cable ; but reasons will presently be given for regarding the application of the theory to such
fine wires as extremely questionable.

From M =3 or ‘4 to the end of the table, the first differences of each of the func-
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tions m? (k — 1) and WL’ remain nearly constant. Hence for a considerable range of values
of M, each of the functions may be expressed pretty accurately by 4 + Bm. When W
is at all large, the first two terms in the 2nd and 8rd of the formule (118) will give % and %’
with considerable accuracy, because, independently of the decrease of the successive quan-
tities M~1, M-% W3, the coefficients of M-! and M~* are considerably larger than those
of several of the succeeding powers. If we neglect in these formule the terms after w,,
we get
E=144/2.m7 F=y/2.m1+1lm-2

It may be remarked that these approximate expressions, regarded as functions of the radius

a, have precisely the same form as the exact expressions obtained for a sphere, the coefficients

only being different.

Secrion IV.

Determination of the motion of a fluid about a sphere which moves uniformly with
a small velocity. Justification of the application of the solutions obtained in Sections II.
and II1. to cases in which the extent of oscillation is not small in comparison with the
radius of the sphere or cylinder. Discussion of a difficulty which presents itself with
reference to the umiform motion of a cylinder in a fluid.

39. Let a sphere move in a fluid with a uniform velocity ¥, its centre moving in a right
line; and let the rest of the notation be the same as in Section II. Conceive a velocity
equal and opposite to that of the sphere impressed both on the sphere and on the fluid, which
will not affect the relative motion of the sphere and fluid, and will reduce the determination
of the motion of the fluid to a problem of steady motion. Then we have for the equations
of condition

R=o0, O=0, when r=a; . . . . . . . (16

R=-Vcosh, ©=Vsinh, when r=0. . . . . . (117)

The equations of condition, as well as the equations of motion, may be satisfied by sup-
posing \ to have the form sin?ff(r). We get from (20"), by the same process as that by
which (83), (84) were obtained,

(%_;25)2f(r)=0, Jsgliyge guiyhaes (18)

the only difference being that in the present case the equation (20") cannot be replaced by the
two (22), (28), which become identical, inasmuch as the velocity of the fluid is independent
of the time.

The integral of (118) is

SJ@)=4Ar+ Br+ Cr2+ Dy, 7.0 .0 (119)
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which gives

1 dy . o i
=ma—§_2cos6(Ar + Br-' + C + D7),
1 dy -3 -1
./ i — Byr~' =20 - 4Dn).
o ot sin@ (Ar r 20 r?)

The first of the equations of condition (117) requires that
D=o, C=—-LV. . . . . . . . (120

It is particularly to be remarked that inasmuch as the two arbitrary constants C, D
are determined by the first of the conditions (117), none vemain whereby to satisfy the
second. Nevertheless it happens that the second of these conditions leads to precisely the same
equations (120) as the first. The equations of condition (116) give

= -1 Vd, B=3Va;

whence .
2
ppre (e
R=_V(1—2—Z+-:73)c059, R S e (1122))
3 3
9=V(1—Z%—:_r3>'5in9' e e e oo (129)

If now we wish to obtain the solution of the problem in its original shape, in which the
sphere is in motion and the fluid at rest, except so far as it is disturbed by the sphere, we
have merely to add Vcosf, — Vsinf, LVr*sin®@ to the expressions for R, O, Y. We
get from (121)

3r a
=1lyVa* {— -~ —) sin2. . . . . . . (124
v=1 (a 3 (124)

40. Let us now return to the problem of Section II.; let us suppose the time of
oscillation to increase indefinitely, and examine what equation (40) becomes in the limit.

When 7 becomes infinite, z, and therefore m, vanishes; the expression within brackets
in (40) takes the form o — co, and its limiting value is easily found by thie ordinary methods.
We must retain the m? in the coefficient of ¢, because ¢ is susceptible of unlimited increase.
We get in the limit

P 8r a\ .
\[,=;};a’cef‘-m"<——;> sin?@. . . oW I M1gs)
a

d f
If now we put V for 75 » the velocity of the sphere, we get from (39), ce#™¢= V. After

substituting in (125), the equation will remain unchanged when we pass from the symbolical
to the real values of \ and ¥, and thus (125) will be reduced to (124).

* 1 have already had occasion, in treating of another sub- | I had obtained as a limiting case of the problem of a ball
Ject, to publish the solution expressed by this equation, which | pendulum. See Philosophical Magazine for May 1848, p. 343.

Vor. IX, Part II. 31
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41. It appears then that by supposing the rate of alteration of the velocity of the sphere
to decrease indefinitely, we obtain from the solution of the problem of Section II. the same
result as was obtained in Art. 39, by treating the motion as steady. As yet, however, the
method of Art. 40 is subject to a limitation from which that of Art. 39 is free, In obtaining
equation (40), it was supposed that the maximum excursion of the sphere was small in com-
parison with its radins. Retaining this restriction while we suppose T to become very large,
we are obliged to suppose ¢ to become very small, so that the velocity of the sphere is not
merely so small that we may neglect terms depending upon its square, a restriction to which
Art. 89 is also snbject, but so extremely small that the space passed over by the sphere in even
a long time is small in comparison with its radius.

We have seen, however, that on supposing = very large in (40) we obtain a result
identical with (124), not merely a result with which (124) becomes identical when the restriction
above mentioned is introduced. This leads to the supposition that the solution expressed by
(40) is in fact more general than would appear from the way in which it was obtained. 'That
such is really the case may be shewn by a slight modification of the analysis. Instead of
referring the fluid to axes fixed in space, refer it to axes originating at the centre of the sphere,
and moveable with it. In the general equations of motion, the terms which contain differential
coefficients taken with respect to the co-ordinates will remain unchanged, inasmuch as they
represent the very same limiting ratios as before: it is only those in which differentiation with

dl
respect to ¢ occurs that will be altered. If T be the symbol of differentiation with respect to ¢

when the fluid is referred to the moveable axes, we shall have

gt dt dide

but the terms arising from % ‘—1% are of the order of the square of the velocity, and are
therefore to be neglected. Hence the general equations have the same form whether the fluid
be referred to the fixed or moveable axes. But on the latter supposition the equations of
condition (80) become rigorously exact. Hence equation (40) gives correctly the solution of
the problem, independently of the restriction that the maximum excursion of the sphere be small
compared with its radius, provided we suppose the polar co-ordinates 7, & measured from the
centre of the sphere in its actual, not its mean position. Similar remarks apply to the problem
of the cylinder. Moreover, in the case of a sphere oscillating within a concentric spherical
envelope, it is not necessary, in order to employ the solution obtained in Section II., that the
maximum excursion of the sphere be small compared with its radius; it is sufficient that it be
small compared with the radius of the envelope.

These are points of great importance, because the excursions of an oscillating sphere in a
pendulum experiment are not by any means extremely small compared with the radius of the
sphere; and in the case of a narrow cylinder, such as the suspending wire, so far from
the maximum excursion being small compared with the radius of the cylinder, it is, on the con-

trary, the radius which is small compared with the maximum excursion.
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42. Let us now return to the case of the uniform motion of a sphere. In order to obtain
directly the expression for the resistance of the fluid, it would be requisite first to find p, then to
get P, and Ty from (46), or at least to get the values of these functions for 7 = a, and lastly to
substitute in (47) and perform the integration. We should obtain p by integrating the expression
for dp got from (16) and (17). It would be requisite first to express % and ¢ in terms of , then
to transform the cxpression for dp so as to involve polar co-ordinates, and then substitute for
\ its value given by (121); or’else to express the right-hand member of (121) by the co-ordi-
nates @, @, and substitute in the expression for dp*. We have seen, however, that the results
applicable to uniform motion may be deduced as limiting cases of those which relate to
oscillatory motion, and consequently, we may make use of the expression for F' already worked
out. Writing V for ceV=17! in the first equation of Art. 20, expressing m in terms of n,

and then making 7z vanish, we get

-—F=61r,u'paV, 5,0 o o o o o (126)

and — F' is the resistance required.

This equation may be employed to determine the terminal velocity of a sphere ascending
or descending in a fluid, provided the motion be so slow that the square of the velocity
may be neglected. It has been shewn experimentally by Coulomb, that in the case of very
slow motions, the resistance of a fluid depends partly on the square and partly on the first
power of the velocity. The formula (126) determines, in the particular case of a sphere, that
part of the whole resistance which depends on the first power of the velocity, even though the
part which depends on the square of the velocity be not wholly insensible.

It is particularly to be remarked, that according to the formula (126), the resistance varies
not as the surface but as the radius of the sphere, and consequently the quotient of the resist-
ance divided by the mass increases in a higher ratio, as the radins diminishes, than if the
resistance varied as the surface. Accordingly, fine powders remain nearly suspended in a

fluid of widely different specific gravity.

43. When the motion is so slow that the part of the resistance which depends on the
square of the velocity may be neglected, we have, supposing ¥ to be the terminal velocity,

*® The equations(16), (17) give, after a troublesome trans- d fd 2

formation to polar co-ordinates, By oo dr \dr "7~ B ‘Tt) i)
A q It is unnecessary to add an arbitrary function of », becanse
%_‘-m’%—é :—0 (%_—2 +¥ c-ld?) ﬁd_dﬁ — 37) ¥, (a) if A(r) be such a function which we suppose added to the
K right-hand member of (c), we must determine A by substituting
dp usd @ sin@d 1 d pd in (@). The resulting expression for A’(r) cannot contain 6,
a6 " sing dr (d_,-—s t T Fosnedo n E}) v (8) inasmuch as the expression for dp is an exact differential, but
it is composed of terms which all involve cos 6 as a factor, and

The expression for dp got from these equations is an exact
differential by virtue of the equation which determines \/ ; and
in the problems considered in Section 11. and in the present
Section yr has the form ¥ sin?6, where ¥ is independent of 0.
Hence we get from (), by integrating partially with respect
to 0,

therefore we know, without working out, that these terins must
destroy one another, Hence A (7) must be constant, or at most
be a function of £, which we may suppose included in IY. A(7)
will in fact be equal to zero if II be the equilibrium pressure at
the depth at which fgdz’ vanishes.

t Mémoires de I Institut, Tom. 111, p. 246,

31—=2
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~ F =4 xg (o - p) a® where g is the force of gravity, and o, which is supposed greater than
ps the density of the sphere. Substituting in (126) we get

=2_g,(‘1_1)a2. e a RS (127)

Let us apply this equation to determine the terminal velocity of a globule of water forming
part of a cloud. Putting g = 386, u' = (.116)% an inch being the unit of length, and supposing
op~' =1 = 1000, in order to allow a little for the rarity of the air at the height of the cloud,
we get V= 6372 x 1000a®. 'Thus, for a globule the one thousandth of an inch in diameter,
we have V = 1.593 inch per second. For a globule the one ten thousandth of an inch in dia-
meter, the terminal velocity would be a hundred times smaller, so as not to amount to the one
sixtieth part of an inch per second.

We may form a very good judgment of the magnitude of that part of the resistance which
varies as the square of the velocity, and which is the ounly kind of resistance that could exist
if the pressure were equal in all directions, by calculating the numerical value of the resistance
according to the common theory, imperfect though it be. It follows from this theory that if
h be the height due to the velocity V, the resistance is to the weight as 3pk to 8sa. For
V = 1.593 inch per second, the resistance is not quite the one four hundredth part of the
weight; and for a sphere only the one ten thousandth of an inch in diameter, moving with the
velocity calculated from the formula (127), the ratio of the resistance to the weight would be
ten times as small. The terminal velocities of the globules calculated from the common theory
would be 32.07 and 10.14 inches per second, instead of only 1.593 and .01593 inch. It appears
then that the apparent suspension of the clouds is mainly due to the internal friction of air.

44. The resistance to the globule has here been determined as if the globule were a solid
sphere. In strictness, account ought to be taken of the relative motion of the fluid particles
forming the globule itself. Although it may readily be imagined that no material change
would thus be made in the numerical result, it may be worth while to point out the mode of
solution of the problem. Suppose the globule preserved in a strictly spherical shape by
capillary attraction, which will very nearly indeed be the case. Conceive a velocity equal and
opposite to that of the globule impressed both on the globule and on the surrounding fluid,
which will reduce the problem to oue of steady motion. Let v, &c. refer to the fluid forming
the globule, and assume v, = f; (r) sin®@. Then we get on changing the constants in (119)

Li(r) =4, + Bir + C17° + Dy,
The arbitrary constants 4,, B, vanish by the condition that the velocity shall not become
infinite at the centre. There remain the two arbitrary constants C;, D, to be determined, in
addition to those which appeared in the former problem. But we have now four instead of
two equations of condition which have to be satisfied at the surface of the sphere, which
are that
R=0, R=0, 6=0, T,=T,, whenr=a. . . . (128)

We shall thus have the same number of arbitrary constants as conditions to be satisfied. Now
T, will involve y, as a coefficient, just as T, involves u’p or u; and u,, which refers to water,
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is much larger than u, which refers to air, although 4’ is larger than u)/. Hence the results
will be nearly the same as if we had taken u, = « , or regarded the sphere as solid.

If, however, instead of a globule of liquid descending in a gas we have a very small bubble
ascending in a liquid, we must not treat the bubble as a solid sphere. We may in this case
also neglect the motion of the fluid forming the sphere, but we have now arrived at the other
extreme case of the general problem, and the two equations of condition which have to be
satisfied at the surface of the sphere are that R = 0 and T, = 0 when r = g, instead of R =0 and
O =0, when r = a.

The equation of condition 7, = 0 which applies to a bubble, as well as the fourth of equa-
tions (128), will not be the true equations, if forces arising from internal friction exist in the
superficial film of a fluid which are of a different order of magnitude from those which exist
thronghout the mass. At the end of the memoir already referred to, Coulomb states that in
very slow motions the resistance of bodies not completely immersed in a liquid is much greater
than that of bodies wholly immersed, and promises to communicate a second memoir in con-
tinuation of the first. This memoir, so far as 1 can find out, has never appeared. Should the
existence of such forces in the superficial film of a liquid be made out, the results deduced
from the theory of internal friction will be modified in a manner analogous to that in which the
results deduced from the common principles of hydrostatics are modified by capillary attraction.
It may be remarked that we have nothing to do with forces of this kind in considering the
motion of pendulums in air, or even in considering the oscillations of a sphere in water, except
as regards the very minute fraction of the whole effect which relates to the resistance experienced
by the suspending wire in the immediate neighbourhood of the free surface.

It may readily be seen that the effect of a set of forces in the superficial film of a liquid
offering a peculiar resistance to the relative motion of the particles would be, to make the re-
sistance of a gas to a descending globule agree still more clearly with the result obtained by
regarding the globule as solid, while the resistance experienced by an ascending bubble would
be materially increased, and made to approach to that which would belong to a solid sphere of
the same size without mass, or more strictly, with a mass only equal to that of the gas forming
the bubble. Possibly the determination of the velocity of ascent of very small bubbles may
turn out to be a good mode of measuring the amount of friction in the superficial film of a
liquid, if it be true that forces of this kind have any existence. But any investigation relating
to such a subject would at present be prematare. ‘

45. Let us now attempt to determine the uniform motion of a fluid about an infinite
cylinder. Employing the notation of Section III, and reducing the problem to one of steady
motion as in Art. 89, we obtain the same equations of condition (116), (117), as in the case of
the sphere. Assuming y = sin F(r), and substituting in the equation obtained from (69) by

’ - : e d
transforming to polar co-ordinates and leaving out the terms which involve g5 Ve et

(_ﬁ‘li_,_li_;;)zp(r):o.. sl mamm s, i(129)

dr® " r dr

The integral of this equation may readily be obtained by multiplying the last term of the
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operating factor by (1 + J)? integrating the transformed equation, and then making & vanish.

It is . ,
F(ry=Ar'+Br+Crlogr+ D+, . . . . . (1380)
which gives

R=-;l—dxé=(Ar‘2+B+C’Iog'r+Drz)cos0,

d
0= _d_§=(Ar-2_B-c-Clogr-spr’)sine.

The first of the equations of condition (117) requires that
i C =0, D=o, B= -7,

which also satisfies the second. We have thus only one arbitrary constant left whereby to
satisfy the two equations of condition (116), and the same value of 4 will not satisfy these
two equations.

46. It appears then that the supposition of steady motion is inadmissible. It will be
remembered that, in the case of the sphere, the solution of the problem was only possible
because it so happened that the values of two arbitrary constants determined by satisfying the
first of the equations of condition (117) satisfied also the second, which indicates that the
solution was to a certain extent tentative. We have evidently a right to conceive a sphere or
infinite cylinder to exist at rest in an infinite mass of fluid also at rest, to suppose the sphere
or cylinder to be then moved with a uniform velocity ¥, and to propose for determination the
motion of the fluid at the end of the time £ But we have no right to assume that the motion
approaches a permanent state as ¢ increases indefinitely. We may follow either of two courses.
We may proceed to solve the general problem in which the sphere or cylinder is supposed to
move from rest, and then examine what results we obtain by supposing ¢ to increase indefi-
nitely, or else we may assume for frial that the motion is steady, and proceed to inquire
whether we can satisfy all the conditions of the problem on this supposition. The former
course would have the disadvantage of requiring a complicated analysis for the sake of ob-
taining a comparatively simple result, and it is even possible that the solution of the problem
might baffle us altogether ; but if we adopt the latter course, we must not forget that the
equations with which we work are only provisional.

It might be objected that the impossibility of satisfying the conditions of the problem on
the hypothesis of steady motion arose from our assumption that sin@ was a factor of y, the
other factor being independent of §. This however is not the case. For, for given values of
r and £, x is a finite function of @ from § =0 to 6§ = . We have a right to suppose x to
vanish at any point of the axis of # positive that we please ; and if we suppose y to vanish at
one such point, it may be shewn as in the note to Art. 15, that y will vanish at all points of
the axis of @ positive or # negative. Hence y may be expanded in a convergent series of sines
of @ and its multiples; and since y and its derivatives with respect to @ alter continuously
with @, the expansions of the derivatives will be got by direct differentiation®*., This being

*® See a paper On the Critical Values of the Sums of Periodic Series. Camb. Phil. Trans. Vol. VI1I. p. 533.
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true for all other pairs of values of r and 4, x can in general be expanded in a convergent
series of sines of O and its multiples; but the coefficients, instead of being constant, will be
Now
a very slight examination of the general equations will suffice to shew that the coefficients of
the sines of the different multiples of 6 remain perfectly independent throughout the whole
process, and consequently had we employed the general expansion, we should have been led

functions of r and ¢, or in the particular case of steady motion, functions of r alone.

to the very same conclusions which have been deduced from the assumed form of X

47. If we take the impossibility of the existence of a limiting state of motion, which
has just been established, in connexion with the results obtained in Section III., we shall be
able to understand the general nature of the motion of the fluid around an infinite cylinder
which is at first at rest, and is then moved on indefinitely with a uniform velocity.

The fluid being treated as incompressible, the first motion which takes place is impulsive.
Since the terms depending on the internal friction will not appear in the calculation of this
motion, we may employ the ordinary equations of hydrodynamics. The result, which is

easily obtained, is
Rdr + ©rdf=d¢, where ¢ =~ Ecos o* . . . . (181)
r

As the cylinder moves on, it carries more and more of the fluid with it, in consequence of
friction. For the sake of precision, let the quantity carried by the element di of the cylinder
be defined to be that which, moving with the velocity ¥V, would have the same momentum in
the direction of the motion that is actually possessed by the elementary portion of fluid which
is contained between two parallel infinite planes drawn perpendicular to the axis of the cylin-
der, at an interval d/, the particles composing which are moving with velocities that vary from
V to zero in passing from the surface outwards. The pressure of the cylinder on the fluid con-
tinually tends to increase the quantity of fluid which it carries with it, while the friction of the
fluid at a distance from the cylinder continually tends to diminish it. In the case of a sphere,
But in

the case of a cylinder, the increase in the quantity of fluid carried continually gains on the

these two causes eventually counteract each other, and the motion becomes uniform.

decrease due to the friction of the surrounding fluid, and the quantity carried increases indefi-
nitely as the cylinder moves on. The rate at which the quantity carried is increased, decreases
continually, because the motion of the fluid in the neighbourhood of the cylinder becomes more
and more nearly a simple motion of translation equal to that of the cylinder itself, and there-
fore the rate at which the quantity of fluid carried is increased would become smaller and
smaller, even were no resistance offered by the surrounding fluid.

* According to these equations, the fluid flows past the
surface of the cylinder with a finite velocity. At the end of the
small time ¢ after the impact, the friction has reduced the
velocity of the fluid in contact with the cylinder to that of the
cylinder itself, and the tangential velocity alters very rapidly
in passing from the surface outwards. At a small distance s
from the surface of the cylinder, the relative velocity of the
fluid and the cylinder, in a direction tangential to the surface,

is a function of the independant variables #, s, which vanishes
with s for any given value of ¢, however small, but which for
any given value of s, however small, approaches indefinitely to
the quantity determined by (131) as ¢ vaoishes, The commu.
nication of lateral motion is similar to the communication of
temperature when the surface of a body has its temperature
instantaneously raised or lowered by a finite quantity.
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The correctness of this explanation is confirmed by the following considerations. Suppose
that F () had been given by the equation

F(r)=Ar'+ Br+ Cr-% 4+ Dr

instead of (180), & being a small positive quantity. On this supposition it would have been
possible to satisfy all the equations of condition, and therefore steady motion would have been
possible. By determining the arbitrary constants, and substituting in y, we should have

obtained
TSNy
rvl- (B 5 ()7 cos

0= V{-Q—g—3 (%)* 1- ?%33_) (2)—6} sin 6,

Since ¢ is supposed to be extremely small, it follows from these expressions that when 7 is not
greater than a moderate multiple of @, the velocities R, © are extremely small; but, however
small be 5, we have only to go far enough from the cylinder in order to find velocities as
nearly equal to —Vcos 8, +Vsin@ as we please. But the distance from the cylinder to which
we must proceed in order to find velocities B, © which do not differ from their limiting values
—Vcos8, +Vsin@ by more than certain given quantities, increases indefinitely as & decreases.
Hence, restoring to the fluid and the cylinder the velocity ¥, we see that in the neighbourhood
of the cylinder the motion of the fluid does not sensibly differ from a motion of translation, the
same as that of the cylinder itself, while the distance to which the cylinder exerts a sensible
influence in disturbing the motion of the fluid increases indefinitely as & decreases.

48. When we have formed the equations of motion of a flnid on any particular dynamical
hypothesis, it becomes a perfectly definite mathematical problem to determine the motion of the
fluid when a given solid, initially at rest as well as the fluid, is moved in a given manner, or
to discuss the character of the analytical solution in any extreme case proposed. It is quite
another thing to enquire how far the principles which furnished the mathematical data of the
problem may be modified in extreme cases, or what will be the nature of the actual motion in
such cases. Let us regard in this point of view the case considered in the preceding article as
a mathematical problem. When the quantity of fluid carried with the cylinder becomes con-
siderable compared with the quantity displaced, it would seem that the motion must become
unstable, in the sense in which the motion of a sphere rolling down the highest generating line
of an inclined cylinder may.be said to be unstable. But besides the instability, it may not be
safe in such an extreme case to neglect the terms depending on the square of the velocity, not
that they become unusually large in themselves, but only unusunally large compared with
the terms retained, because when the relative motions of neighbouring portions of the fluid
become very small, the tangential pressures which arise from friction become very small like-

wise.
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Now the general character of the motion must be nearly the same whether the velocity
of the cylinder be constant, or vary slowly with the time, so that it does not vary materially
when the cylinder passes through a space equal to a small multiple of its radius. To
returu to the problem considered in Section III., it would seem that when the radius of the
cylinder is very small, the motion which would be expressed by the formulae of that Section
would be unstable. This might very well be the case with the fine wires used in supporting
the spheres employed in pendulum experiments. If so, the quantity of fluid carried by the
wire would be diminished, portions being continually left behind and forming eddies. The
resistance to the wire would on the whole be increased, and would moreover approximate to a
resistance which would be a function of the velocity. Hence, so far as depends on the wire, the
arc of oscillation wonld be more affected by the resistance of the air than would follow from
the formule of Section ITI.  Whether the effect on the time of oscillation would be greater
or less than that expressed by the formule is difficult to say, because the increase of
resistance would tend to increase the effect on the time of vibration, while on the other hand
the approximation of the law of resistance to that of a function of the velocity would tend to
diminish it.

SectioN V.

On the effect of internal friction in causing the motion of a fluid to subside. Applica-
tion to the case of oscillatory waves.

49. We have already had instances of the effect of friction in causing a gradual subsi-
dence in the motion of a solid oscillating in a fluid; but a result may easily be obtained
from the equations of motion in their most general shape, which shews very clearly the
effect of friction in continually consuming a portion of the work of the forces acting on the
fluid.

Let P, P,, P, be the three normal, and 7', T,, T the three tangential pressures
in the direction of three rectangular planes parallel to the co-ordinate planes, and let D be
the symbol of differentiation with respect to ¢ when the particle and not the point of space
remains the same. Then the general equations applicable to a heterogeneous fluid, (the equa-
tions (10) of my former paper,) are

Du dpP, dT, dT,
P(——X)+7;+dy 7 hal KB R (182)

D¢

with the two other equations which may be written down from symmetry. The pressures
P,, &c. are given by the equations

du dv  dw
P=p~-2u|l—-9 =—pul—+— . e
1 =P = En (dw 5) » Ti=-n (dz + dy) ’ (133)
and four other similar equations. In these equations
du dv dw
80=—+—dF=—. . . . . .« . . (1%
da * dy + ds (134)

Vor. IX. Parr II. 32
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At the end of the time ¢ let ¥ be the vis viva of a limited portion of the fluid, occupying
the space which lies inside the closed surface S, and let ¥V 4+ DV be the vis viva of the same
mass at the end of the time ¢ 4+ D¢.  Then

V=fffp(u’+v2+w’)dwdydz,

Dv  Duw
DV =20t [[[p(u “+v——"+w—5-t-)dwdydz,. .. (185)

the triple integrals extending throughout the space bounded by §. Substituting now for
Du

DE’ &c. their values given by the equations of the system (132), we get

DV=2D¢t[[fp(uX +vY +wZ)dadyds

-2Dt/f[{ (dPl dT3+%)+v(dP2 aT, de)

dy+dz+dw
dpP, dT, 4T,
—_— - d S S R
(dx+ dw+ dy)}dw yds (136)

The first part of this expression is evidently twice the work, during the time D¢, of the
external forces which act all over the mass. The second part becomes after integration by

parts
~2Dt[[(uP,+vTs+wT)dydz—2Dt [[(0P,+wT, +uT,) dzduw

2Dt [[(wP,+uT,+vT,) dady

du dv dw dv dw dw du
Z=dp  Jodk. ELR e re i
+2thff{dw l-*'dypﬂ-d;z;l)“-(d:a'.*-dy) T1+( +dz)T

du dv
+ (dy +d ) Ts} dedyds.
The double integrals in this expression are to be extended over the whole surface S.
If d.§ be an element of this surface, 7', m’, n’ the direction-cosines of the normal drawn outwards
at dS, we may write 7'dS, m'dS, n'dS for dydz, dzdx, dody. The second part of DV
thus becomes ‘

~2Dt[[{u(P,+ o' Ts+ W'Ty) + v (W P+ 0’ T\ + IT) +w (WP, + VT, +m'T,)} d5S.

The coefficients of %, v, w in this expression are the resolved parts, in the direction of
2, y, ®, of the pressure on a plane in the direction of the elementary surface d.§, whence it
appears that the expression itself denotes twice the work of the pressures applied to the
surface of the portion of fluid that we are considering.

On substituting for P,, &c. their values given by the equations (138), (134), we get for

the last part of DV
d d
+2szffp(“ —”+-‘Z—’:) dody ds

e(d“ dv dw)’3

2 dv\? dw\?

N (dv :; dw) 2 dw ¢ du) (du & dv 2} o A
S Ly &L .
d dy ( d % dy daz) y
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In this expression p denotes, in the case of an elastic fluid, the pressure statically corres-
ponding to the density which actually exists about the point whose co-ordinates are 2, y, %, and
the part of the expression which contains p denotes twice the work converted into vis viva in
consequence of internal expansions, and arising from the forces on which.the elasticity depends.
The last part of the expression is essentially negative, or at least cannot be positive, and can
only vanish in one very particular case. It denotes the vis viva consumed, or twice the work
lost in the system during the time. d¢, in consequence of internal friction. According to the
very important theory of Mr Joule, which is founded on a set of most striking and satisfactory
experiments, the work thus apparently lost is in fact converted into heat, at such a rate, that
the work expressed by the descent of 7721bs through one foot, supplies the quantity of heat
required to raise 11lb. of water through 1° of Fahrenheit’s thermometer.

50. 'The triple integral containing u can only vanish when the differential coefficients of
u, v, w satisfy the five following equations,

du dv dw l
Tk @l
y ... (s
dov dw_o dw du gg dv 0
st ay~" d@tas"" Gyt dx"

These equations give immediately the following cxpressions for the differentials of , v, w,
in which the co-ordinates alone are supposed to vary, the time being constant :
du=3ddx — wmdy 4+ w"dz’,
dv=ddy —wds +&"dx, p. . . . . . (138)
dw=3dz ~ w'da + w'dy.

" are certain functions of which the forms are defined by

In these equations ¢, o', o, &”
the equations (138), but need not at present be considered. It follows from equations (138)
that the motion of each element of the fluid within the surface § is compounded of a motion of
translation, a motion of rotation, and a motion of dilatation alike in all directions. So far as
regards the first two kinds of motion, the fluid element moves like a solid, and of course there
is nothing to call internal friction into play. For the reasons stated in my former paper, I was
led to assume that a motion of dilatation alike4n all directions, (which of course can only exist
in the case of an elastic fluid,) has no effect in causing the pressure to differ from the statical
pressure corresponding to the actual density, that is, in occasioning a violation of the func-
tional relation commonly supposed to exist between the pressure, density, and temperature.
"The reader will observe that this is a totally different thing from assuming that a motion of
dilatation has no effect on the pressure at all.
When the fluid is incompressible d = 0, and it may be proved without difficulty that

o, w"y ' are constant, that is to say, constant so far as the co-ordinates are concerned. In
this case we get by integrating equations .(137)

U=aq— w’"y + w”z,

v=b-ox +0"z, 0. . . . . . . . (139

w=ec - + oy

32—=2
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Hence, in the case of an incompressible fluid, unless the whole mass comprised within the
surface .§ move together like a solid, there cannot fail to be a certain portion of vis viva
lost by internal friction. In the case of an elastic fluid, the motion which may take place
without causing a loss of vis vive in consequence of friction is somewhat more general, and
corresponds to velocities » + Aw, v + Av, w + Aw, where %, v, w are the same as in
(189), and

Au=38z+2(az+ PBy+ys)2—a(@®+y +2),
with similar expressions for Av and Aw. In these expressions a, 3,  are three constants
symmetrically related to @, y, %, and ¢ is a constant which has the same relation to each of the
co-ordinates*. -

51. By means of the expression given in Art. 49, for the loss of vis viva due to internal
friction, we may readily obtain a very approximate solution of the problem: To determine the
rate at which the motion subsides; in consequence of internal friction, in the case of a series of
oscillatory waves propagated along the surface of a liquid.

Let the vertical plane of #y be parallel to the plane of motion, and let y be measured ver-
tically downwards from the mean surface; and for simplicity’s sake suppose the depth of the
fluid very great compared with the length of a wave, and the motion so small that the square
of the velocity may be neglected. In the case of motion which we are considering, uda + vdy
is an exact differential d¢p when friction is neglected, and

¢ =cesin(me—-nt), . . . . . . . (140)
where ¢, m, n are three constants, of which the last two are connected by a relation which it is
not necessary to write down. We may continue to employ this equation as a near approxi-
mation when friction is taken into account, provided we suppose ¢, instead of being constant,

to be a parameter which varies slowly with the time. Let V be the vis viva of a given portion
of the fluid at the end of the time #, then

Ve=pém [[fe*™dadyds. . . . . . . (141)
But by means of the expression given in Art. 49, we get for the loss of vis viva during the

time d¢, observing that in the present case u is constant, w =0, =0, and uda + vdy = d¢,
where ¢ is independent of =,

ot [[A{(GH) + (&) += (&f5) Jowaves

which becomes, on substituting for ¢ its value, ,
suctm'dt [[fe*™Y da dy dx.

But we get from (141) for the decrement of vis viva of the same mass arising from the
variation of the parameter ¢

d
- 2pmic d_; dt [[fe*™v dax dy dx.

* (See Note C at the end.)
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Equating the two expressions for the decrement of vis viva, putting for m its value 27 X~1,
where A is the length of a wave, replacing u by u'p, integrating, and supposing c, to be the

initial value of ¢, we get
16m2u’t
C = Cy€ A2

It will presently appear that the value of 4/u’ for water is about 00564, an inch and a
second being the units of space and time. Suppose first that X is two inches, and ¢ ten seconds.
Then 16 7°w'tA~% = 1'256, and c: ¢, :: 1 : 0:2848, so that the height of the waves, which varies
as ¢, is only about a quarter of what it was. Accordingly, the ripples excited on a small pool
by a puff of wind rapidly subside when the exciting cause ceases to act. ’

Now suppose that A is 40 fathoms or 2880 inches, and that # is 86400 seconds or a whole
day. In this case 167* " tA~? is equal to only 0005232, so that by the end of an entire day, in
which time waves of this length would travel 574 English miles, the height would be diminished
by little more than the one two hundredth part in consequence of friction. Accordingly, the
long swells of the ocean are but little allayed by friction, and at last break on some shore
situated at the distance of perhaps hundreds of miles from the region where they were first

‘excited.

52. It is worthy of remark, that in the case of a homogeneous incompressible fluid,
whenever udx + vdy + wdz is an exact differential, not only are the ordinary equations of
fluid motion satisfied*, but the equations obtained when friction is taken into account are
satisfied likewise. It is only the equations of condition which belong to the boundaries of the
fluid that are violated. Hence any kind of motion which is possible according to the ordinary
equations, and which is such that wde + vdy + wdz is an exact differential, is possible
likewise when friction is taken into account, provided we suppose a certain system of normal
and tangential pressures to act at the boundaries of the fluid, so as to satisfy the equations of
condition. The requisite system of pressures is given by the system of equations (133).
Since u disappears from the general equations (1), it follows that p is the same function as
before. But in the first case the system of pressures at the surface was P, = Py= P; = p,
Ty= T,= T;=0. Hence if AP, &c. be the additional pressures arising from friction, we get
from (138), observing that § =0, and that wdx + vdy + wdz is an exact differential d¢p,

&g : & &
AP1=—2ME—{0_2’ AP, = -2 ‘(—i—;—é, AP3=—2[L-E?, . (142)

’ d2 d’.’
ATl:g_z"'d Z) AT2=—2ﬂdzf;w’ AT, = -Q'udwfy

. (148)

Let d.§ be an element of the bounding surface, 7', m’, n’ the direction-cosines of the normal
drawn outwards, AP, AQ, AR the components in the direction of @, y, ¥ of the additional

*® It is here supposcd that the forces X, Y, Z are such that Xda + Y'dy + Zdx is an exact differential,
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pressure on a plane in the direction of d§. Then by the formule (9) of my former paper
applied to the equations (142)," (148) we get

&, I, AP
AP_—Q#{ldw”+mdwdy+7?dwdz 2 oitanhe i A AL

with similar expressions for AQ and AR, and AP, AQ, AR are the components of the
pressure which must be applied at the surface, in order to preserve the original motion
unaltered by friction.

53. Let us apply this method to the case of oscillatory waves, considered in Art. 51.
In this case the bounding surface is nearly horizontal, and its vertical ordinates are very small,
and since the squares of small quantities are neglected, we may suppose the surface to
coincide with the plane of #% in calculating the system of pressures which must be supplied,
in order to keep up the motion. Moreover, since the motion is symmetrical with respect to the
plane of xy, there will be no tangential pressure in the direction of %, so that the only
pressures we have to calculate are AP, and A7, We get from (140), (142), and (143),
putting y = 0 after differentiation,

AP, = - 2um’csin (ma — nt), AT;=2umPc cos(ma —nt). . . (145)

If u,, v, be the velocities at the surface, we get from (140), putting y = 0 after differen-
tiation,
%, = mc cos (mn = nt), v, =—-mesin (mae-nt). . . . (146)

It appears from (145) and (146) that the oblique pressure which must be supplied at the
surface in order to keep up the motion is constant in magnitude, and always acts in the
direction in which the particles are moving.

The work of this pressure during the time df corresponding to the element of surface
dw dz, is equal to dods (ATs.wdt + AP, .v,dt) Hence the work exerted over a given
portion of the surface is equal to

gumictdt [fda d=.

In the absence of pressures AP, AT;at the surface, this work must be supplied at the
expence of vis viva. Hence 4um*c*dt ffdx dx is the vis viva lost by friction, which agrees
with the expression obtained in Art. 51, as will be seen on performing in the latter the
integration with respect to y, the limits being y =0 to y= .




PART IIL
COMPARISON OF THEORY AND EXPERIMENT.

SecrioN I.
- Discussion of the Ewperiments of Baily, Bessel, Coulomb, and Dubuat.

54. TrE experiments discussed in this Section will be taken in the order which is most
convenient for discussion, which happens to be almost exactly the reverse of the chronological
order. I commence with the experiments of the late Mr Baily, which arc described in the
Philosophical Transactions for 1832, in a memoir entitled ¢ On the Correction of a Pendulum
for the Reduction to a Vacuum: together with Remarks on some anomalies observed in Pendu-
lum experiments.”

The object of these experiments was, to determine by actual observation the correction to
the time of vibration due to the presence of the air in the case of a great number of pendu-
lums of various forms. This was effected by placing each pendulum in succession in a vacuum
apparatus, by which means the pendulum, without befng dismounted, could be swung alter-
nately under the full atmospheric pressure, and in air so highly rarefied as nearly to approach
to a vacuum. 'The paper, as originally presented to the Royal Society, contained the results
obtained with 41 pendulums, the same body being counted as a different pendulum when
swung in a different manner. Out of these, 14 are of such forms as to admit of comparison
with theory. An addition to the paper contains the results obtained with 45 pendulums more,
of which 24 admit of comparison with theory. The details of these additional experiments
are omitted, the results only being given.

Baily has exhibited the results obtained with the several pendulums in each of two ways,
first, by the value of the factor » by which the correction for buoyancy must be multiplied
in order to amount to the whole effect of the air as given by observation, and, secondly, by
the weight of air which must be conceived to be attached to the centre of gyration of the
pendulum, adding to its inertia without adding to its weight, in order that the incrcased
inertia, combined with the buoyancy of the air, may account for the whole effect observed.
I shall uniformly write n for Baily’s z, in order to distinguish it from the n of Part L. of the
present paper, which has a totally different meaning. 1In the case of a pendulum oscillating
in air, it will be sufficient, unless the pendulum be composed of extremely light materials, to
add together the effects of buoyancy and inertia. Hence if the pendulum consist of a sphere
attached to a fine wire of which the effect is neglected, or else of a uniform cylindrical rod, we
may suppose 3t = 1 + /%, where % is the factor so denoted in Part I.; so that if M’ be the mass
of air displaced, M’ will be the mass which we must suppose collected at the centre of the
sphere, or distributed uniformly along the axis of the cylinder, in order to express the effect
of the inertia of the air. The second mode of exhibiting the effect of the air was suggested
by Mr Airy, and is better adapted than the former for investigating the effect of the several
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pieces of which a pendulum of complicated form is composed. Since the value of the factor it
and that of the weight of air are merely two different expressions for the result of the same
experiment, it would be sufficient to compare either with the result calculated from theory.
In some cases, however, I have computed both. In almost all the calculations I have employed
4-figure logarithms. The experimental result is sometimes exhibited to four figures, but no
reliance can be placed on the last. In fact, in the best observations, the mean error in different
determinations of n for the same pendulum appears to have been about the one-hundredth
part of the whole, and that it should be so small, is a proof of the extreme care with which
the experiments must have been performed.

55. I commence with the 13th set of experiments—Results with plain cylindrical rods—
page 441. This set contains three pendulums, each consisting of a long rod attached to a
knife-edge apparatus. The result obtained with each pendulum furnishes an equation for the
determination of u’, and the theory is to be tested by the accordance or discordance of the
values so obtained. 'The principal steps of the calculation are contained in the following table.

Determination of 1/’ by means of Baily’s experiments with plain cylindrical rods.

. Deduced .
. : Correction Corres- | Resnlting
Diamet Time of n value of ;
Pendnlum rod. No. 182!2? = vibration | by expte i ﬁ;;:g: ‘(i}?;d k ggi’ud::)gf vai?:'o'f
. riment, okl by expe- E

riment.

Copper, 588 inches long | 21 | 0410 | 1-0136 | 2:932 | — 0009 | 1-923 | 1:5445 | 0'1166
Brass, 564 ............ | 48 | 0185 | 09933 | 4-083 | — 0002 | 3:081 | 0-7000 | 0-1175
Steel, 564 ............ | 44 | 0072 | 09933 | 7530 6:530 | 0'2822 | 0°1134

In this table the first column explains itself. The next contains the reference number.
In the case of the copper rod I have replaced 42 by 21, under which number the details of
the experiment will be found. The diameters of the rods are expressed in decimals of an
inch. The time of vibration of the pendulum No. 21 may be got from the tables at the end
of Baily’s memoir, which contain the details of the experiments. Nos. 43 and 44 belong to the
“additional experiments,” of which all the details are suppressed. Baily has not even given
the times of vibration, not having been aware of the circumstance, indicated by the theory of
this paper, that the factor W and the weight of air which must be conceived as dragged by the
pendulum are functions of the time of vibration. Accordingly, in the cases of the pendulums
Nos. 43 and 44, and in all similar cases, I have calculated the time of vibration by the
ordinary formulee of dynamics. In caleulating =, I have added 1'55 inch, the length of the
shank of the knife-edge apparatus, to the length of the rods. The result so obtained is
abundantly accurate enough for my purpose. Had the rod, retaining its actual length, been
supposed to begin directly at the knife-edge, the error thence resulting in the value of =, or
rather the correspoding error in the calculated value of W or &, might just have been sensible.
The fifth column in the above table is copied from Baily’s table. The next contains a small
correction necessary to reduce the value of ® got from observation to what would have been
got from observations made in an unlimited mass of fluid. It is calculated from the formula
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2a*(b* — a®)~' or 2a*b~* nearly, which is obtained from the ordinary equations of hydrody-
namics, and therefore it cannot be regarded as more than a rude approximation. It will be
useful, however, as affording an estimate of the magnitude of the effect produced by confining
the air. The diameter of the vacuum tube (whether external or internal is not specified) is
stated to have been six inches and a half, whence 2b = 6'5. 'The values of k given in the next
column are obtained by applying the correction for confined space to Baily’s values of n, and
subtracting unity. The value of W corresponding to each value of k was got by interpolation
from the table ncar the end of Section III. of the former part of this paper. For k= 1923
the interpolation is easy. The value 8:081 happens to be almost exactly found in the table.
For k = 6530, a remark alrcady made will be found to be of importance, namely, that the
first differences of W?(k — 1) are nearly constant. The last column contains the value of 4/’

a \/
m= 2
which contains the definition of mt.
It will be observed that the three values of 4/u’ are nearly identical. Of course any
theory professing to account for a set of experiments by means of a particular value of a dis-

obtained from the equation

T
e 6 1'% |
mT

posable constant, when applied to the experiments would lead to nearly the same numerical
value of the constant if the experiments were made under nearly the same circumstances.
But in the present case the circumstances of the experiments are widely different. The dia-
meter of the steel rod is little more than the sixth part of that of the copper rod, and the
value of %k obtained by experiment for the steel rod is more than three times as great as that
obtained for the copper rod. It is a simple consequence of the ordinary theory of hydro-
dynamics that in the case of a long rod oscillating in an unlimited fluid % = 1, and we see that
this value of & must be multiplied, in round numbers, by 2, by 3, and by 63, in order to
account for the observed effect. The value 1-5445 of M is so large that the descending series
comes into play in the calculation of the function k&, while 0'2822 is so small that the ascend-
ing series are rapidly convergent. Hence the near agreement of the values of 4/’ deduced
from the three experiments is a striking confirmation of the theory. The mean of the three is
01158, but of course the last figure cannot be trusted. I shall accordingly assume as the
value of the square root of the index of friction of air in its average state of pressure, tempe-
rature, and moisture
A/ = 0116.

It is to be remembered that 4/u’ expresses a length divided by the square root of a time,
and that the numerical value above given is adapted to an English inch as the unit of length,
and a second of mean solar time as the unit of time,

56. I now proceed to compare the observed values of m with those calculated from
theory with the fassumed value of 4/u. I begin with the same cylindrical rods as before,
together with the long brass tubes Nos. 35 to 88. The diameter of this tube was 15 inch,
and its length 56 inches. The ends were open, but as the included air was treated by Mr
Baily in the reduction of his experiments as if it formed part of the pendulum, we may regard

Vor. IX. Part IL 33
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the pendulum as a solid rod. The tube was furnished with six agate planes, represented in
the wood-cut at page 417, which rested on fixed knife-edges. The pendulums Nos. 85, 36,
37, and 38 consisted of the same tube swung on the planes marked 4, C, a,¢. In air the pen-
dulum swung at the rate of about 90080 vibrations in a day, so that + = 09596 nearly.
The values of % obtained with the end planes 4, ¢ were slightly though sensibly greater than
the values obtained with the mean planes C,a. I shall suppose the mean of the four values
of 1, namely 2:290, to be the result of the experiments. In the following table the difference
between the theoretical and experimental values of m is exhibited both by decimals and as a
fractional part of the former of these values.

Baily’s results with a long brass tube and with long cylindrical rods.

Add for | Total n n
No. 2a m k confined by by expe- Difference.
space. theory. | riment.
35t0388 | 1I'5 5'849 1:242 | 0122 | 2:864 | 2290 - 0074, or — '3JT
21 or 42 | 0°410 | 1°555 1917 | 0009 | 2:926 | 2932 + 0°006, or + Z%?)'
43 0°185 | 0°7089 | 38°055 | 0°002 | 4°057 | 4°083 + 0°026, or + ﬁ—.f
44 0072 | 02759 | 6°670 7:670 | 7°580 — 0'140, or — 3147

It will be seen at once how closely the experiments are represented by theory. The
largest proportionate difference occurs in the case of the brass tube, and even that is less than
one thirtieth. A glance at Baily’s wood-cut at page 417 will shew that the six planes with which
the tube was furnished caused the whole figure to deviate sensibly from the cylindrical form.
Moreover the resistance experienced by each element of the eylinder has been calculated by
supposing the element in question to belong to an infinite cylinder oscillating with the same
linear velocity, and the resistance thus determined must be a little too great in the immediate
neighbourhood of the ends of the cylinder, where the free motion of the air is less impeded
than it would be if the cylinder were prolonged. Lastly, the correction for confined space is
calculated according to the ordinary equations of hydrodynamics, and on that account, as well
as on account of the abrupt termination of the cylinder, will be only approximate. 'The small
discrepancy between theory and observation, as well as the small difference (amounting to
about the 1-83rd of the whole) detected by experiment between the results obtained with the
extreme planes and those obtained with the mean planes, may reasonably be attributed to some
such causes as those just mentioned. In the case of the steel rod or wire, the difference be-
tween theory and observation may be altogether removed by supposing a very small error to
have existed in the measurement of the diameter of the rod. Since, as we have seen, the observa-
tion is satisfied by M = 0-2822, and (147) gives @ o M when p’ and 7 are constant, it is suffi-
cient, in order to satisfy the experiment, to increase the diameter of the rod in the ratio of
0'2759 to 02822, or to suppose an error of only 0.0017 inch in defect to have existed in the
measurement of the diameter.

'

57. T proceed next to the experiments on spheres attached to fine wires. The pendu-

lums of this construction comprise four 11-inch spheres, Nos. 1, 2, 8, and 4; three 2-inch
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spheres, Nos. 5, 6, and 7 ; and one 3-inch sphere, No. 66. Nos. 8 and 9 are the same spheres
as Nos. 5 and 7 respectively, swung by suspending the wire over a cylinder instead of attach-
ing it to a knife-edge apparatus. As this mode of suspension was not found very satisfactory,
and the results are marked by Baily as doubtful cases, I shall omit the pendulums Nos. 8 and
9, more especially as with reference to the present inquiry they are merely repetitions of Nos.
5 and 7.

In the case of a sphere attached to a fine wire of which the effect is neglected, and swung
in an unconfined mass of fluid, we have by the formuls (52)
9  Jur

N ¢ UT)

2" 24 2o’

2a being in this case the diameter of the sphere. Before employing this formula in the com-
parison of theory and experiment, it will be requisite to consider two corrections, one for the
effect of the wire, the other for the effect of the confinement of the air by the sides of the
vacuum tube.

I have already remarked at the end of Section IV., Part I., that the application of the
formulze of Section III. to the case of such fine wires as those used in pendulum experiments
is not quite safe. Be that as it may, these formula will at any rate afford us a good estimate
of the probable magnitude of the correction.

Let 7 be the length, a,; the radius, ¥, the volume of the wire, ¥V the volume of the sphere,
I the moment of inertia of the pendulum, I’ that of the air which we may conceive dragged
by it, H the sum of the elements of the mass of the pendulum multiplied by their respective
vertical distances below the axis of suspension, H’ the same for the air displaced, ¢ the density
of the air. Then the length of the isochronous simple pendulum is ZH ! in vacuum, and
(I+ I'y (H ~ H')~" in air, and the time of vibration is increased by the air in the ratio of
I'H-% to (I+I')(H - H') %, or, on account of the smallness of o, in the ratio of 1 to
1+ 3 (L'I"' + H'H") nearly. Now 1 H'H-'is the correction for buoyancy, and there-
fore

r H
Mol=omge o (199)

We have also, if %, be the value of the function % of Section III., Part I.,
I'=koV({+a)+ Sk Vi1 H =cV({I+a)+ 12?0- Vii, . .. (150)

and HI"' = ({ + a)~! very nearly. Substituting in (149), expanding the denominator, and
neglecting 7%, we get 1

V B E V. l
-1=k =L — | -1k .
u +%Vkl(l+a) SV l+a
Now V) is very small compared with V, and it is only by being multiplied by the large factor
k, that it becomgs important. We may then, without any material error, replace the last term
in the above equation by L V,V-'2 (I + @)% and if A be the length of the isochronous simple
33—=2
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pendulum, we may suppose / + a = A, and replace 2(! + a) "> by 1 — 2aX~!, since @ is small
compared with \. We thus get, putting A for the correction due to the wire,

An=§%{ ¢ _%)(k,_ 1.

Substituting for k,~ 1 from (115), and for m from (147), in which equations, however, &,
a, must be supposed to be written for k, a, expressing V;, V in terms of the diameters of the
wire and sphere, and neglecting as before a? in comparison with A%, we get

(e\ -3 x 2a) u'T

T e

4 ’
..L=log,é-a—l\/’-‘£-o~5772.. kit sl oA

o LT LACESRY

where

It is by these formulae that I have computed the correction for the wire in the following
table. In the experiments, the time of oscillation was so nearly one second that it is sufficient
in the formulee (148), (151), and (152) to put = =1, and take A for the length of the seconds
pendulum, or 39:14 inches.

With respect to the correction for confined space, it seems evident that the vacuum tube
must have impeded the free motion of the air, and consequently increased the resistance experi-
enced by the pendulum when it was swung in air, and that the increase of resistance caused by
the cylindrical tube must have been somewhat less than that which would have been produced
by a spherical envelope of the same radius surrounding the sphere. The effect of a spherical
envelope has been investigated in Section II., Part I.; but as we are obliged at last to have
recourse to estimation, it is needless to be very precise in calculating the increase of resistance
due to such an envelope, and we may accordingly employ the expression obtained from the
ordinary theory of hydrodynamics. According to this theory, the increase of the factor %, which
is due to the envelope, is equal to 3 a° (8 - a®)7!, or 3 a6~* nearly, when b is large compared
with a. The increase due to a cylindrical envelope whose axis is vertical, and consequently
perpendicular to the direction of oscillation of the sphere, may be estimated at about two-thirds
of the increase due to a spherical envelope of the same diameter. I have accordingly taken
+ a*b~® for the correction for confined space, and have supposed 2b = 65 inches.

The diameter of the wire employed in the pendulums Nos. 1, 2, 8, 5, 6, and 7, is stated to
have been about the -1;th of an inch, and that of the wire employed with the heavy brass sphere
No. 66, about 0028 inch. The ivory sphere No. 4 was swung with a fine wire weighing
rather more than half a grain. Taking the weight at half a grain, and the specific gravity of
silver at 10'5, we have for this wire 2a,= 000251 nearly. The diameters of the three brass
spheres in the following table are taken from page 447 of Baily’s memoir. The several parts of
which, according to theory, w is composed, are exhibited separately.
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Baily's results with spheres suspended by fine wires.

[69]

n By theory,
Diameter| Diameter L, i a
No. and kind. spl(x):re. w(;fe. For inlzg:;a 23-%;:::22:1 Correc- Cfg:r :gxt;t(i)? By expe- Difference.
2a 2a, buoy-{ on on account | tion for |ned space| Total, | rment.
ancy. (common| of internal wire. (esti-
theory. | friction. mated.)
1}-1NCH SPHERES.
No. 1, Platina. 144 | 001429 | 1 05 0°289 0035 | 0°011 | 1835 | 1881 | + 0°046, or + 4
No. 2, Lead. [ 1446 | 001429 | 1 05 0285 0035 | 0°011 | 1°831 | 1871 | + 0°040, or + 4
No. 3, Brass. | 1-465 | 0-01429 | 1 05 0284 0035 | 0011 | 1°830 | 1°834 | + 0004, or +Ig—7
No. 4, Ivory. 1°46 | 0000251 | 1 0°5 0285 0016 | 0011 | 1812 | 1°872 |+ 0060, or + ]
2-INCH SPHERES,
No. 5, Lead. 206 |001429! 1 | 05 0°202 0'012 | 0032 | 1746 | 1788 | — 0008, or — %1
No. 6, Brass. 2:065 | 0001429 | 1 05 0'202 0'012 | 0032 | 1°746 | 1751 | + 0°005, or + 5
No. 7, Ivory. 2:06 | 0001429 | 1 05 0202 0012 | 0032 | 1746 | 1'755 |+ 0°009, or + 1H7
3-1NCH SPHERE.
No. 66, Brass. 8°030 | 0°023 1 05 0137 0005 | 0°101 | 1'743 | 1748 | + 0005, or + 51

The mean error in different determinations of it for the same sphere was about 001 or 0°02,

Hence, if

we except the spheres Nos. 1, 2, and 4, the discrepancies between theory and experiment are

and this does not include errors arising from small errors in specific gravities, &c.
altogether insignificant. In considering the confirmation thence arising to the theory, it must
be borne in mind that the theory did not furnish a single disposable eonstant, inasmuch as
The result obtained
with the brass sphere No. 3 happens to agree almost exactly with theory. However, as the

4/ was already determined from the experiments with cylindrical rods.

results obtained with this sphere exhibited some anomalies, it seems best to exelude it from
consideration, The value of W, then, which belongs to a 1} inch sphere, appears to exceed
by a minute quantity the value deduced from theory. The difference is indeed so small that
it might well be attributed to errors of observation, were it not that all the spheres tell the
same tale. Thus the error + 0'046 in the case of the platina sphere corresponds to an error of
less than the fortieth part of a second in the observation of an interval of time amounting to
44 hours. If the apparent defect, amounting to about 0:04 or 005, in the theoretical result
be real, it may be attributed with probability to an error in the correction for the wire. This
would be no objection to the theory, for it will be remembered that the theory itself indicated
the probable failure of the formnle generally applicable to a long cylinder when the cylinder

comes to be of such extreme fineness as the wires employed in pendulum experiments,

58. The preceding experiments of Baily’s are the most important for the purposes of the
present paper, inasmuch as they were performed on pendulums of simple and very different
forms; but there still remain three sets of experiments, the fourteenth, fifteenth, and six-
teenth, in whieh the pendulum consisted of a combination of a sphere and a rod, so that the
results can be compared with theory. The details of these experiments being suppressed, I
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have been obliged to calculate the time of oscillation from the ordinary formule of dynamics,
but the results will no doubt be accurate enough for the purpose required. In all the calcu-
lations I have supposed the rod to reach up to the axis of suspension, and have conse-
quently added 1'55 inch (the length of the shank of the knife-edge apparatus) to the length of
the rod, and have added to the weight of the rod a quantity bearing to the whole weight the
ratio of 1'55 inch to the whole length.

In the case of the spheres attached to the ends of the rods (sets 14 and 16) the process of
calculation is as follows. Let 7 be the length of the rod increased by 1'55 inch, W its weight,
increased as above explained, a the radius and ¥ the weight of the sphere, A the length of the
isochronons simple pendulum. Then supposing the masses of the rod and sphere to be respec-
tively distributed along the axis, and collected at the centre, which will be quite accurate
cnough for the present purpose, and putting « for the ratio of a to 7, we have by the ordinary
formula
=§-Wl + (1 +a)t Wl

)\ %—m)— w ’ . . . . . . (153)

whence 7, the time of vibration, is known. The formula (148) then gives %, which applies to
the sphere, and (147) gives Wi, the a in this formula being the radius of the rod, from whence
k,, which applies to the rod, may be got by interpolation from the table in Part I. Let A%,
Ak, be the corrections which must be applied to &, %, on account of the confined space of the
vacuum apparatus, and let .S, §' be the specific gravities of the rod and sphere respectively ;
then we get by means of the formule (149), (150)

e, ST 1 +a)2 Ak)W
u_l—%(l'l‘ ) Sl+ a + E'-XJQ—W1+(1+a)W it
] IW+(+a) W W, LA
2= + (1 +a)—
S, S

The first of the two factors connected by the sign x in this equation is equal to ¢~ I'T7",
and if we want to calculate the weight of air which we must conceive attached to the centre
of gyration of the pendulum in order to allow for the inertia of the air, we have only to mul-
tiply the factor just mentioned by o and by the weight of the whole pendulum. The follow-
ing table contains the comparison of theory and experiment in the case of the 14th set. The
rods here mentioned are the same as those which composed the pendulums Nos. 21, 48, and
44, and the spheres are the three brass spheres of Nos. 3, 5, and 66. It appears from p. 432
of Baily’s paper that his results are all reduced to a standard pressure and temperature, on
the supposition that the effect of the air on the time of vibration is proportional to its density.
The theory of the present paper shews that this will only be the case if u’ be constant, which
however there is reason for supposing it to be when the pressure alone varies. Be that as it
may, no material error can be produced by reducing the observations in this way, because the
difference of density in any pair of experiments did not much differ from the density of air
at the standard pressure and temperature. The standard pressure and temperature taken
were 29'9218 inches of mercury and 32°F, and the assumed specific gravity of air at this pres-
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sure and temperature was the 1-770th of that of water, so that in the calcnlations from theory
it is to be supposed that ¢~! = 770.

If w be the weight of the whole pendulum, w’ that of the air which we must suppose
attached to the pendulum at its centre of gyration in order to express the effect of the inertia
of the air, .§' the vibrating specific gravity of the pendulum, the effects of buoyancy and inertia
are as ¢S~! to w'w~"'; but they are also as 1 to -1, according to the definition of the fac-
tor N, and therefore

w'=(u—1)%’w, T L B e (04

a formula which may be employed to calculate w’ when n is known.

Baily's results with spheres at the ends of long rods.

Value of n. Weight of adhesive air, in grains.
No. and nature of pendulum. e gzy. Ii{ me:[},:_ ——— ‘hg)iy. }i{ ;:,K?- e

No. 45 = 1}-inch sphere with copper rod. (2:525 | 2'458 | — 0°067, or — gy | 4868 |4'564 |~ 0299, or — {4
No. 46 — 2-inch sphere with ditto. 2202 | 2:284 | + 0032, or + iz | 5°005 |5°076 |+ 0°071, or + L;
No. 47 — 3-inch sphere with ditto. 1'957 | 1'878 | — 0'084, or — 3l [ 7°071 | 6425 | — 0°646, or — 4+
No. 48 — 11-inch sphere with brass rod. |2:375|2:856 | — 0'019, or — 1A [1'447 11417 |- 0030, or — /
No. 49 — 2-inch sphere with ditto. 2:060 { 1°982 | — 0°078, or — b= |2:185 (1978 |~ 0162, or — {5
No. 50 — 8-inch sphere with ditto. 1681 | 1°933°7 | + 0°302 ? 4°411 {47868 7 | + 0°457°?

No. 51 — 11-inch sphere with steel rod. |2:099 | 2:3447| + 0-245? 0682 | 0°834 P | + 071527

No. 52 — 2-inch sphere with ditto. 1920 | 1798 | — 0127, or — 1= | 1457 |1'259 | = 0198, or — I
No. 53 — 3-inch sphere with ditto. 1781 | 1°759 | ~ 0°022, or — glp | 8742 8670 |~ 0072, or — 5

With respect to the two experiments marked ? Baily remarks, ¢ These two experiments
(with the pendulums Nos. 50 and 51) are very unsatisfactory; and are marked as such in my
journal. It was consequently my intention to have repeated them : but the subject was over-
looked till it was too late. I should propose their being rejected altogether.” If these two
experiments be struck out, it will be seen that the differences between theory and experiment
are very small, especially when the difficulty of this set of experiments is considered, arising
from the frequency of the coincidences with the mean solar clock.

59. On account of the difficulty which Baily experienced in obtaining accurate results -

with the long rods and spheres attached, he divided the brass and steel rods near the centre
of oscillation, and after having cut off an inch from each portion inserted the spheres where
the rods had been divided. The results thus obtained constitute the 15th set of experiments.
He afterwards removed the lower segments of the rods, and obtained the results contained in
the 16th set. I shall give the computation of the latter set first, inasmuch as the formule to
be employed are exactly the same as those required for the 14th set. The experiments belong-
ing to this set in which the spheres were swung with iron wires have already been compl]ted
under the head of spheres attached to fine wires.
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Baily's results with the spheres at the end of the short rods.

Value of #. Weight of adhesive air,
No. and nature of pendulum. f Y
th?o};y. Ii{nf;ﬂe' Difference. meBo’;y_ %::K Difference.
No. 60 — 11-inch sphere with brass rod. | 2:149 | 2:198 | + 0049, or + a5 | 1011 | 1°047 | + 0036, or + '
No. 61 — 2-inch sphere with ditto. ......| 1'879 | 1°901 | + 0022, or + gl | 1619 | 1'518 | — 0106, or — {1-
No. 62 — 3-inch sphere with ditto. ......| 1787 | 1'830 | + 0043, or + 5 | 3970 | 4202 | + 0232, or + e
No. 63 — 13-inch sphere with steel rod. | 1960 | 1904 | — 0:056, or — gl | 0570 | 0587 | — 0088, or — L,
No. 64 — 2-inch sphere with ditto. ......| 1796 | 1785 | — 0011, or — 15 | 1'289 | 1227 | ~ 0012, or — v}
No. 65 ~ 3-inch sphere with ditto. ......| 1758 | 1779 | + 0021, or + iy | 8:609 | 8720 | + 0111, or + 55

Here again the differences between theory and experiment are extremely small. In the

case of the pendulum No. 61, Baily’s two results 1'901 and 1°518 appear to be inconsistent, as
not agreeing with the formula (155).

60. 'The following table contains the values of =, %, and %, deduced from the given data,
and employed in the calcnlations of which the results are contained in the two preceding tables.
It is added, partly to facilitate a comparison of the circumstances of the different experiments,
partly to assist in the re-computation of any of the experiments, or the detection of any
numerical error which I may have committed. I may here observe that I have not, generally
speaking, re-examined the calculations, except where an error was apparent, but that each step
requiring addition, subtraction, multiplication, or division, was checked immediately after it

was performed. I have not thought it requisite to check in this manner the taking of loga-
rithms or antilogarithms out of a table,

Values of =, k, and k, employed in the calculation of the theoretical results employed in
the two preceding tables.

Long rods. Short rods,
Sphere. Rod.
No. T k ky No. T k ky
14-inch | copper | 45 | 1°090 | 07968 | 1:951
2-inch copper 46 1°158 | 07170 | 1-981
8-inch copper 47 1-227 | 065238 | 2010
1}-inch | brass 48 | 1155 | 08055 | 3222 | 60 [ 09517 | 0°7772 | 8:012
2-inch brass 49 1°198 | 07207 | 3°264 61 0°9806 | 0°7005 | 3:042
3-inch | brass 50 1222 | 06520 | 3288 62 09982 | 0'6373 | 3062
1}-inch | steel | 51 | 1°190 | 08099 | 7272 | 68 | 019868 | 0°7824 | 6649
2-inch steel 52 1'199 | 07208 | 7°299 64 | 09954 | 07021 | 6°679
3-inch steel 58 1281 | 006525 | 7°896 65 1°0030 | 06877 | 6714

The corrections for confined space employed are, for the spheres, (A k), 0°0115, 0:0321,
01013 ; and for the rods, (A %,), 0°009, 0'002, 0'000. 'These corrections are to be added to the
values of k, k, given in the preceding table before going on with the calculation.
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61. In the 14th set of experiments, the weight of adhesive air due to the spheres alone
has been computed by Baily by subtracting from the whole weight, as given by observation,
the weight due to the rods as given by the 18th set of experiments, taking account of the
change of weight corresponding to the change in the position of the centre of. gyration, the
point at which the air is supposed to be attached. According to theory, this process is not
legitimate, inasmuch as the weight dragged by a rod in a function of the time of vibration,
which is altered when a sphere is attached to the end of the rod. But in the 15th set of
experiments the spheres did not materially affect the time of vibration, inasmuch as they were
inserted nearly at the centre of oscillation of the rods, and therefore in this case the process
is legitimate. Accordingly, I think it is a sufficient comparison between theory and experi-
ment in the case-of the 15th set, to compare the weights of air due to the spheres alone, as cal-
culated by Baily, with the weights calculated according to the theory of this paper with the
assumed value of 4/u’. I have exhibited separately the weight corresponding to the correc-
tion for confined space, in order to enable the reader to form an estimate of the extent to
which the results may be affected by the uncertainty relating to the amount of this correc-
tion.

Weights of air dragged by the spheres alone, as deduced from Baily's results with the
spheres at the centre of oscillation of the long rods.

By Theory. 8 By Experinient.
13-inch | 2-inch | 3-inch | 1}-inch | 2-inch | 3-inc.
sphere. | sphere. | sphere. sphere. | sphere. | sphere.
In free air _ 0'431 | 1'060 | 3:002 | From exper'® with brass rod 0446 | 1'180 | 3382
Additional for confined space | 0:006 | 0:048 | 0'476 | From exper*® with steel rod 0°405 | 1039 | 8871
Total 0487 | 1°108 | 8:478 | Mean 0'425 | 1°109 | 3377
Diff . th. & exp., as decimal |~0012/+0°001{~0-101| Diff ¢, as fraction of the whole | — ¢ |4+ k55l — 9%

62. I pass now to Bessel's experiments described in his memoir -entitled Untersuch-

ungen iiber die Linge des einfachen Sekundenpendels, which is printed among the memoirs of
the Academy of Sciences of Berlin for the year 1826. The object of this memoir was to
determine the length of the seconds’ pendulum by a new method, which consisted in swinging
the same sphere with wires of two different lengths, the difference of lengths being measured
with extreme precision, In the calculation, the absolute length of the simple pendulum iso-
chronous with either the long or the short compound pendulum was regarded as unknown, but
the difference of the two as known, and this difference, combined with the observed times of
oscillation, is sufficient for the determination of the quantity sought. Nothing more would
have been required if the pendulums had been swung in a vacuum; bat inasmuch as they
were swung in air, a further correction was necessary to reduce the observations to a vacuum,
Since it is necessary to take into account the inertia of ‘the air, as well as its buoyancy, in

reducing the observations to a vacyum, Bessel sought to determine by experiment the value of
Vor. IX, Part Il 34
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the factor k, of which the meaning has been already explained. The value of this factor, as
Bessel remarked, will depend upon the form of the body ; but he does not seem, at least in his
first memoir, to have contemplated the possibility of its depending on the time of oscillation, and
consequently he supposed it to have the same value for the long as for the short pendulum.
When the factor % is introduced, the equation obtained from the known difference of length
of the two simple pendulums contains two unknown quantities, namely %, and the length of
the seconds’ pendulum. To obtain a second equation, Bessel made another set of experiments,
in which the brass sphere was replaced by an ivory sphere, having as nearly as possible the
same diameter. The results obtained with the ivory sphere furnished a second equation, in
which & appeared with a much larger coefficient, on account of the lightness of ivory com-
pared with brass, The two equations determined the two unknown quantities.

Let A be the length of the seconds’ pendulum, #,, Z, the times of oscillation of the brass
sphere when swung with the short wire and long wire respectively, 7, J, the lengths
of the corresponding simple pendulums, corrected for everything except the inertia of the
air, m the mass of the sphere, m; the mass of the fluid displaced; then

AL+ %k)‘l =y
or, since m, is so small that we may neglect m/’,
ALE( - %k) =y
The long pendulum furnishes a similar equation, and the result obtained from the brass
sphere is
A - )@ _';n"-'k)=l,-z,, RS L 4 e (156)

since ¥, — I, is the quantity which is regarded as accurately known. The ivory sphere in
like manner furnishes the equation

K(fz’—t'f)(l-%k)=l’z-l’,,. IS

where the accented letters refer to that sphere. The equation for the determination of %
results from the elimination of A between the equations (156) and (157).

Now, according to the theory of this paper, the factor & has really different values for
the long and short pendulums. Let k&, refer to the short, and &, to the long pendulum
with the brass sphere, %, to the short, and &, to the long pendulum with the ivory
sphere. Then

m m
A1 = ;‘ B)=104, At2(Q- ;f D) = b
and therefore

m, . n,
L=-b=Xt*(1-—F%) -~ : -k « « « +-(158
s = = N2 ( - 2) = A* (1 = ky) (158)

In the equation resulting from the elimination of A between (156) and (157), let the
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values of 7, =7, and I — 1 got from (158) and the similar equation relatmg to the ivory
sphere be substituted. The result is

m . my_, ’ m .,
- 0= - - 70 B

. m m m
= (-2 —;ik) $t2(1 - ;‘kz) i (= _ﬁ'k,)}.

This equation is of the form
P 4 le + le2 = P' + Q’ml + R,m12’

and P = P, and Rm? R'm?® may be neglected, so that the equation is reduced to Q = Q.
It is now no longer necessary to distinguish between ¢, and ¢’y and between ¢, and ¢/, which
may be supposed equal. Also m : m' :: .§: 8, where S, " are the specific gravities of the
brass and ivory spheres respectively. Substituting in the equation Q = @', and solving with
respect to k, we get

t2 (SKy— S'ky) - t2 (SK, - S'k)

c G- t) S -5

(159)

This equation contains the algebraical definition of that function % of which the numerical
value is determined by combining, in Bessel’s manner, the results obtained with the four pen-
dulums. Since the equation is linear so far as regards ¥, k,, &c., we may consider separately
the different parts of which these quantities are composed, and add the results, For the part
which relates to the spheres, regarded as suspended by infinitely fine wires, we have &', = &,
and k', = k;, since the radii of the two spheres were equal, or at least so nearly equal that the
difference is insensible in the present enquiry. We get then from (159)

k_t_‘t’f —tlk'
8 =4

. . . . . . . . (160)

which gives
k-Fk k-k k-k
———e L. (6])
t2 tlz t22_ t12
Since #,>¢, and k,>Fk, the equations (161) shew that the value of % determined by
Bessel’s method is greater than the factor which relates to the short pendulum, which was a
seconds’ pendulum nearly, and even greater than that which relates to the long pendulum, as
has been already remarked in Art. 6.
If %, be the factor relating to either sphere oscillating once in a second, and if the
effect of the confinement of the air be neglected, we have from the formula (148)
~$ih—%ik ~Ltdtd,
and in Bessel’s experiments ¢, = 1'001, 7 =1721, 2a = 2:143 in English inches. We thus
get from either of the equations (160) or (161), on substituting 0°116 for 4/p’, k = 0'786.
The value of the factor k,, which relates to a sphere of the same size, swung as a seconds’ pen-
dulum, is only 0'694, and %, may be regarded as equal to k, The formula (148) gives
k, = 0755,
34—2
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63. We have next to investigate the correction for the wire. The effect of the inertia of
the air set in motion by the wire was altogether neglected by Bessel, and indeed" it would have
been quite insensible had the parts of the correction for inertia due to the wire and to the
sphere, respectively, been to each other in nearly the same ratio as the parts of the correction
for buoyancy. Baily, however, was led to conclude from his experiments that the effect of the
wire was probably not altogether insignificant, and the theory of this paper leads, as we
have seen, to the result that the factor W'is very large in the case of a very fine wire.

The ivory sphere in Bessel’s experiments was swung with a finer wire than the brass
sphere. It was for this reason that I did not from the first suppose #',=k, and K,=k,.
Let Ak, Ak, &c. be the corrections due to the wire. The values of Ak, Ak,, AK,, AN,
may be got from the formula (151), in which it is to be remembered that X\ denotes the length
of the isochronous simple pendulum, not, as in Bessel’s notation, the length of the seconds’ pen-
dulum. It is stated by Bessel (p. 131), that the wire used with the brass sphere weighed 1095
Prussian grains in the case of the long pendulum, and 358 grains in the case of the short.
This gives 7-87 grains for the weight of one toise or 72 French inches. The weight of one
toise of the wire employed with the ivory sphere was 6'28 —~ 2'04 or 424 grains (p. 141). The
specific gravity of the wire was 7:6 (p.40), and the weight of a cubic line (French) of water is
about 0°1885 grain. From these data it results that the radii of the wires were 0:003867 and
0002938 inch English. The formula (147) gives M, whence L is known from (152). The
lengths of the isochronous simple pendulums were about 89'20 inches for the short pendulum,
and 116:94 for the long. On substituting the numerical values we get from (151), since
khh=qu—-1land kb =m, -1,

Ak, =00107, Ak, = 00286, AK,= 00090, Ak,=00244.

The specific gravities of the two spheres were about 8190 and 1'794, whence we get from
(159) Ak = 0'0308, or 0031 nearly.

The value of &k deduced by Bessel from his experiments was 0'9459 or 0-946 nearly, which
in a subsequent paper he increased to 0°956. In this paper he contemplates the possibility of
its being different in the cases of the long and of the short pendulum, and remarks with justice
that no sensible error would thence result in the length of the seconds’ pendulum, as deter-
mined by his method, but that the factor & would belong to the system of the two
pendulums,

The following is the result of the comparison of theory and experiment in the case of
Bessel's experiments on the oscillations of spheres in air.

Value of & belonging to the system of a long and a short pendulum, as
determined experimentally by Bessel ......ccccevieneeneernennes  0°956
Value deduced from theory, including the correction for the wire, but
not the correction for confined space.......coeevveivereerenieens. 0817

difference. + 0:139

I cannot find that Bessel has stated exactly the distance of the centre of the sphere
from the back of the frame within which it was swunng, but if we may judge by the sketch of
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the whole apparatus which is given in Plate I., and by a comparison of figs. 2 and 3, Plate
IL., it must have been very small, that is to say, a small fraction of the radius of the sphere *.
If so, although the exact calculation of the correction for confined space would form a problem
of extreme difficulty, it may be shewn from theoretical considerations that the correction would
be by no means insensible, so.that it might wholly or in part account for the difference + 0139
between the results of theory and observation. It is, however, not 'improbable, for a reason
which has been already mentioned, that the theoretical correction for the wire is not quite
exact,

64. The experiments performed by Bessel on a sphere vibrating in water will be more
conveniently considered after the discussion of some experiments of Coulomb’s, to which I now
proceed. These experiments are contained in a memoir entitled Expériences destinées a déter-
miner la cohérence des fluides et les lois de leur résistance dans les mouvements trés-lents,
which will be found in the 3rd Volume of the Mémoires de I'Institut, p. 246. The experi-
ments which I shall first consider are those which relate to the oscillations of disks suspended
in water with their planes horizontal. In these experiments the disk operated upon was attached
to the lower extremity of a vertical cylinder of copper, not quite half an inch in diameter, the
axis of which passed through the centre of the disk. The cylinder was suspended by a fine
wire attached to its upper extremity. The under portion of the cylinder, together with the
attached disk, were immersed in water, the disk at the bottom of the cylinder being immersed
to the depth of 4 or 5 centimetres below the surface. The upper portion carried a horizontal
metallic graduated disk, by means of which the arc of oscillation could be read off, and which,
on account of its size and weight, mainly determined the inertia of the system, so that the time
of oscillation in the different experiments was nearly the same. The observations were taken
as follows. The whole system was turned very slowly round by applying the hands of the
graduated disk, taking care not to derange the vertical position of the suspending wire, The
arc through which the system had been turned was read by means of the graduation, or rather
the system was turned through an arc previously fixed on; the system was then left to itself,
and the arc again read off to a certain number of oscillations. Thus it was the decrement
of the arc of oscillation that was observed ; the time of oscillation was indeed also observed,
but only approximately, for the sake of determining a subsidiary quantity required in the cal-
culation. Indeed, it will be easily seen that the experiments were not adapted to determine the
effect of the fluid on the time of oscillation. The decrement of arc so determined had to be
corrected for the effect of the imperfect elasticity of the wire, and of the resistance of the air
against the graduated disk, and of the water against the portion of the copper cylinder
immersed. The amount of the correction was determined by repeating the observation when
the lower disk had been removed.

It appeared from the experiments, first, that with the same disk immersed, the successive

* The measurement of either of Bessel’s figures, figs. 5or 6, | vertical; and the measurement of fig. 2 giving 2:06 inches for
Plate 1I. gives 1'63 inch for the distance of the centre of the | the diameter of the sphere, it appears that the distance of the
sphere from the surface of the broad iron bar which formed the | surface of the sphere from the surface of the bar was barely
back of the frame, the surface of the bar being supposed truly | equal to half the radius of the sphere.
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amplitndes of oscillation decreased in geometric progression; secondly, that with different
disks the moment of the resisting force was proportional to the fourth power of the radius.
From these laws Coulomb concluded that each small element of any ome of the disks expe-
rienced a resistance varying as the area of the element multiplied by its linear velocity. It
should be observed that Coulomb was only authorized by his experiments to assert this law to
be true in the case of oscillations of given period, inasmuch as the time of oscillation was
nearly the same in all the experiments.

Let a be the radius of the disk in the fluid, + the time of oscillation, 6 the angular dis-
placement of the disk, measured from its mean position, I the moment of inertia of the whole
system; and let 1: 1 — m be the ratio in which the arc of oscillation is diminished in one
oscillation. According to the formula (15) we have

e npt

for the factor which expresses the ratio of the arc of oscillation at the end of the time # to the
initial arc. At the end of one oscillation # = 7, and the value of the above factor is 1 —m,
which is given by observation. Putting for 3 its value, in which M~y* =1, and nr =,

pa4 T
loge(l—m)=——I— ey hesetr il 68D

we get

8

Let 7" be the time of oscillation, and I, the moment of inertia, when the under disk is
removed : then I= I v*T% Also if M be the mass and R the radius of the large graduated
disk, we have I = 1 MR®, neglecting, as Coulomb did, the rotatory inertia of the copper cylin-
der. Substituting in (162), we get

log, (1 - m)' = 2~ ixbpui s T2atR* M. . . . . (163)

Let W be the weight of the disk in grammes. Then the mass of the disk is equal to that of
W cubic centimetres or 1000 W cubic millimetres of water. Hence M = 1000 p W, a milli-
metre being the unit of length. Substituting in (163), and solving with respect to 4/u’,

we get
A/u =1000 x 2} log, 10 .7~ ¥ WR*T-2a~*7t log,, (1 —m)~, . . (164)

and the same value of 4/ ought to result from different cxperiments.

The weight of the disk is stated to have been 1003 grammes, and its diameter 271 milli-
metres, and it made 4 oscillations in 91 seconds. Hence W = 1003, R = 1355, T = 22'75.
The last three factors in (164) vary from one experiment to another. After making experi-
ments with three disks of different radii attached to the copper cylinder, Coulomb made
another set with nothing attached, for the purpose of eliminating the effect of the imperfect
elasticity of the wire, The following table contains the data furnished by experiment, together
with the value of 4/’ deduced from the several experiments. The latter is reduced to the
decimal of an English inch, by including 2:5952 (the logarithm of the ratio of a millimetre to
an inch) in the logarithm of the constant part of the 2nd member of equation (164).
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Determination of the value of +/u’for water from Coulomb’s experiments on the decre-
ment of the arc of oscillation of disks, oscillating in their own plane by the force of
torsion.

Diameter Time of Resultin
No. szd ;Sk oscifl.(l):trions logyy (1=m)=! valu;,o
in millimetres. 4. in inches.
1 195 97 00568 005519
c4 140 92 0°021 005716
3 119 91 00185 0°054386
4 0 91 0°0058

In correcting the results of the first three experiments for the imperfect elasticity of the
wire, Coulomb calculated the values of m given by the four experiments, and subtracted the
value given by the fourth from each of the others. But it is at the same t.ime‘easier and more
exact to subtract the value of log (1 — m)~! given by the fourth experiment from that given by

each of the others. For if

-2c iﬂ, -2c ‘19-
dt dt
be the moments of two forces, each varying as the velocity, divided by the moment of inertia,
the factors by which the initial arc of oscillation must be multiplied to get the arc at the end
of the time #, first, when the two forces act together, secondly, when the second force acts
alone, are

e—(v+c’)t’ e—v’t’
respectively, and that, whether the time ¢ be great or small. Hence if we subtract the
logarithm of the second factor from that of the first we shall get the logarithm of the
factor due to the action of the first force alone. But if we put each factor under the form
1 — m, and subtract the m of the second factor from the m of the first, we shall not get the
m due to the first force alone, unless # be small enough to allow of our neglecting the squares
of ¢t and c't, or at least the product c¢.c¢’¢t. In truth, when ¢ = 7, the quantities m are suffici-
ently small to be treated in Coulomb’s manner without any material error, since the corrected
values of log (1 — m), obtained in the two ways, would only differ in the 4th place of
decimals.

The numbers given in the last column of the above table were calculated from the formula
(164), on substituting for log (1 — m)~" the numbers found in the first three lines of the 4th
column, corrected by subtracting 0°0058. The mean of the three results is 0°05557, but the three
experiments are not equally valuable for the determination of 4/p’. For the three numbers
from which 4/’ was deduced are 0'0510, 0'0152, 0°0077, and a given error in the first of these
numbers would produce a smaller error in 4/’ than that which would be produced by the
same error in the second, still more, than that which would be produced by the same error in
the third. If we multiply the three values of 4/u’ by 510, 152, and 77, respectively, and
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divide the sum of the products by 510 + 152 + 77 or 739, we get 0.05551. We may then take
0.555 as the result of the experiments. Assuming 4/u'= 0.0555 we have

log (1 - m)~! from experiment 0.0568 in No. 1,  0.021 in No. 2, 0.0185 in No. 3,
cscscesessssss. from theory  0.0571 0.0206 0.0187

difference — 0.0003 + 0.0004 - 0.0002

65. So far the accordance of the theoretical and observed results is no very searching test
of the truth of the theory. TFor, in fact, the theory is involved in the result only so far as
this, that it shews that the resistance experienced by a given small element of a disk oscillating
in a given period varies as the linear velocity ; since the difference of periods in Coulomb’s
experiments was so small that the effects thence arising would be mixed up with errors of
observation. This law is so simple that it might very well result from theories differing in
some essential particulars from the theory of this paper. But should the numerical value of
4/ ¢ determined by Coulomb’s experiments on disks be found to give results in accordance
with theory in totally different cases, then the theory will receive a striking confirmation.
Before proceeding to the discussion of other experiments, there are one or two minute
corrections to be applied to the value of 4/u’ given above, which it will be convenient to
consider. '

In the first place, the result obtained in Art. 8 is only approximate, the approximation
depending upon the circumstance that the diameter of the revolving body is large compared
with a certain line determined by the values of .’ and 7. In the particular case in which the
revolving solid is a circular disk, it happens that the approximate solution satisfies the general
equations exactly, except so far as relates to the abrupt termination of the disk at its
edge*. In consequence of this abrupt termination, the fluid annuli in the immediate
neighbourhood of the edge are more retarded by the action of the surrounding fluid than they
would have been were the disk continued, and consequently the resistance experienced by the
disk in the immediate neighbourhood of its edge is actually a little greater than that given by
the formula. I have not investigated the correction due to this cause, but it would doubtless
be very small.

In the second place, the formula (15) is adapted to an indefinite succession of oscillations,
whereas Coulomb did not turn the disk through an angle greater than the largest intended
to he observed, and suffer one or two oscillations to pass before the observation commenced,
but took for the initial arc that at which the disk had been set by the hand. Probably the
disk was held in this position for a short time, so that the fluid came nearly to rest. If so,
the resulting value of 4/4', as may readily be shewn, would be a little too small. For in the
course of an indefinite series of oscillations, the disk, in its forward motion, carries a certain
q4uantity of fluid with it, and this fluid, in consequence of its inertia, tends to preserve its
motion. Hence, when the disk, having attained its maximum displacement in the positive
direction, begins to return, it finds the fluid moving in such a manner as to oppose its return,

* (See Note A at the end.)
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and therefore it experiences a greater resistance than if it had started from the same position
with the fluid at rest. In fact, it appears from the expression for G in Art. 8, that the
moment of the resistance vanishes, in passing from negative to positive, not when the disk has
reached the end of its excursion in the positive direction, but the eighth part of a period
earlier. Hence, had the observation commenced during a series of oscillations, a larger initial
arc would have been necessary, to overcome the greater resistance, in order to produce, after a
given number of oscillations, the same final arc as that actually observed. I have investigated
the correction to be applied on account of this cause, and find it to be about + 0.009, but I
must refer to a note for the demonstration, in order not to interrupt the present discussion *.
I shall assume then, in the following comparisons, that for water

2/ = 0.0564,

the units being the same as before, namely, an English inch and a second. That yis inde-
pendent of the pressure of the fluid, or at least very nearly so, appears from an experiment of
Coulomb’s, in which it was found that the decrement of the arc of oscillation of a disk oscil-
lating in water was the same in an exhausted receiver as under the full atmospheric pressure.

I will here mention another experiment of Coulomb’s which bears directly on one part of
the theory. On covering the disk with a thin coating of tallow, the resistance was found to
be the same as before; and even when the tallow was sprinkled with powdered sandstone, by
means of a sieve, the increase of resistance was barely sensible. This strikingly confirms the
correctness of the equations of condition assumed to hold good at the surface of a solid.

66. I will now compare the formula (148) with the results obtained by Bessel for the
oscillations of the brass sphere in water, which will be found at page 65 of his memoir. This
sphere was suspended so as to be immersed in the water contained in a large vessel, and was
swung with two different lengths of wire, the same as those employed for the experiments in
air. The times of oscillation were 1-9085 second for the long pendulum, and 1:1078 for the
short. The results are

Long pendulum. Short pendulum.
k, by experiment............0648 0°602
k, by theory ...............0°631 0600
difference + 0017 + 0002

The depth to which the spheres were immersed is not stated, but it was probably sufficient to
render the effect of the free surface small, if not insensible. The vessel was three feet in
diameter, and the water 10 inches deep, so that unless the spheres were suspended near the
bottom, which is not likely to have been the case, the effect of the limitation of the fluid by
the sides of the vessel must have been but trifling. The agreement of theory and observation,
as will be seen, is very close.

67. In the same memoir which contains the experiments oun disks, Coulomb has given
the results of some experiments in which the disk immersed in the fluid was replaced by a

* (See Note B at the end.) .
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long narrow cylinder, placed with its axis horizontal and its middle point in the prolongation
of the axis of the vertical copper cylinder. In these experiments, the arcs did not decrease
in geometric progression, as would have been the' case if the resistance had varied as the
velocity; but it was found that the results of observation could be satisfied by supposing the
resistance to vary partly as the first power, and partly as the square of the velocity. In
Coulomb’s notation, 1 : 1 — m denotes the ratio in which the arc of oscillation would be
altered after one oscillation, if the part of the resistance varying as the square of the velocity
were destroyed. The several experiments performed with the same cylinder were found to be
sufficiently satisfied by the formula deduced from the above-mentioned hypothesis respecting
the resistance, when suitable numerical values were assigned to two disposable constants m
and p, of which p related to the part of the resistance varying as the square of the velocity.
Conceive the cylinder divided into elementary slices by planes perpendicular to its axis.
Let » be the distance of any slice from the middle point, 8 the angle between the actual and
the mean positions of the axis, d F' that part of the resistance experienced by the slice which
varies as the first power of the velocity. Then calculating the resistance as if the element
in question belonged to an infinite cylinder moving with the same linear velocity, we have by

the formul=e of Art. 31
d d
dF = k'ﬂ[’n%, where M’ = wpa*dr, —E =7 —9

If G be the moment of the resistance, [ the whole length of the cylinder, we have, putting
1

n=mar ,
" 'n'gk"pazl:" dé
T 12+ dt’
whence
K pa®l
log, (1 — m)™* = _2151 o, amiillon), Y i wBE)

I being the moment of inertia.

Expressing I in terms of the same quantities as in the case of the disk, we get from (147)

and (165)

' TP gp 7P
SR* Wi

log,, (1 = m)~! = logy, €. wek, . . .. (166)

and gp is the weight of a cubic millimetre of water, or the 1000th part of a gramme. The
numerical values of u', 7, R, W have been already given, but ' must be reduced from square
inches to square millimetres. The cylinders, of which three were tried in succession, had all the
same length, namely, 249 millimetres. Their circumferences, calculated from their weights
and expressed in millimetres, were 21.1, 11.2, and 0.87, and the time of four oscillations was
92% 91% 91°.  The values of W calculated from these data by means of the formula (147) are
0.4332, 0.2312, and 0.01796. For the first and second of these values, M*%k’ may be obtained
by interpolation from the table given in Part I.; for the third it will be sufficient to employ
the.second of the formule ¢115).
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The following are the results :

Cylinder, No. 1. No. 2. No. 3.
m, by experiment ......... 0.0400 0.0260 0.0136
m, by theory............... 0.0413 0.0291 0.0113
Difference — 0.0013 — 0.0031 + 0,0028

The differences between the results of theory and experiment are perhaps as small as could
reasonably be expected, when it is considered that, notwithstanding the delicate nature of the
experiments, the numerical values of two constants, m and p, had to be deduced from their

results,

68. This memoir of Coulomb’s contains also a notice of a set of experiments with disks
and cylinders in which the water was replaced by oil. The experiments with disks shewed
that with a given disk the arc of oscillation decreased in geometric progression, and that with
different disks the moments of the resistances were as the fourth powers of the diameters. The
absolute resistances were greater than in the case of water in the ratio of about 175 to 1.
The details of Coulomb’s experiments on cylinders oscillating in oil are entirely omitted. It
is merely stated that on making the same cylinders as before, or shorter cylinders when the
resistance was too great, oscillate in oil, it was found, conformably with the results obtained
with planes, that the coherence of oil was to that of water as 17 to 1. The coherence is here
supposed to be measured by that part of the resistance which is proportional to the first power
of the velocity. On making a rough calculation of the ratio of the resistances to cylinders
oscillating in oil and in water, on the supposition that 4/ u’ for oil is to 4/’ for water as
17°5 to 1, as would follow from the experiments on disks if the difference of the specific
gravities of the two fluids be neglected, I found that the ratio in question ought to have been
somewhere about 100 to 1, instend of on']y 17 to 1. It would seem from this that the theory
of the present paper is not applicable to oil; but fresh experiments would be required before
this point can be considered as established, on account of the theoretical doubt respecting the
application of the formulee of Section III. Part I., to extremely fine cylinders, especially
in cases in which ' is large, so that M is very small. It would be interesting to make
out whether what I have called internal friction is or is not of the same nature as viscosity.
Coulomb and Dubuat apply the term wiscosity to that property of water by virtue of which
certain effects are produced which have been shewn in this paper to be perfectly explicable on
the theory of internal friction; whereas Poisson, in one of his memoirs, expressly asserts that
the terms in the equations of motion which result from what has been called in this paper
internal friction belong to perfect fluids, and have nothing to do with viscosity*. Poisson
does not give the slightest hint as to the grounds on which he rested his opinion.

69. I come now to the experiments of Dubuat, which are contained in an excellent work
of his entitled Principes d’Hydraulique, of which the second edition was published in 1786.

* Journal de I’ Ecole Polytechnique, Tom. X111. p. 95. o
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The first edition does not contain the experiments in question. Dubnat justly remarked that
the time of oscillation of a pendulum oscillating in a fluid is greater than it would be in vacuum,
not only on account of the buoyancy of the fluid, which diminishes the moving force, but also on
account of the mass of fluid which must be regarded as accompanying the pendulum in its
motion ; and even determined experimentally the mass of fluid which must be regarded as
carried by the oscillating body in the case of spheres and of several other solids. Thus
Dubuat anticipated by about forty years the discovery of Bessel; but it was not until after
the appearance of Bessel’s memoir that Dubuat’s labours relating to the same subject attracted
attention.

Dubnat’s method was as follows. Imagine a body suspended by a fine thread or wire and
swung in vacuum, and let @ be the length of the pendulum, reckoned from the centre of sus-
pension to the centre of oscillation. Now imagine the same body swung in a fluid, in which
its apparent weight is p, so that if P denote the weight of fluid displaced, the trne weight of
the body will be p + P. Since the moving force is diminished in the ratio of p + P to p, if
the inertia of the body were all that had to be overcome, it would be necessary to diminish the
length of the pendulum in the same ratio, in order to preserve the same time of oscillation.
But since the mass in motion consists not only of the mass of the body itself, but also of that
of the fluid which it carries with it, the pendulum must be shortened still more, in order that
the time of oscillation may be unaltered. Let ! be the length of the pendulum so shortened,
and n (which for the same reason as before I write instead of Dubuat’s »,) a factor greater
than unity, such that p + WP is the weight of the mass in motion ; then

an

l= m, \Vhence n= % (; = l) . . . . (167)

Dubuat’s experiments on this subject consist of 44 experiments on spheres oscillating in
water, (Tom. 11. p. 286) ; 381 experiments on other solids oscillating in water, (p. 246); and
3 experiments on spheres oscillating in air, (p. 283). The following table contains a compa-
rison of the formula (148) with Dubuat’s results for spheres oscillating in water. The value
of /4’ employed in the calculation is 0.0564 inch English, or 0.05291 inch French,
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Dubuat’s experiments on spheres oscillating in water.

(85]

n n
T calc. obs. diff, T 'calc. obs, diff.
Ll }1633| 1502 | —*131 y *50 —*05
Sphere of lead. 2 . || Sphere of wood. 2 [ 1'566 | 1°507 9
J 5 1 1'687 1502 | —*185 2 p 3| 1581 | 1547 | —-034
Diameter 1-0113 inches. Diameter 4:076 inches.
Weight in water 2102 grains I o Weight in water 2102 i 41698 | 1547 | —046
g F grains- | g1 1-825 | 1620 | —*205 g grains: 1 61 14614 | 1-567 | ~-057
SPhere of glass.‘ 211602 | 1°518 | —*084 L 1sag | 10s75 | =172
Diameter 2:645 inches. 4| 1644 | 1°569 | =075 o | 1566 | 1-456 | =-110
Weight in water 574 grains. | 6 | 1676 | 1598 | —-078 || Same sphere weighing in water . ] .
s 5 . 3| 1'581 | 1'525 | —'056
4204 grains.
1°572 15 05 4| 1°598 | 1°557 | —*036
el 1§ 1572 1, Liblo o -#00% 6| 1614 | 1549 | =065
Same sphere weighing in water | 2 | 1602 | 1'516 | —'086
- 8. $ igi: B ':(I)O; 1| 1547 | 157 | +-023
4 & —'098 || Same sphere weighing in water | 2 | 1'566 | 1'553 | —*013
9216 grains. 311581 |15 +°00
1| 1572 | 11587 | =085 £ e 1.5'23 _.Olg
Same sphere weighing in water [ 2 | 1602 | 1523 | —079 | -
4204 grains. 3| 1624 | 1524 | —*100 3| 1549 | 1127 | —-279
4| 1°644 | 1'538 | —°106 g g —+163
Another sphere of wood. e B
Diameter 6% inches Gl a0 11887 | 083
1| 1551|1449 | =102 . . 3 ) . 9| 1585|1566 | —°019
ey 20, v Weight in water 2102 grains.
Same sphere weighing in water | 1 | 1'572 | 1'372 | —200 12| 1°599 | 1°569 | —-030
9216 grains. 2 {1602 | 1494 | ~°108 18 | 14621 | 1-565 | —056
g | 1624 | 1'494 | ~*130 S h o q .
ame sphere weighing in ar | 1 ) .
water 3204 grains. } T BISS C RC S5 S 0AS
3| 1549 | 1°651 | +°102
9 r.q . 4.{ 1557|1627 | +:070
Same spher? weighing in water 6| 1570 | 1658 | 088
4204 grains. x
9| 1585 | 1:664 | +°079
12| 1599 | 1674 | +°075

70. 1If we strike out the experiments with the large sphere, which cannot well be compared

with theory for a reason which will be explained further on, it will be observed that in seven out
of the eight groups of experiments left, the signs dn the last column are regularly minus.
The preponderance of negative errors could be destroyed by using a much smaller value of
A/t in the reduction. We have seen, however, that the value of y/# deduced from Cou-
lomb’s experiments on the decrement of the arc of oscillation of disks satisfied almost exactly
Bessel’s observations of the time of oscillation of a sphere about two inches in diameter
oscillating in water. The very small errors which remained in this case had both the sign +,
whereas in Dubuat’s experiments on the 1-inch and 2} inch spheres, the errors, which are far
larger, have all the sign —. Since the experiments of Dubuat and Bessel, though made under
similar circumstances, do not lead to the same result, it is of course impossible for any theory to
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satisfy them both, The numbers in the last column of the preceding table are, however,
far too regular to be attributable to mere fortuitous errors of observation. If we suppose
Bessel’s results to have been nearly exact, there must have been something in the mode either
of making or of reducing Dubuat’s experiments which cansed a tendency to error in one
direction.

With respect to the reduction of the experiments it may be observed that the length 7 was
measured from the centre of oscillation, whereas in the formula (148) it is supposed that the mass
of which the weight is kP or (W— 1) P is collected at the centre of the sphere. If 4 be the
distance of the centre of the sphere from the axis of suspension, the observed value of W — 1
ought in strictness to be increased in the ratio of A* to I% or the calculated value diminished in
the ratio of 7 to 4%, before comparing the results of theory and experiment. In the case of
the loaded spheres especially, the theoretical value of T would thus be a little diminished ; but
except in a very few cases, in which either 7 or a — 7 is small, the diminution is hardly worth
considering. After having been for a good while at a loss to account for the regular occur-
rence of rather large negative errors, the following occurred to me as the probable solution
of the difficulty.

When a pendulum oscillates in water, the arc of oscillation rapidly decreases; this rapid
diminution forms in fact the grand difficulty in experiments of this kind. In Dubuat’s experi-
ments, it will be remembered, the suspending thread was lengthened or shortened till the time of
oscillation was an exact number of seconds, or occasionally half a second. Now, it is probable
that the observer occasionally gave the suspending thread a slight push as the pendulum was
commencing its return, in order to keep the oscillations going for a sufficient time to allow of
tolerable precision in rendering the time of oscillation equal to what it ought to be. If so,
these pushes would slightly accelerate the oscillations, and therefore cause the length of thread
fixed on by observation to be a little too great, which would make the effect of the water in
retarding the oscillations appear a little too small. On inspecting the table of differences,
it may be observed that sometimes when the same sphere differently loaded is swung in the same
time as before, the numbers in the table of differences are altered more than appears to be
attributable to merely fortuitous errors of observation. This accords very well with the con-
jecture just mentioned, and seems difficult to account for in any other way, inasmuch as
everything relating to the fluid must have been almost exactly the same in the two
cases.

The occurrences of positive differences in the case of the large wooden sphere may be
accounted for by the limitation of the fluid mass by the sides and bottom of the vessel, and by
the free surface, which, except in the case of very short oscillations, would have much the same
effect as a rigid plane, inasmuch as it would be preserved almost exactly horizontal by the
action of gravity. The vessel which contained the water was 51 inches long and 17 broad,
the water was 14 inches deep, and the spheres were plunged to about 3 inches below the
surface, so that the effect of the confinement of the fluid mass would have been quite sensible
in the case of such large spheres. If it be objected that the same sphere gave negative differ-
ences in the case of the first group of experiments, it must be observed, that when the appa-
rent weight of so large a sphere was only 2102 French grains, the resistance would quickly
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have caused the oscillations to subside if an extraneous force had not frequently been

applied.

71. In Dubuat’s experiments on spheres oscillating in air, the lightness of the fluid was
compensated by the extreme lightness of the spheres, which were composed, the first two of
paper, and the third of gold-beater’s skin. In the following table the diameter 2a of the
sphere is expressed in French inches. The value of 4/ 1’ employed in the reduction is the
same as was before nsed in the reduction of observations made in air, namely 0.116 inch
English, or 0.1088 inch French.

Dubuat's experiments on light spheres oscillating in air.

No. 2a v ca‘ic. ogs. Diff.

337 4°0416 1°51 1'61 151 - 010
338 6625 1°84 1°57 1°63 + 006
3390 1725 3625 1:58 1°54 + 001

The differences certainly appear very small when the delicacy of the experiments and the
simplicity of the apparatus employed are considered.

72. 'The only comparison yet made in this section between theory and observation in the
case of pendulum experiments, consists in comparing the observed times of vibration with the
results calculated with an assumed value of 4/u’. But according to theory we ought to be
able, without assigning a particular value to any new disposable constant, to calculate the rate
of decrease of the arc of vibration. I have not met with any experiments made with a view of
investigating the decrease in the arc of vibration in the case of extremely small vibrations, such
as those employed in pendulum experiments. The experiments of Newton and others, in which
the arc of vibration was so large that the resistance depended mainly on the square of the
velocity, would be quite useless for my purpose. The pendulum experiments of Bessel and
Baily contain however the requisite information, or at least some portion of it, for the arcs are
registered for the sake of giving the data for calculating the small reduction to indefinitely
small vibrations.

In Bessel’s experiments the arc is registered for the end of equal intervals of time during
the motion. The number of such registrations in one experiment amounts in some cases to
cleven, and is never less than three. So far the observations are just what are wanted; but
there are other causes which prevent an exact comparison between theory and experiment. In
the first place the spheres were swung so close to the back of the frame that the increase of
resistance due to the confinement of the air must have been very sensible. In the second
place the effect of the wire must have been very sensible, especially in the case of the long
pendulum. For the table of Section III. Part 1., shews that for the wire (for which mis very
small) the value of %’ is much larger than that of %, whereas for spheres of the size of those
employed, when the time of oscillation is only one or two seconds, &" is a good deal smaller
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than k. Hence, if the formule of that section applied to such fine wires, the effect of the wire
on the arc of vibration would be much greater than its effect on the time of vibration, and
therefore would be quite sensible. But it has been shewn in Section IV., that the effect of the
wire in diminishing the arc of vibration is probably greater than would be given by the
formula, and therefore the uncertainty depending on the wire is likely to amount to a very
sensible fraction of the whole amount. Again, since Bessel’s experiments were all made in air,
no data are afforded whereby to eliminate the portion of the observed result which was due to
friction at the point of support, imperfect elasticity of the wire, or gradual dissipation of vis
viva by communication of motion to the supporting frame. Moreover in the case of the long
pendulum the observations were made with rather too large arcs, for the law of the decrease of
the arc of vibration deviated sensibly from that of a geometric progression. In Baily’s
experiments, only the initial and final arcs are registered, and not even those in the case of the
¢ additional experiments.” Hence these experiments do not enable us to make out whether it
would be sufficiently exact to suppose the decrease to take place in geometric progression.
Moreover, the final arc was generally so small, that a small error committed in the measure-
ment of it would cause a very sensible error in the rate of decrease concluded from the
experiment. For these reasons it would be unreasonable to expect a near accordance between
the formulz and the results of the experiments of Bessel and Baily. Still, the formule might
be expected to give a result in defect, and yet not so much in defect as not to form a large
portion of the result given by observation. On this account it will not be altogether useless to
compare theory and observation with reference to the decrement of the arc of vibration.

73. Let us first consider the case of a sphere suspended by a fine wire. Let the notation
be the same as was used in investigating the expression for the effect of the air on the time of
vibration, except that the factors &', k', come in place of k, k. Considering only that part of
the resistance which affects the arc of vibration, we have for the portions due respectively to
the sphere and to the element of the wire whose length is ds, and distance from the axis of
suspension s,

an(l+a)-‘—ﬁ, k’,]—y[llds.nsiz,

and if we take the moment of the resistance, and divide by twice the moment of inertia, the
coefficient of gf? in the result, taken negatively, and multiplied by ¢, will be the index of ¢ in
the expression for the arc. Hence if a, be the initial arc of vibration, and a, the arc at the
end of the time ¢

KM @+ a)?+ Lh/M, P wt

1 -1 = .
e o5 ~OBe M M +ay+3ME 27’

. e e, A108)

M’ (I + a)* being as before taken for the moment of inertia of the sphere, which will be
abundantly accurate enough. If then we put ! for the Napierian logarithm of the ratio of the
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arc at the beginning to the arc at the end of an oscillation, we must put #= 7 in (168),
whence, neglecting the effect of the wire, we obtain

’

ey

. . . . . . . . . 1
2 'S (169)

If now A% be the correction to be applied to &’ in this formula on account of the wire,
since k', k, are combined together in the expression for the arc just as k, %, in the expression

for the time, we get
k'

AK = — AF, : . . b Mo (@70)
ke,
and the approximate formule (115) give
, 4L
Ak =-—A4Ak, . . . . . . . (1)
w

whence the numerical value of AKX’ is easily deduced from that of A%, which has been already
calculated. 'We get also from (52)
F=k-3+4G-%, . . . . . . (1)

whence &’ may be readily deduced from %, which has been already calculated.

74. Before comparing these formule with Bessel’s experiments, it will be proper to
enquire how far the latter are satisfied by supposing the arcs of oscillation to decrease in
geometric progression. In Bessel’s tables the arc is registered in the column headed u. -
This letter denotes the number of French lines read off on a scale placed behind the wire,
and a little above the sphere, and is reckoned from the position of instantaneous rest of the
wire on one side of the vertical to the corresponding position on the other side. The distance
of the scale from the axis of suspension being given, as well as the correction to be applied
to u on account of parallax, the arc of oscillation may be readily deduced. However, for
our present purpose, any quantity to which the arc is proportional will do as well as the
arc itself, and u, though strictly proportional to the tangent of the arc, may be regarded as
proportional to the arc itself, inasmuch as the initial arc usually amounted to only about 50’
on each side of the vertical.

Now we may form a very good judgment as to the degree of accuracy of the geometric
formula by comparing the arc observed in the middle of an experiment with the geometric
mean of the initial and final arcs, I have treated in this way Bessel’s experiments, Nos. 1, 2,
3, 4, and 5. Each of these is in fact a group of six experiments, four with the long pendulum
and two with the short, so that the whole consists of 20 experiments with the long pendulum,
and 10 with the short. In the case of the long pendulum, the observed value of w regularly
fell short of the calculated value, and that by a tolerably constant quantity, The mean differ-
ence amounted to 0.688 line, and the mean error in this quantity to 0.109. This mean error
was not due entirely to errors of observation, or variations in the state of the air, &c., but
partly also to slight variations in the initial arc, larger differences usually accompanying larger
initial arcs. The initial arc usually corresponded to u = 89 or 40 lines, and the final to u = 15

Vor. IX. Part IL 36
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or 16 lines. In the case of the short pendulum, the differences in 8 cases out of 10 had the
same sign as before. 'The mean difference was 0.025, and the mean error 0.043. 'The arcs of
oscillation were nearly the same as before; but inasmuch as the axis of suspension was nearer
to the scale than before, the initial value of u was only about 12 or 13 lines, and the final
value about 7 lines. When the results of some of the experiments were laid down on paper, by
abscissze taken proportional to the times and ordinates to the logarithms of u, it was found that
in the case of the long pendulum the line so drawn was decidedly curved, the concavity being
turned toward the side of the positive ordinates. The curvature of the line belonging to
the short pendulum could hardly be made out, or at least separated from the effects of
errors of observation. The experiments 9, 10, 11, having been treated numerically in the
same way as the experiments 1—5, led to much the same result. In the 16 experiments with
the ivory sphere and short pendulum contained in the experiments Nos. 12, 18, 14, and 15,
the excess of the calculated over the observed value of u was more apparent, the mean
excess amounting to 0.129. The reason of this probably was, that the observations with the
ivory sphere were made through a somewhat wider range of arc than those with the brass
sphere.

It appears then that at least in the case of the long pendulum a correction is necessary, in
order to clear the observed decrease in the arc of oscillation from the eftect of that part of the
resistance which increases with the arc more rapidly than if it varied as the first power of the
velocity, and so to reduce the observed rate of decrease to what would have been observed in
the case of indefinitely small oscillations.

75. In Coulomb’s experiments it appeared that the resistance was composed of two terms,
one involving the first power, and the other the square of the velocity. If we suppose the
same law to hold good in the present case, and denote the amplitude of oscﬂlatxon at the end
of the time #, measured as an angle, by a, we shall obtain

-‘-Zd—:——Aa—Baz, TR SN
where 4 and B are certain constants. We must now endeavour to obtain 4 from the results
of observation. Since the substitution for a of a quantity proportional to « will only change
the constant B in (178), and the numerical value of this constant is not required for com-
parison with theory, we may substitute for a the number of lines read off on the scale as
entered in Bessel’s tables in the columns headed u.

I have employed four different methods to obtain 4 from the observed results. The
one I am about to give is the shortest of the four, and is sufficiently accurate for the
purpose.

The equation (178) gives after dividing by «

dloga
dt

= - A = Ba- . . . . . . . (174)
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Now, as has been already observed, the arcs of vibration decrease nearly in geometric pro-
gression. If this law were strictly true, we should have

a=ao(ﬁ2)%,. S ¢ )

a

where a, denotes the initial and a, the final arc, and T denotes the whole time of obser-
vation. We may, withont committing any material error, substitute this value of a in
the last term of (174). The magnitude of the error we thus commit is not to be judged
of merely by the smallness of B. The approximate expression (175) is rather to be
regarded as a well-chosen formula of interpolation, and in fact 7'~'log (a a;™") differs
very sensibly from 4. Making now this substitution in (174), integrating, and after inte-
gration restoring a in the last term by means of (175), we get

BTa

log ai=an A6 log a, - log a,

+C, . « . ... (176)

C being an arbitrary constant. To determine the three constants 4, B, C, let a, be the
arc observed at the middle of the experiment, apply the last equation to the arcs a5, a;, a,,
and take the first and second differences of each member of the equation. Let A, denote
the sum of the two first differences, so that A,¢ is the same thing as 7. Then we may
take for the two equations to determine 4 and B

BA‘t. Alao.

BAt.A?
. Aloga, = — 2idLla
A,logao

Aloga, = — ANt - A% Tog o .

Eliminating B, and passing from Napierian to common logarithms, which will be denoted
by Log., we get

- A; Log a, {1 A? Log a,. A, ao} )

= LOgG.A]t —A] LOgao.A2a0
d
If we suppose the part of —d—‘; which does not vary as the first power of a to he
a*¢'(a) instead of Ba’, we shall get in the same way

Lz A, Log a, {1 g A*Log ay. A @ (ay) o
Loge.At Ay Log ay. A ¢ (ay)

(178)

76. 1 have not attempted to deduce evidence for or against the truth of equation (173)
from Bessel’s experiments. The approximate formula (175) so nearly satisfied the obser-
vations, that almost any reasonable formula of interpolation which introduced one new
disposable constant would represent the experiments within the limits of errors of obser-
vation. It may be observed, that the factor outside the brackets in equations (177) and
(178) is the first approximate value of A got by using only the initial and final arcs,
and supposing the arcs to decrease in geometric progression. In the case of the long
pendulum, the value of 4, corrected in accordance with the formula (178), would be very
sensibly different according as we supposed ¢(a) to be equal to Ba, in which case (178)

36—2
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would reduce itself to (177), or equal to Ba’. In the case of the long pendulum with
the brass sphere, the corrected value of 4, deduced from the formula (177), was equal to
about 0.77 of the first approximate value.

I have not considered it necessary to go through all Bessel’s experiments, as it was
not to be expected that the formula should account for the whole observed decrement. I
have only taken four experiments for each kind of pendulum, namely, I. a, b, e, and f
for the long pendulum with the brass sphere; I. ¢ and d and I ¢ and d for the short
pendulum with the brass sphere; XII a, b, ¢, and d for the long pendulum with the ivory
sphere, and XIIL d, ¥, ¢/, and d for the short pendulum with the ivory sphere. The
formula (177) gave the following results. First case, Loge.r4 =.0000759; mean error
=.,0000020. Second case, Log e.74 =.0000504; mean error =.0000075. Third case, Loge. 4
= .000631; mean error =.000046. Fourth case, Loge. 4 =.000167; mean error = .000074.
Now [ =74, and therefore, to get the values of | deduced from experiment, it will be
sufficient to divide the numbers above given by the modulus of the common system of
logarithms. The theoretical value of | will be got from (169), if we add to %' the
correction Ak’ depending upon the wire. 'The following are the results:

Iong p. brass s. short p. brasss. long p. ivorys. short p. ivory s.
1000000 [ for sphere alone in an unlimited

mass of fluid, by theory ............ 67 50 298 222
additional for wire .......c.eeeceieenrenens 27 9 114 39
94 59 412 261

1000000 I by experiment ....cccceeeereiees 175 116 1453 384

It appears then that the calculated rate of decrease of the arc amounts on the average
to about half the rate deduced from observation. This is about what we might have
expected, considering the various circumstances, all tending materially to augment the rate
of decrease, which were not taken into account in the calculation.

77. Of Baily’s pendulums I have compared the following with theory in regard to the
decrement of the arc of vibration. No. 1 (the 11-inch platina sphere), experiments 1 to 8;
No. 8 (the brass 1}-inch sphere), experiments 9 to 16; No. 6 (the 2-inch brass sphere), experi-
ments 33 to 40 ; No. 21 (the 0.410 inch long copper cylindrical rod), experiments 109 to 112 ;
and No. 35—38 (the 14-inch long brass tube), experiments 167 to 174. I have*not thought it
worth while to compute the results obtained with the other 11-inch and 2-inch spheres, inas-
much as they were of the same size as the brass spheres, and moreover the observation of the
decrement of the arc was not the object Baily had in view in making the experiments. The
3-inch sphere, and all the other cylindrical rods and combinations of cylindrical rods and
spheres, belong to the ¢ additional experiments” for which the arcs are not given.

The mode of performing the calculation will best be explained by an example. Take, for
instance, the pair of experiments Nos. 1 and 2. In No. 1 the total interval was 4.22 hours, the
initial arc was 0°77, the final arc 0°.29, the mean height of the barometer 30.24 inches, and the
temperature about 381°F, The difference of the common logarithms of the initial and final
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arcs is 0.424, and this divided by the total interval gives 0.1005 for the difference of logarithms
for one hour. The second experiment, treated in a similar way, gives 00852, which expresses
the effect of friction at the point of support, communication of motion to the support itself,
&c., together with the resistance of highly rarefied air at a pressure of only 0.97 inch of mer-
cury. Since we have reason to believe that y' is independent of the density, we may get the
effect of air at a pressure of 30.24 ~ 0.97 or 29.27 inches of mercury by subtracting 0.0352 from
0.1005, which gives 0.0653. Reducing to 29 inches of mercury for convenience of comparison,
we get 0.0649. Each pair of experiments is to be treated in the same way. Since the tempe-
rature was nearly the same in the experiments made with the same pendulum, we may suppose
it constant, and equal to the mean of the temperatures in the experiments made under the
full atmospheric pressure. The experiments reduced consist of four pair for each pendulum,
except No, 21, for which only two pair were performed. The following are the results. For
the 13-inch platina sphere 0.0644, mean error 0.0044. For the 1}-inch brass sphere 0.180,
mean error 0.024. For the 2-inch brass sphere 0.094, mean error 0.013. For the copper rod
0.486, mean error 0.118. For the brass tube the results were 0.145, 0.363, 0.338, 0.305.
Rejecting the first result as anomalous, and taking the mean of the others, we get 0.335, mean
error 0.030.  To obtain I fron: the mean results above given we have only to divide by 3600
times the modulus, and multiply by =, and for the experiments with spheres we may suppose
=11 4

The mode of calculating | from theory in the case of a sphere suspended by a fine wire
has already been explained. For the sake of exhibiting separately the effect of the wire, I will
give one intermediate step in the calculation.

1.44 inch sphere. 1.46 inch sphere. 2.06 inch sphere.
k', for sphere alone............... 0.326 0.320 0.220
AK', the correction for the wire... 0.130 0.130 0.045
Total, to be substituted in (169).. 0.456 0.450 0.265

The formula (168), which applies to a sphere suspended by a wire, will be applicable to a
long cylindrical rod if we suppose M =0. Hence the same formula (169) that has been used
for a sphere may be applied to a cylindrical rod if we suppose k' to refer to the rod. For the
copper rod £'= 1.107, and for the tube &'= 0.2561. The following are the results for the three
spheres and two cylinders.

No. 1. No. 3. No. 6. No. 21. Nos. 35—38.
10000001, from experiment... 41 115 60 315 206
.+ .. from theory ...... 39 106 60 237 156
Difference......... +2 +9 0 + 78 + 50

It appears that the experiments with spheres are satisfied almost exactly. The differences
between the results of theory and observation are much larger in the case of the long cylinders.
Large as these differences appear, they are hardly beyond the limits of errors of observation,
though they would probably be far beyond the limits of errors of observation in a set of
experiments performed on purpose to investigate the decrement of the arc of vibration. It
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was to be expected beforehand that the results of calculation would fall short of those of
observation, inasmuch as ouly two arcs were registered in each experiment, so that no data
were afforded for eliminating the effect of that part of the resistance which did not vary as the
first power of the velocity.

78. 1 have now finished the comparison between theory and experiment, but before con-
cluding this Section I will make a few general remarks.

When a new theory is started, it is proper to enquire how far the theory does violence to
the notions previously entertained on the subject. The present theory can hardly be called
new, because the partial differential equations of motion were given nearly thirty years ago by
Navier, and have since been obtained, on differeut principles, by other mathematicians ; but
the application of the theory to actual experiment, except in some doubtful cases relating to
the discharge of liquids through capillary tubes, and the determination of the numerical value
of the coustant u', are, I believe, altogether new. Let us then, in the first instance, examine
the magnitude of the tangential pressure which we are obliged by theory to suppose capable
of existing in air or water.

For the sake of clear ideas, conceive a mass of air or water to be moving ip horizontal
layers, in such a manner that each layer moves uniformly in a given horizontal direction,
while the velocity increases, in going upwards, at the rate of one inch per second for each inch
of ascent. Theu the sliding in the direction of a horizontal plane is equal to unity, and there-
fore the tangential pressure referred to a unit of surface is equal to u or u’p. The absolute
magnitude of this unit sliding evidently depends only on the arbitrary unit of time, which is
here supposed to be a second. In the case supposed, it will be easily seen that the particles
situated at one instant in a vertical line are situated at the expiration of one second in
a straight line juclined at an angle of 45° to the horizon. Equating the tangential pressure.
u'p to the normal pressure due to a height 4 of the fluid, we get & = g=*u’, g being the force
of gravity. Putting now g =886, u'=(0.116)* for air, u'= (0.0564)* for water, we get
h = 0.00003486 inch for air, and A = 0.000008241 inch for water, or about the one thirty-thou-
sandth part of an inch for air, and less than the one hundred-thousandth part of an inch for
water. If we enquire what must be the side of a square in order that the total tangential
pressure on a horizontal surface equal to that square may amount to one grain, supposing the
density of air to be to that of water as 1 to 836, and the weight of a cubic inch of water to be
252.6 grains, we get 25 feet 8 inches for air, and 1 foot 10 inches for water. It is plain that
the effect of such small forces may well be insignificant in most cases.

79. 1In a former paper I investigated the effect of internal friction on the propagation of
sound, taking the simple case of an indefinite succession of plane waves*. It appeared that
the effect consisted partly in a gradual subsidence of the motion, and partly in a diminution of
the velocity of propagation, both effects being greater for short waves than for long. The
second effcct, as I there remarked, would be contrary to the result of an experiment of

¢ Camb. Phil. Trans. Vol. VIII. p.302.
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M. Biot’s, unless we supposed the term expressing this effect to be so small that it
might be disregarded. I am now prepared to calculate the numerical value of the term in
question, and so decide whether the theory is or is not at variance with the result of M. Biot’s
experiment.

According to the expression given in the paper just mentioned, we have for the propor-
tionate diminution in the velocity of propagation

8w
A being the length of a wave, and V the velocity of sound. To take a case as disadvantageous
as possible, suppose A only equal to one inch, which would correspond to a note too shrill to
be audible to human ears. Taking the velocity of sound in air at 1000 feet per second, there
results for the common logarithm of the expression above written 11.0428, so that a wave would
have to travel near 100000000000 inches, or about 1578000 miles, before the retardation due
to friction amounted to one foot. It is plain that the introduction of internal friction leaves
the theory of sound just as it was, so far as the velocity of propagation is concerned, at least
if the sound be propagated in free air.

The effect of friction on the intensity of sound depends on the first power of '. In the
case of an indefinite succession of plane waves, it appears that during the time ¢ the amplitude
of vibration is diminished in the ratio of 1 to e~ and therefore the intensity in the ratio of
1 to ¢2¢%, where

82y’
Ty

Putting A =1 and ¢ = 1 we get 1 to 04923, or 2 to 1 nearly, for the ratio in which the intensity

.

is altered during one second in the case of a series of waves an inch long. The rate of dimi-
nution decreases very rapidly as the length of wave increases, so that in the case of a series of
waves one foot long the intensity is altered in one second in the ratio of 1 to 0:995095, or 201
to 200 nearly. It appears then that in all ordinary cases the diminution of intensity due to
friction may be neglected in comparison with the diminution due to divergence. If we had
any accurate mode of measuring the intensity of sound it might perhaps be just possible, in
the case of shrill sounds, to detect the effect of internal friction in causing a more rapid dimi-
nution of intensity than would correspond to the increase of distance from the centre of diver-
gence.
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Section II.

Suggestions with reference to future experiments.

80. I am well aware that the mere proposal of experiments does not generally form a
subject fit to be brought before the notice of a scientific society. Nevertheless, as it frequently
happens in the division of labour that one person attends more to the theoretical, another to
the experimental investigation of some branch of science, it is not always useless for the theo-
rist to point out the nature of the information which it would be most important to obtain
from experiment. I hope, therefore, that I may be permitted to offer a few hints with refer-
ence to experiments in which the theory of the internal friction of fluids is concerned.
I shall omit all details, since they would properly come in connexion with the experi-
ments,

Experiments with which the theory of internal friction in fluids has more or less to do may
be performed for either of the following objects: first, to test still further the truth of the
theory ; secondly, to determine the index of friction of various gases, liquids, or solutions; to
investigate the dependance of the index of friction of a gas on its state of pressure, tempera-
ture, and moisture ; or to endeavour to make out the law according to which the index of fric-
tion of a mixture of gases depends upon the indices of friction of the separate gases; thirdly,
to measure the length of the seconds’ pendulum, or its variation from one part of the earth’s
surface to another.

81. First object. The theory has been already put to a pretty severe test by means of the
experiments of Baily and others. Nevertheless there are some uncertainties in the comparison of
theory and experiment arising from the influence of modifying causes of which the effect could
only be estimated from theory, and yet was not so small as to be merged in errors of obser-
vation. Moreover, experiments on the decrement of the arc of vibration are almost wholly
wanting. The following system of pendulums, meant to be swung in air and in vacuum, would
afford a very good test of the theory.

No. 1. A 2-inch or 1}-inch sphere swung with a fine wire.

No. 2. A very small sphere swung with the same kind of wire.

No. 3. A long cylindrical rod, a few tenths of an inch in diameter.

No. 4. A cylinder only three or four inches long, of the same diameter as No. 3, swung
with the same kind of wire as No. 1.

The vacuum tube ought to be of sufficient size to render the estimated correction for con-
fined space less than, or at most comparable with, errors of observation. The vacuum appa-
ratus used by Col. Sabine would do very well. If the vacuum tube be not of sufficient
size, it ought to admit of removal, and to be removed when the pendulums are swung in
air.

In all the experiments the arc of oscillation ought to be carefully observed several times
during the motion, the observation of the arc being quite as important for the purposes of
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theory as the observation of the time. Indeed, if it should be inconvenient to observe the
time, the observation merely of the arc would be very valuable as a test of theory. In that
case an approximate value of the time of oscillation in air would be required.

In the system proposed, Nos. 1 and 8 are the principal pendulums, Nos. 2 and 4 are intro-
duced for the sake of making certain small corrections to the results of Nos. 1 and 8. No. 2
is meant for the elimination from No. 1 of the effect of the wire, and No. 4 for the elimination
from No. 3 of the effect of the resistance experienced by a small portion of the rod near its
end. The times of vibration of the four pendulums ought to be nearly the same, although
for that purpose slightly different lengths of wire would be required in Nos. 1, 2, and 4.

It follows from theory that for a given pendulum the factor n is a function of the time of
vibration. This is a result which scems to have been hardly so much as suspected by those
who were engaged in pendulum experiments, or at most to have been mentioned as a mere
possibility*, and therefore it might be thought advisable to verify it by direct experiment.
For my own part I regard it as so intimately connected with the fundamental principles of the
theory, that if the theory be confirmed in other respects I think this result may be accepted on
the strength of theory alone. The direct comparison with experiment would be inconvenient,
because it would require a clock which kept excellent time, and yet admitted of being adjusted
so as to make widely different numbers of vibrations in a day. The result could, however, be
confirmed indirectly by observing the arc of vibration, an observation which is as easy with one
time of vibration as with another.

82. Second object. According to theory, the index of friction may be deduced from
experiments either on the arc or on the time of vibration. It must be left to observation to
decide which give the more consistent results. Should the results obtained from the arc appear
as trustworthy as those obtained from the time, it would apparently be much the easiest way of
determining ' for an elastic fluid to observe the arc, because no particular accuracy would then
be required in the observation of time. As to the form of the pendulum, a cylindrical rod
would apparently be the best if only a single pendulum were employed. The observation of
the arc seems the only practicable way of determining the influence of temperature on the index
of friction, unless the pendulum be extremely light, or unless the observer be content with the
limited range of temperature which may be procured by making observations at different times
of year. For in an apparatus artificially heated or cooled, it would be difficult to prevent
small unknown variations of temperature, which would cause variations in the rate of vibra-
tion, in consequence of the expansion and contraction of the pendulum; and these variations
would vitiate the resnlt of the experiment, so far as the time of vibration is concerned, because
the effect of the gas on the time of vibration is deduced from the small difference between two
large quantities which are directly observed. But the effect of the gas on the arc of vibration
produces by far the greater part of the whole diminution observed, and therefore small fluc-
tuations of temperature would not be of much consequence, except so far as they might

* It should be observed however that in a subsequent | deduced from other experiments that the value of k¥ was larger
memoir ( Astronomische Nachrichten, No.223, p. 106), Bessel | for the long than for the short pendulum,
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occasion gentle currents; and even then would not be very important, because the forces
thence arising would not be periodic, and dependent upon the phase of vibration of the
pendulum,

The grand difficulty which besets the observation of the time of vibration of a pendulum
oscillating in a liquid consists in the rapidity with which the oscillations subside. The best
form of a pendulum to oscillate in a liquid would be a sphere suspended by a fine wire. The
vessel containing the liguid and the sphere immersed in it ought to be so large as to render
the correction for confined space insensible. But the index of friction of a liquid would pro-
bably be better determined by experiments more of the nature of those of Coulomb, or perhaps
by the slow discharge of liquids through narrow tubes.

Among the gases for which- u’ ought to be determined experimentally should be
mentioned coal-gas, on account of the practical application which it appears possible to make
of the result to the laying down of gas-pipes. The calculation of the resistance in a circular
pipe is very simple, and is given in Art. 9 of my former paper. According to the equations
of condition assumed in the present paper we must put U =0, U denoting in that article the
velocity close to the surface. It appears that the pressure spent in overcoming friction varies
as the mean velocity divided by the square of the diameter of the pipe, or as the rate of supply
divided by the fourth power of the diameter. This goes on the supposition that the motion is
sufficiently slow to allow of our neglecting the pressure which may be spent in producing
eddies, in comparison with that spent in overcoming what really constitutes internal friction.

83. Third object. With respect to experiments for determining the length of the
seconds’ pendulum, the theory of internal friction rather enables us to calculate for certain
forms of pendulum the correction due to the inertia of the air than points out any particular
mode of performing the experiments. Even the ordinary theory of hydrodynamics points out
the importance of removing all obstacles to the free motion of the air in the neighbourhood
of the pendulum if we would calculate from theory the whole correction for reduction to a
vacuum, . p

Since the theoretical solution has been obtained in the case of a long cylindrical rod, or of
such a rod combined with a sphere, we may regard a pendulum formed in this manner, and
which is convertible in air, as also convertible in vacuum, for it is of small consequence
whether the pendulum be or be not really convertible in vacuum, provided that if it be not we
know the correction to be applied in consequence.
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Note A, Article 65.

Let us apply the general equations (2), (8) to the fluid surronnding a solid of revolution
which turns about its axis, with either a uniform or a variable motion, supposing the fluid to
have been initially either at rest, or moving in annuli about the axis of symmetry.

In the first place we may observe, that the fluid will always move in annuli about the axis
of symmetry. For let P be any point of space, and L any line passing through P, and
lying in a plane drawn through P and through the axis of symmetry; and at the end of the
time ¢ let %' be the velocity at P resolved along L. Now consider a second case of motion,
differing from the first in having the angular velocity of the solid and the initial velocity of
the fluid reversed, every thing else being the same as before. It follows from symmetry, that
at the end of the time # the velocity at P resolved along L will be equal to #’, since the
motion of the solid and the initial motion of the fluid, which form the data of the one problem,
differ from the corresponding quantities in the other problem only as regards the distinction
between one way round and the other way round, which has no relation to the distinction
between to and fro in the direction of a line lying in a plane passing through the axis of
rotation. But since all our equations are linear as regards the velocity, it follows that in the
second problem the velocity will be the same as in the first, with a contrary sign, and therefore
the velocity at P in the direction of the line L will be equal to — %’. Hence « = — %', and
therefore %' = 0, and therefore the whole motion takes place in annuli about the axis of
rotation.

Let the axis of rotation be taken for the axis of #; let w be the angle which a plane
passing through this axis and through the point P makes with the plane of xy, and let v’ be
the velocity at 2. Then

= — v sin w, v =10 cosw, w =0,

and all the unknown quantities of the problem are functions of ¢, %, and 7z, where
@ =4/ (2* + y°). Substituting in equations (2) the above values of u, v, and w, and after
differentiation putting w = 0, as we are at liberty to do, we get

d
l=0, '£=O’

do

v &Y 1 dv v dv’
M( )=‘°7{" ... (179)

v T de T dw &
The first two of these equations give p = a constant, or rather p = a function of ¢, which for
the same reason as in Art. 7 we have a right to suppose to be equal to zero. The third
equation combined with the equations of condition serves to determine v’
Now in the particular case of an oscillating disk, the equation (179) becomes according to
the mode of approximation adopted in Art. 8

d?o’ dv’
,L d? = P _d—t Py . . . . . . . . (180)

37—=2
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which in fact is the same as the second of the equations (8). The solution thus obtained is as
we have seen

v'='w-f(z,t), o0 S E R (118 1T))

f denoting a function the form of which there is no need to write down, which satisfies (180)
when written for »’. Now it will be seen at once that the expression (181) satisfies the exact
equation (179), and therefore the approximate solution obtained by the method of Art. 8 is in
fact exact, except so far as regards the termination of the disk at its edge, which is what it was
required to prove.

Passing from semi-polar to polar co-ordinates, by putting z =7 cos 6, w = rsin 6, we get
from (179), after writing M’P for 1/,

v 2 dv 1 d

dv') v 1 do
drt +r dr +'r”sin9 de

(smﬂ-d—a - = el e (F

Suppose now the solid to be a sphere, having its centre at the origin. Let a be its
radius, 8 its angular velocity, and suppose the fluid initially at rest. Then o’ is to be deter-
mined from the general equation (182) and the equations of condition

v =0 when ¢ =0, '=a8sin@ when r=a, ©'=0 when r= o.
All these equations are satisfied by supposing
v'=v" sin 6,
v" being a function of r and ¢ only. We get from (182)
" 2dv’ 20" 1 do”
W“";‘Zl?_?’—:,?ﬁ VP R w byt |-

If we suppose 8 constant, v” will tend indefinitely to become constant as ¢ increases inde-
”

finitely, and in the limit b 0, whence we get from (183) and the equations of condition

v’= a8 when r =q, v"=0 when r =,

. 8a° i 8a ing
g = — sin®.
This is the solution alluded to in Art. 8 of my paper On the Theories of the Internal
Friction of Fluids in motion, &e.

Nore B, drticle 65.

Let us resume the problem of Art. 7, but instead of the motion of the plane being
periodic, let us suppose that the plane and fluid are initially at rest, and that the plane is
then moved with a constant velocity V, and let the notation be the same as in Art. 7.
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The general equations (8) remain the same as before, but the equations of condition
become in this case
v=0 when {=0 from # =0 to v = »,
v="Vwhene=0 from =0 to { = ».

By Fourier’s theorem and another theorem of the same kind, v may be expanded between
the limits 0 and = of & in the following form :

2 = @ ’ ’ ’ 2 2 S . : /7 ’ /
v = —f f cos ax COSamqb(w,f)dwda+—f f sin ez sin ax’'\ (¢, t) do'da. . (184)
Q 0 m™ .

™ 0 i

In fact, v could be expanded by means of either of these expressions separately, and of course
can be expanded in an infinite number of ways by the sum of the two. If however v had been
expanded by means of the first expression alone, its derivatives with respect to & could not
have been obtained by differentiating under the integral signs, inasmuch as the derivatives of
an odd order do not vanish when # = 0, but would have been given by certain formnlse which I
have investigated in a former paper.¥ A similar remark applies to the second expansion, in
consequence of the circumstance that v itself and its derivatives of an even order do not vanish
with 2. But by combining the two expansions we may obtain the derivatives of v, up to any
order i that we please to fix on, by merely differentiating under the integral signs. For we
may evidently express the finite function v, and that in an infinite number of ways, as the sum
of two finite functions ¢ (=, ¢), \ (2,¢) which like v vanish when # = «, and which are
such that the odd derivatives of the first, and the even derivatives of the second, up to the
order i, as well as \/ (@, t) itself, vanish when # = 0. Substituting now in the second equa-
tion (8) the expression for v given by (184), we see that the equation is satisfied provided
2

d\r
—_ 'a® = 0 — "a? = 0.
dt+p.a¢ 5 dt+p.a\!/

These equations give

(P (ml’ t) =x (o'f},) e-ll'la’ts \’/ (ml’ t) = (x") e‘l‘-la2‘9
where y, o denote two new arbitrary functions. Substituting in (184), and then passing to the
first of the equations of condition, we get

0 =x(2) +0 (),
whence ¢ (2) = - x () and
2 © fe s ,
== +&)e ¥ty (2)da'd
v w_/; j; cosa(z+a)e x (@) a

(@ ta)

; fwe Wiy (a)da'. . . . . . (185)
0

=

't

The second of the equations of condition requires that

1 ) _ﬁ:’_ ; , 2 & 2 T
V=\—/*,T,,,—72fo Z 4#:x(w)dm-m—£ e x (25 /ut) ds.

* On the critical values of the sums of periodic series. Camb, Phil. Trans. Vol. VIIL p. 533.
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Since the second member of this equation must be independent of ¢, we get y (2') =
a constant, and this constant must be equal to V, since

2 @
2 [Cerdent.
'\/"r [)

Substituting in (185) we get
| V_ e ey
V= ——— | ¢ a¢ do’. . . . . . . (186
’\/'ﬂ'l.l.’t / & ( )

: NP Py ) do
For the object of the present investigation nothing is required but the value of o for z = o,
@

d
which we may denote by (&E) . We get from (186)
@/

(3—2)5'77%'? e e SN S

Now suppose the plane to be moved in any manner, so that its velocity at the end of the
time ¢ is equal to f(f). We may evidently obtain the result for this case by writing
f () dt for V, and ¢ — ¢ for ¢ in (187), and integrating with respect to #. We thus get

(%)f “ \-/ITI—'-[_;f’(tl) V%" ) \/:m' _éwf (t - t;)%. . (188)

To apply this result to the case of an oscillating disk, let rj—? = rF () be the velocity of
any annulus, and G the moment of the whole force of the fluid on the disk. Then

, d
G=amp p‘/;aﬁ(d—?>od“

and (?) will be got from (188) by substituting » F(¢) for f(¢). We find thus
&/

R © ¢
G \/m'.pwfo P2 i%l. b sptinise MdY

If we suppose the angular velocity of the disk to be expressed by A sin n#, where 4 is
constant, we must put F (¢) = 4 sin ¢ in (189), and we should then get after integration the
same expression for G as was obtained in Art. 8 by a much simpler process. Suppose,
however, that previously to the epoch from which ¢ is measured the disk was at rest, and
that the subsequent angular velocity is expressed by 4,sin n¢, where 4, is a slowly varying
function of ¢, Then

F(t) =0 when t <0, F(t) = 4;sinnt when ¢>0.

On substituting in (189) we get
dt

it
G = - vV wﬂ’.pa“nf Al—ll cos n(t — tl) —17;“. gy 5 (190)
0 1
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Now treating 4, as a slowly varying parameter, we get from a formula given by Mr Airy, and
obtained by the method of the variation of parameters,

——-=§—¥sinnt, c e e . ey ((101)

where I denotes the moment of inertia. In the expression for G we may replace 4,_, under
the integral sign by 4, outside it, because 4, is supposed to vary so slowly that 4,_, does not
much differ from 4, while ¢, is small enough to render the integral of importance. Making
this simplification and substituting in (191) we get

d4, dt,
=y t t -1 5 © o
csin n cosn (t-t)— R (192)

4,dt
where ¢ = o/ (wp).pa*nI-'. If then 4, be the initial and 4 the final value of 4, we get
from (192)

DZ—‘-cf{s‘"”tf”s”(t"t‘)\/ }dt .o o . (198)
0

Let now 4, + A 4, be what 4, would become if, while the final arc 4 and the whole time
¢ remained the same, the motion had been going on for an indefinite time before the epoch
from which ¢ is measured, in which case the superior limit in the integral involved in the
expression for G would have been o« in place of #.  Then

{em nt/ cosn (¢ — t,) »\/t} .o (194)

whence by subtracting, member from member, equation (193) from equation (194), we get -

4, + A4, { }
o T8N ¢ =
z 7T c jo- sinn f cosn(t—t)- ,\/t dt,

which becomes after integration by parts

{/\/ 24/t .cosnt — cos 2 tfwc ¢ ¢
— - .co — cos2n osnt —
¢ V't

logé_ﬂo= cf

4

0

lo

4, + A Ao
log ————

+ (2nt ~ sin 2n?) fwsin nt a } (195)
nt — si —t. .
t V't
Now ¢ is supposed to be very large: in Coulomb’s experiments in fact 10 oscillations were
observed, so that n¢ = 10wr. But when ¢ is at all large the two integrals

fwcos ntj—t— fwsin nt gs
¢ '\/t’ t V't

can be expressed under the forms

-

— P sinnt + Q cos nt, P cos nt + Qsinnt,
where

P=n'tt-1.3.2n3%+.., Q=1.2""n2¥-1.8.5 23041 +...,
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series which are at first rapidly convergent, and which enable us to calculate the numerical
values of the integrals with extreme facility. These expressions were first given by M.
Cauchy, in the case of Fresnel’s integrals, to which the integrals just written are equivalent.
They may readily be obtained by integration by parts, though it is not thus that they were
demonstrated by M. Cauchy. If now the above expressions be substituted for the integrals
in (195) the terms containing ¢} destroy each other, and for general values of ¢ the most im-
portant term after the first contains #-%.  Since however ¢ is supposed to correspond to the
end of an oscillation, so that n# is a multiple of , the coefficient of this term vanishes, and the
most important term that actually remains contains only ¢~#. Hence neglecting insensible

quantities we get from (195)

4+ 04, ¢ T

JOg ‘——A'o— E Q_n-' B . . . . . (196)

We get from (194) by performing the integrations

A+ A4,

w ot 3
1 — ,\/— sin n¢ (cosnt + sin nt) dt¢
og 2L men// I [[sinne( )

c . P
e & ,\/i {gnt +1-cos2nt — sm2nt},
4n 2n

which hecomes since #¢ is a multiple of =

A, + A4, ¢ T

1 = = U N L . 1
8 A 4n 2n — (197)
We get from (196) and (197)
4, + A4, A, + A4, A, + A4, 4,
= =plog —=—=t=aw e
2nt log 4, log Y og i + log 7’
whence
4, + A4 4
log 4o 7 o _ (2nt — 1)~ log j, S SIS (Y R))

and the same relation exists between the common logarithms of the arcs, which are propor-
tional to the Napierian logarithms. Now Log 4, — Log 4 is the quantity immediately deduced
from experiment, and Log (4, + A 4,) — Log 4, is the correction to be applied, in consequence
of the circumstance that the motion began from rest. Instead of applying the proportionate
correction + (2n¢ ~ 1)~ to the difference of the logarithms, we may apply it to the deduced
value of 4/4/, which is proportional to the difference of the logarithms. In Coulomb’s
experiments 10 oscillations were observed, and therefore 2n¢ = 20w, and (2nt ~ 1)~ = 0.01617,

and the uncorrected value of \/;u' being 0.0555, we get 0.0009 for the correction, giving
’
/1 = 0.0564,
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Note C. Article 50.

The resunlts mentioned in this article were originally given without demonstration; but as
the mode in which they were obtained is short, and by no means obvious, 1 have thought.
it advisable to add the demonstrations.

In order that the right-hand members of equations (138) may be perfect differentials, we
must have

dd + do’” dé N de’ -0 dd N dw"” 0
dy  da dx  dy de  dx 7 (@)
dé do”’ v dé de” _ dd do 0 5
dz de °  da dy dy =" 0
d wll d wnl d wll/ d w’ dw' d UJ”
=L E g0 EkEs — W - =0,
dy P T > it 0 dw * dy 0 ©

The equations (c) give
do' dw” de”

—= = Q)

E; = O, dy s dz . . . . . . (d)

In the particular case in which & = 0, the equations (a), (b), and (d) give
do' =0, do'= 0, do" =0,

and therefore o', ", and ™ are constant as stated in Art. 50, In the general case the equa-
tions (a), (b), and (d) give for the differentials of o', w’, and w” the following expressions:

dsd dé
d!'= - —— r—y
w e dy +dy ds,
,_ s dd
dw =—-¢ﬁd~+d-z-dw, 5 65 o o o olo o (6)
dd dé
do" = - —d — dy.
¥ dy T

In order that the right-hand members of these equations may be perfect differentials, we must
have

-@v—o a8 N d?d 0
dyds =" dwdz =" dwdyg > o D
c£2_3+d23 = a8 &3 . d?d  d2$
df Tdr" " @ tde . detap=®
and therefore
) d*d A
d—wz = 0, '@E = 0, -(i;’z_= 0. . . . . . . (g)
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The equations (f), (g) give

dd dé dé v
—_— — — =0
d o 0, d i 0, d ==
dd dé d A 3 :
90 that, =g and — are constant. Substituting in (e) and integrating, and then

dz’ dy’ ds
substituting in (138) the resulting expressions for o', »”, and ", and integrating again, we
shall obtain the results given in Art. 50.

G. G. STOKES.






