Examination 2
Prof. J. M. Powers
1 December 2000

1. (30) Air, with $\gamma=7 / 5, R=287 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$, flows isentropically in a variable area duct. At station 1, the static temperature, static pressure, and velocity are $400 \mathrm{~K}, 100 \mathrm{kPa}$, and $300 \mathrm{~m} / \mathrm{s}$. Find the static temperature, static pressure, and velocity at a point downstream where the duct has twice the area.
2. (30) Air, with $\gamma=7 / 5, R=287 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$ is initially at rest in a cylinder at $T=300 \mathrm{~K}$, $P=100 \mathrm{kPa}$. At $t=0$, a piston initially at $x=0$ is suddenly retracted at velocity $150 \mathrm{~m} / \mathrm{s}$. Determine the final temperature after the rarefaction, and sketch the process in an $x-t$ plane.
3. (40) Consider a cylinder of radius c in a two-dimensional, inviscid, incompressible flow field, with far field velocity U in the x direction, far-field pressure P_{o}, and density ρ. Find the amount of circulation Γ which is necessary to merge the two stagnation points to a single point. Find the pressure at the stagnation point. Sketch the streamlines and lines of constant potential.
