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Motivation
e Detailed finite rate kinetics critical in reactive fluid mechanics:

— Candle flames,
— Atmospheric chemistry,
— Internal combustion engines,
— Gas phase reactions in energetic solid combustion.
e Common detailed kinetic models are computationally expensive.
— 150 hr supercomputer time for calculation of steady, laminar,
axisymmetric, methane-air diffusion flame (Smooke)
— Expense increases with

« number of species and reactions modeled (linear effect),

* stiffness—ratio of slow to fast time scales, (geometric effect).
— Fluid mechanics time scales: 107 s to 10! s.

— Reaction time scales: 107!* s to 10? s.
e Reduced kinetics necessary given current computational resources.
e Adaptive discretization necessary for fine spatial structures.

e Inclusion of physical diffusion necessary for numerical conver-

gence.



Why Diffusion?
e Diffusion traditionally not modelled in detonation studies,

e Argued that very thin shock structures, thickness = O(um), will

have minimal influence on reaction events,

e However, inviscid solutions to two-dimensional reactive Euler equa-
tions in mildly unstable regimes do not appear to converge, while
viscous counterparts do (Singh, Powers, Paolucci, ATAA-99-0966,
1999),

e Hypothesis: inherent numerical diffusion is selecting structures in

“inviscid” calculations; these evolve unphysically with grid size,

e When physical diffusion zones are resolved numerically, grid-
independent physical diffusion dominates over numerical diffu-

sion.

e Prohibitively expensive to compute simultaneous viscous and re-
action zone structures with common numerical techniques and

actual physical parametric values.

e SPP modelled systems with reaction length /diffusion length ~ 10
to achieve resolved results; much larger ratios necessary to model

real systems.



Goals
e Implement robust new reduced kinetic method of

— Maas, U., and Pope, S. B., 1992, “Simplifying Chemical Ki-
netics: Intrinsic Low-Dimensional Manifolds in Composition

Space,” Combust. Flame, 83: 239-264.
— Lam, S. H., 1993, “Using CSP to Understand Complex Chem-
ical Kinetics,” Combust. Sci. Tech., 89: 375-404.

e [ixtend method to systems with time and space dependency.

e Extend method to systems in which fluid and chemical phenom-

ena evolve over similar time scales.

e Couple method with new wavelet collocation technique (Paolucci

& Vasilyev) for spatial discretization.
e Applications:

— ignition delay in shock tubes; detailed results,
— unstable viscous detonations,

— Bunsen burner flames,

— rocket nozzle flows,

— HMX gas phase reactions; preliminary manifolds.



Common Reduced Kinetics Strategies

e Fully frozen limit: no reaction allowed, uninteresting
e Fully equilibrated limit: commonly used in some problems

— has value for events in which fluid time scales are slow with

respect to reaction time scales,

— misses events which happen on chemical time scales.
e Simple one and two step models

— require significant intuition and curve fitting,
— can give good first order results,

— are often not robust.
e Partial equilibrium and steady-state assumptions
— again require intuition,
— are not robust.
e Sensitivity analysis
— can remove need to include unimportant reactions,

— not guaranteed to remove stiffness.



Intrinsic Low-Dimensional Manifold Method (ILDM)

e Uses a dynamical systems approach,

e Does not require imposition of ad hoc partial equilibrium or

steady state assumptions,
e Fast time scale phenomena are systematically equilibrated,
e Slow time scale phenomena are resolved in time,

e n-species gives rise to a n-dimensional phase space (same as com-
position space) for isochoric, isothermal combustion in well stirred

reactors,

e [dentifies m-dimensional subspaces (manifolds), m < n, embed-
ded within the n-dimensional phase space on which slow time

scale events evolve,
— Fast time scale events rapidly move to the manifold,
— Slow time scale events move on the manifold.
e Computation time reduced by factor of ~ 10 for non-trivial com-

bustion problems; manifold gives much better roadmap to find

solution relative to general implicit solution techniques (Norris,

1998)



Simplest Example

dz _ 15 (0) =
dy

A 0) = v,
g y, y(0)=y

e Stable equilibrium at (z,y) = (0,0); stiffness ratio = 10.

o [[DMisx =0

—y(s) = == pm substitute from ODE and manifold

d
—5 = (1)d—j, no longer stiff!

s = Soe_t,

e Projection onto manifold for s,, induces small phase error.



Formulation of General Manifolds

e A well stirred chemically reactive system is modeled by a set of

non-linear ordinary differential equations:

dx_

pri F(x), x(0) = x,,

X : species concentration; x € K"
e Equilibrium points defined by

X = X, such that F(x.,) = 0.

e Consider a system near equilibrium (the argument can and must

be extended for systems away from equilibrium) with X = x—X,,.

e Linecarization gives
dx
dt

where Fy 1s a constant Jacobian matrix.

F, - x,

e Schur decompose the Jacobian matrix:

T
Fy = Q UQ
: : : )\1 U192 e Uin e q,{
' ' ' 0 A2 .« .. u2n .« .. qg .« ..
Q((h ¢ qn), u=1, .| Q= :

0o -+ 0 M\, q,"f



Formulation of General Manifolds (cont.)

e () is an orthogonal matrix with real Schur vectors g; in its columns.

e U is an upper triangular matrix with eigenvalues of Fx on its

diagonal, sometimes placed in order of decreasing magnitude.

e The Schur vectors ¢; form an orthonormal basis which spans the
phase space, R".

e We then define m slow time scales, m < n.

e Next define a non-square matrix W which has in its rows the

Schur vectors associated with the fast time scales:
C]Zzﬂ

T
qm—|—2

q)

e Letting the fast time scale events equilibrate defines the manifold:
W - F(x) = 0.

o If m = 0, no slow time scales, W = Q?, and W - F(x) = 0
implies Q! - F(x) = 0, implies F(x) = 0: the equilibrium point

is the low dimensional manifold!



A Simple Example

e Consider
d
d_f = —100z + ysiny,  z(0) = =,
dy 3
— = — 0 = Y-
— z’ —y, y(0) =y

e Equilibrium points:

0 —100z + ysiny x 0
F pu— pu— 3 pu— .
0 3 —y Y 0
Other equilibrium points exist!

e Near the equilibrium point (0,0), linearization gives

dx

d - Y

5 0 -1/ \y
which is obviously stable.

e Schur decomposition is trivial:

Fy = QUQT

—100 O 1 0 —100 O 1 0
o -1, \o 1 o -1)l0 1
e Form the manifold:

W = (1 0),

Y

W.F() — (1 0)(100x+ysiny)

,I'g—y

—100x + ysiny = 0 The ILDM!



A Simple Example

dx .
at = -100x + ysin(y) x(0) =X ¢
dy _ 5
= X7 - O =
ot y y(0) =y,
Time Variation of X and Y
20.0
15.0
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50
- L 0.0
2.0 4.0 6.0 . 6.0
t(s)
Phase Plot
20.0
e i =]
100 —————— - — - - — ==
: WF(x)=0
equilibrium
point
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Simple Example: Parameterization and Stiffness Reduction

d
d—jfj = —100x + ysiny,

- — 3 —_ A
at -~ Y
e Time scales near origin: 7 = 1.0, 7, = 0.01. Stiff.

e First approximation to manifold is z = 1%)()3/ siny.

e Parameterize manifold as

1
T = ms sin s,
Yy = s.
e Chain rule gives
dy _dy ds
dt  ds dt’
e Substitute from ODEs and parameterization:
dy(s) ds
30 _ as
Ps) —y(s) = LT
1 d
1—0633 sin®s — 5 = (1)d—j,
d 1
d_j = 1—0633sin33 —s
e Linearize near equilibrium at origin:
ds
— = —s.
dt

Time scale: 7 = 1.0 No longer stiff!

e Solve ODE for s(t), substitute to get z(s(t)), y(s(t)):

1
T~ msoe_t sin (soe_t) , Y ~ Sp€

-t



Example: Zeldovich Mechanism of NO Formation
e Mechanism (two elements, five species, two reactions):

1.O+No — NO+N,  ky = L8x 101 2 oxp (38900 1),

2.NO+N — O+ Ng,  ky=38x101 % exp (Z12B1),

mol s

3. N+Oy — NO+0O, k3= 1.8x101 Texp( —1630 K3

4. NO+O — N+O, k, = 3. 8><109 cm Texp< 20820 K))
e Take T'= 1400 K, then

1 ky = 2.252 x 102 <2

2. ky = 2.805 x 1013 <’

mol s

3 ks = 8.905 x 1011 <’

mol s

4k, = 1.851 x 106

mol s

e Law of mass action for [Ns], for example, gives

d| N
[dt2] = —kl[NQ] [O] + kQ[NO] [N]
e For all species, law of mass action yields five non-linear ODEs:
[N] 1 -1 -1 1
k1[N2] O]
INO| 1 -1 1 -1
d ko[ N|INO|
— | [No] |=]|-1 1 0 0
di ks[N][Oo]
O] -1 1 1 -1
ks NOJ O]




Example: Zeldovich Mechanism of NO Formation, cont.

e To elucidate naturally conserved variables, use elementary row

operations to cast system in non-unique row echelon form:

[N] 1 -1 -1 1
k1[N3][O]
[NO] — [N] 0o 0 2 =2
d ko[ N]INO]
— [ 2[Ny] + [NO]+[N] =10 0 0 O
dt k3| N[O
O] + [N] 00 0 0
ks NOJ[O]
2[05] + [NO] — [N] 0 0 0 0

e We are left with

— two ODEs

— three algebraic constraints: conservation of N atoms, O atoms,

and number of molecules
— easily reduced to two ODEs in two unknowns: [N], [NO].
e We will reduce the two ODEs to one ODE by imposing the man-
ifold equation W - F(x) = 0, effectively equilibrating the fast

time scale.



Example: Zeldovich Mechanism of NO Formation, cont.

e Consider first the intrinsic algebraic constraints:
2[No] + [NO] + [N] 0
d
Sl e =]
2[0s] + [NO] — [N] 0

e Integrate these equations:

2[No) + [NO] + [N] = (4,
O]+ [N] = G,
2[0s] + [NO] — [N] = Cs.
The constants C', Cy, C3 come from initial conditions.

e Solve equations for secondary variables in terms of [N], [NVO]:

o] = 3 (G~ [NO] — [N))
0] = Co [N]
1

[Oa] = 3 (C3 — [NOJ] + [N])

e Note that rearrangement of the algebraic constraints demonstrates ele-

ment and molecule conservation:

2[Ny] + [N] + [NO] = (1,

2[0s] + [NO] + [O] = Cy + Cs,

N+ N0l + [N+ 0]+ [0l = PP w0,




Example: Zeldovich Mechanism of NO Formation, cont.

e Substitution of algebraic constraints into ODEs for [N] and [NO] gives

two autonomous ODEs well-suited for dynamic systems analysis:

% _ %mz — [N]) (C1 — [N] = [NOJ)
— ks [N][NO]
_%m (Cs + [N] — [NOJ)
+kyNO] (Cy — [N])
d[]c\z;O] _ %(02 — [N])(C) — [N] = [NO))

k[ NJINO
RN (05 + [V - [NO)
~kNOJ (€5 — [N))

e Take as initial conditions

mole

[N] = [NOJ = [N3] = [0] = [03] = 0.001 “2 2.

e Equilibrium when right hand side zero
e Three roots-one physical, two unphysical:

[NV] 116 x 1071 male\ /795 % 10711 mole\ /9 ()0 x 1073 mele
INOJ )  \ 278 x 1076 mele |7\ _2.78 x 1076 mele | "\ 0,00 x 100 mele )

cm3 cm3 cm?3




Example: Zeldovich Mechanism of NO Formation, cont.

e Linearization of equations near physical equilibrium gives

d

dt

d

dt

e Condition number (stiffness ratio) = ‘

[
[

[N] —1.16 x 1071
NOJ] —2.78 x 107

|

—9.67 x 10 3.38 x 10 )

811 x 10 —4.03 x 10°

( [N] —1.16 x 1071 )
[

[N] —1.16 x 1071
NO] —2.78 x 107¢

e Locally the ILDM is defined by

(—0.766 0.643) (

NOJ] —2.78 x 107

—0.766 —0.643

0.643 —0.766
—9.67 x 10® 3.38 x 10°
0 —1.19 x 10°

—0.766  0.643
T

—0.643 —0.766

[N] —1.16 x 1071
[NO] —2.78 x 10~

90710 — 8 1 % 107
W.F(x) = 0,
Fl([N],[NO])) o
([N, [NOJ) |

e Use arc length continuation methods to define complete ILDM

e The physical equilibrium has negative eigenvalues: stable.

e The non-physical equilibria have positive eigenvalues: unstable.



[NJ, [NO] mole/cm®
>

—
o

[NO] mole/cm®

-
o

INC]

|
IS

]
&

10 10 10 10
t(s)
attracting manifold
A S . .

F solution trajectory 1

equilibrium

point
N 107 107 10° 107 107

[N] mole/cm?®



Adaptive Multilevel Wavelet Collocation Technique
e Summary of standard spatial discretization techniques

— Finite difference-good spatial localization, poor spectral local-
ization, and slow convergence,

— Finite element- good spatial localization, poor spectral local-
ization, and slow convergence,

— Spectral-good spectral localization, poor spatial localization,

but fast convergence.

Wavelet technique

— See e.g. Vasilyev and Paolucci, “A Fast Adaptive Wavelet Col-
location Algorithm for Multidimensional PDEs,” J. Comp.
Phys., 1997,

— Basis functions have compact support,

— Good spatial localization, good spectral localization, and fast
convergence,

— Easily formulated to adapt spatially to capture steep gradients
via adding collocation points,

— Spatial adaptation is automatically and dynamically adaptive

to achieve prescribed error tolerance.



Ignition Delay in Premixed Hy-O-

e Consider standard problem of Fedkiw, Merriman, and Osher, J.

Comp. Phys., 1996,
e Shock tube with premixed Hy, Os, and Ar in 2/1/7 molar ratio,
e [nitial inert shock propagating in tube,
e Reaction commences shortly after reflection off end wall,
e Detonation soon develops,
e Model assumptions

— One-dimensional,

— No diffusion (one case); mass, momentum, and energy diffu-

sion (another case),
— Nine species, thirty-seven reactions,

— Ideal gases with variable specific heats.



Compressible Reactive Navier-Stokes Equations for H,-O, Problem

0 0
a—': + 9 (pu) =0, mass
0 0 5
5 (pu) + 92 (pu + P — T) =0, momentum
0 2 0 2
§<p<e—|—%)>+£<pu<e+%>+u(P—7)+q>=0, energy
0 0 , M o —E; pYy .
g7 P+ g (¥ = Yo, T e (S ) v H g EE)T species
N Y
= Z VA thermal equation of state
e=>Y, <h0 + / Cpi dT) - —, caloric equation of state
i %
4 Ou :
T = g,uﬁ—, Newtonian gas with Stokes’ assumption

N oY
= —p Z Dij—j, Fick’s law
i—1 8:13
oT N o T r r <
— —k% + Z Ji <h + /To cpi(T)dT> augmented Fourier’s law.

N=9 Species: HQ, 02, H, O, OH, HQOQ, HQO, HOQ, Ar
M = 37 reactions



Operator Splitting Technique

e Equations are of form

%q(m, t) + a%jf(q(:z;‘, t)) = glq(z,1)).

u2 T
q= (p,pu,p (6+ 5) ,pYi)

e f models convection and diffusion

where

e g models reaction source terms
e Splitting

1. Inert convection diffusion step:

0 0

d

Sa(t) = —Af(a ().

A, is either Godunov or wavelet discretization operator.

2. Reaction source term step:

2 ale.1) = sla(r. 1),
Cailt) = g(aln).

e Operator splitting with implicit stiff source solution can induce non-

physical wave speeds! (LeVeque and Yee, JCP 1990)



ILDM Implementation in Operator Splitting

e Form of equations in source term step:

0 0

d pU 0

el | =

dt | p (e + 7) 0
pY; w

e Equations reduce to
P = Po, U = Uy, € = €y,

dY; w
dt  po

e w has dependency on p, e, and Y;

e ODEs for Y; can be attacked with manifold methods when man-

ifold with p, e, H and O parameterization is available.

e In premixed problem, H and O element concentrations are re-

markably constant, reducing the dimension by two!
e Full equations integrated until sufficiently close to manifold

e Once on manifold, simple projection used to return to manifold

following convection-diffusion step



Sample ILDM for Hs — O,

e Projection of ILDM in H,O, HO5 plane,

e Adiabatic (e = 525 k.J/kg), isochoric (p = 0.25 kg/m?), element

concentrations of H and O constant,
e Complete manifold tabulated in three dimensions: p, e, Yg,0,
e Sowehavee.g. P(p,e,Ymo0),T (p,e,Ymo0),Yu (p,e,Ymo), ...
e Linear interpolation used for points not in table,

e Captures ~ 0.1 us reaction events.

H202 mass fraction

1 1 1 1 1 1 J
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

H20 mass fraction



Inviscid Hs — O, Ignition Delay with and without ILDM
e No diffusion,
e Godunov spatial discretization, 400 uniform finite difference cells,

e [mplicit (trapezoidal) convection step; Implicit (dlsode) or ILDM

reaction step,

e Correction of Fedkiw adopted to suppress artificial entropy layer

after shock reflection (see Menikoff, 1994).
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Inviscid Hs — O, Ignition Delay with and without ILDM

2 L L L L
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Viscous Hy; — O, Ignition Delay with Wavelets
e Mass, momentum, and energy diffusion modelled,

e Wavelet spatial discretization, explicit convection-diffusion time step-

ping, implicit reaction time stepping,
e 300 collocation points, 15 wavelet levels,

e Viscous shocks, induction zones, and entropy layers spatially resolved!

ot =180 us.
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Viscous Hy; — O, Ignition Delay with Wavelets

o ! =190 us
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Viscous Hy; — O, Ignition Delay with Wavelets

o t =200 us
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Viscous Hy; — O, Ignition Delay with Wavelets

ot =230 us
3000 : : : : : 600
2500} 400
X o 20071
q) ~
£ 2000( £
o > 0
@ I3
g 15001 S 200}
[) >
}_
1000} -400;
-600 |
500 : - - : : : - - - -
0 002 004 006 0.08 0.1 0 002 0.04 006 0.08 0.1
x (m) x (m)
X 105
35 0.7
3 0.6
~ 2.5 B
e_ﬂi £ 0.5¢1
s 2 04
5 >
g 15| g
ol 8 0.3}
0.5} 0.2}
0 . . ' . ' 0.1 - - : : -
0 002 004 006 0.08 0.1 0 002 0.04 006 0.08 0.1

x (m) x (m)



Comparison with Inviscid/ILDM Result at Same Time

o { =230 us
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Viscous Hy; — O, Ignition Delay with Wavelets

ot =180 us

e species mass fractions plotted vs. distance
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Viscous Hy; — O, Ignition Delay with Wavelets

ot =190 us

e species mass fractions plotted vs. distance
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Viscous Hy; — O, Ignition Delay with Wavelets

o t =200 us

e species mass fractions plotted vs. distance
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Viscous Hy; — O, Ignition Delay with Wavelets

ot =230 us

e species mass fractions plotted vs. distance
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Post Reflection Entropy Layer?: Viscous Wavelet Results

e No significant entropy layer evident on macroscale after shock

reflection when resolved viscous terms considered,

e Inviscid codes with coarse gridding introduce a larger entropy

layer due to numerical diffusion,

e Unless suppressed, unphysically accelerates reaction rate.
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Post Reflection Entropy Layer: Viscous Wavelet Results

e small entropy layer evident on finer scale,
e temperature rise ~ 5 K; dissipates quickly,

e inviscid calculations before adjustment give persistent tempera-

ture rise of ~ 20 K; reaction acceleration small.
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Viscous Hy; — O, Ignition Delay with Wavelets

Close-up: Viscous Shock Stucture and Induction Zone
ot =230 us,
e Induction zone length: ~ 470 um,

e No significant reaction in viscous shock zone.
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Viscous Hy; — O, Ignition Delay with Wavelets

Closer-up: Viscous Shock Stucture Only
ot =230 us

e predicted shock thickness: ~ 50 pum.
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Level

Viscous Hy; — O, Ignition Delay with Wavelets,

Instantaneous Distributions of Collocation Points

ot = 180 ws, two-shock structure with consequent collocation
point distribution,

o ¢t = 230 us, one-shock structure with evolved collocation point
distribution.
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Application to Gas Phase HMX System
e Simulating isobaric HMX combustion computationally intensive,
e Most effort in solving gas phase convection, reaction, diffusion,
e Based on 45 species, 232 step mechanism of Yetter, et al.,
e Fastest time scales predicted 10710 s (non-physical?),
e Stiffness ratio 10M (vs. 10° for Hy — Oy),

e Equations for gas phase combustion of HMX are of form

9 q@.t) + Lt(ale.1) = glalz, 1),

ot Oz
e Adiabatic, isobaric,

e Operator splitting appropriate,

e For non-premized problem, higher dimension (> 8?!) manifolds

necessary!
e Will need to parameterize by (h, p, H, O, N, C, Ar, > one free parameter)
10" < h < 10" erg/g; 107" < p < 107° g/em® 1077 < x4, < 1075
0<ye<10%0< vy <100 < yy <1050 < yo < 10
(Liau, 1999)

e Three-dimensional manifold for preliminary premixed problem?



ILDM for Gas Phase HMX System

e Based on 45 species, 232 step mechanism of Yetter, et al.,
e Adiabatic (h =62 x 10° erg/g) , isobaric (P = 32 bar),

e projection in Yy,, Yco, plane.

0.09r-

0.08 -

)
oo

0.07

T

0.06 -

0.05r-

mass fraction)

T

—0.04
8\

CO

0.03r

0.02-

0.01F

| | | | | | | | | J

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N2 (mass fraction)




Summary

e Robust method in place to compute manifolds with arbitrary

variables held constant (e.g. P, p, h),

e Effort still needed on improving technique of projecting onto man-

ifold initially,
e Fast linear interpolation scheme in place for table lookup,

e Robust method in place to solve less stiff differential equations

on or near manifold,

e Operator splitting allows implementation of manifold in solving

PDEs,

e Adaptive multilevel wavelet collocation method gives dramatic

spatial resolution,
e Full coupling of ILDM and wavelet methods soon forthcoming,
e Detailed studies of efficiency improvement necessary;,

e More general manifold techniques need developed to allow strong
fluid-chemistry coupling and relaxation of eigenmodes to steady

state solutions.



