
3

UC-405
SAND96-8216

Unlimited Release
Printed May 1996

CHEMKIN-III: A FORTRAN CHEMICAL KINETICS PACKAGE FOR THE ANALYSIS OF GAS-

PHASE CHEMICAL AND PLASMA KINETICS

Robert J. Kee, Fran M. Rupley, and Ellen Meeks
Thermal and Plasma Processes Department

and

James A. Miller
Combustion Chemistry Department

Sandia National Laboratories
Livermore, CA 94551-0969

ABSTRACT

This document is the user's manual for the third-generation CHEMKIN package. CHEMKIN is a
software package whose purpose is to facilitate the formation, solution, and interpretation of problems
involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for
incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of
two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is
a program that reads a symbolic description of an elementary, user-specified chemical reaction
mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase
Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that
may be called to return information on equations of state, thermodynamic properties, and chemical
production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are
not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems
that are characterized by more than one temperature, in which reactions may depend on temperatures
associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or
charge-neutral species. These new features have been implemented in such a way as to require little or
no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share
the same gas temperature.

4

ACKNOWLEDGMENTS

CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially
for applications related to advanced semiconductor processing. This aspect of the work was supported,
in large part, through a Cooperative Research and Development Agreement (CRADA) with
SEMATECH. Dr. Andrew Labun, at Digital Equipment Corporation, has been very generous of his time
and energies in suggesting the ways in which CHEMKIN can better meet the needs of the advanced
semiconductor processing industry. Prof. Mark Cappelli at Stanford University provided an initial
vision, which established the technical direction for the multi-fluid formulation that is implemented
in CHEMKIN-III.

CHEMKIN-III also has enhanced capabilities to handle a variety of pressure-dependent
unimolecular-falloff and bimolecular chemically activated processes. Dr. Gregory Smith of SRI
International and Dr. Jan Hessler of Argonne National Laboratory were instrumental in establishing
the technical formulations and provided important suggestions on the software implementation.

Finally, we are grateful to our many colleagues at Sandia and elsewhere, who have provided
numerous suggestions and have patiently worked with us as applications have migrated from
CHEMKIN-II to CHEMKIN-III. In particular, we acknowledge the efforts of Drs. Michael Coltrin,
Gregory Evans, Joseph Grcar, Pauline Ho, William Houf, Richard Larson, Andrew Lutz, Chris Moen,
Harry Moffat, and Jong Shon.

5

CONTENTS

Page

LIST OF FIGURES... 6
LIST OF TABLES .. 6
NOMENCLATURE... 7
I. INTRODUCTION.. 9

Background... 9
Structure and Use of CHEMKIN... 10
Example for a Single-Temperature Neutral Gas: Hydrogen Oxidation................................ 11
Example for a Multi-Temperature Plasma.. 14
Transportability... 16
Organization of this Report... 16

II. THERMODYNAMICS AND CHEMICAL RATE EXPRESSIONS ... 18
Choice of Variables .. 18
Equation of State and Conversion Formulas .. 18
Standard-State Thermodynamic Properties ... 21
Chemical Reaction Rate Expressions.. 25

III. THE MECHANICS OF USING CHEMKIN... 36
Structure of CHEMKIN ... 36
Job Control .. 38

IV. USING THE INTERPRETER... 39
Element Data.. 39
Species Data... 42
Thermodynamic Data ... 43
Reaction Mechanism Description... 46

V. QUICK REFERENCE GUIDE TO THE GAS-PHASE SUBROUTINE LIBRARY 59
Mnemonics .. 59

VI. ALPHABETICAL LISTING OF THE GAS-PHASE SUBROUTINE LIBRARY WITH
DETAILED DESCRIPTIONS OF THE CALL LISTS ... 72

VII. SAMPLE PROBLEM ... 136
1. UNIX Shell Script for Running the Sample Problem .. 137
2. Sample Input to the Interpreter .. 139
3. Output from the Interpreter for the Sample Input.. 140
4. Sample User’s FORTRAN Code: CONP ... 142
5. Input to the Sample FORTRAN Code, CONP... 146
6. Output form the Sample FORTRAN Code, CONP... 147
7. Summary of VODE Math Library Usage... 149

REFERENCES.. 153
APPENDIX A. STORAGE ALLOCATION FOR THE WORK ARRAYS.. 154

6

LIST OF FIGURES

Page

Figure 1. Sample neutral reaction mechanism as read by the CHEMKIN Interpreter. 12

Figure 2. Sample plasma reaction mechanism as read by the CHEMKIN Interpreter. 15

Figure 3. Rate constant as a function of pressure at fixed temperature for the unimolecular fall-
off reaction CH3 + CH3 (+M) ⇔ C2H6 (+M). The Troe and Lindemann forms are
illustrated as are the low- and high-pressure limiting forms. 31

Figure 4. Energy versus reaction coordinate diagram that illustrates the competition between a
three-body recombination reaction, CH3 + CH3 (+M) ⇔ C2H 6 (+M), and a
chemically activated bimolecular reaction, CH3 + CH3 (+M) ⇔ C2H5 +H (+M). 31

Figure 5. Rate constant as a function of pressure at fixed temperature for the chemically
activated reaction CH3 + CH3 (+M) ⇔ C2H5 + H (+M). The SRI and Lindemann
forms are illustrated as are the low- and high-pressure limiting forms. 32

Figure 6. Schematic diagram showing the structure of the CHEMKIN package and its
relationship to an application code. 37

Figure 7. A sample UNIX command procedure showing the steps required to compile and run an
application code using the CHEMKIN package. 38

Figure 8. Equivalent ways to describe element information 40

Figure 9. Equivalent ways to describe species information 42

Figure 10. Examples of thermodynamic data input. 45

Figure 11. Examples of reaction data 49

Figure 12. Examples of auxiliary information definitions 54

LIST OF TABLES

Page

Table I. Summary of the Rules for Element Data 41

Table II. Summary of the Rules for Species Data 43

Table III. Summary of the Rules for Thermodynamic Data 44

Table IV. Summary of the Rules for Reaction Data 49

Table V. Summary of the Rules for Auxiliary Information Data 55

7

NOMENCLATURE

CGS Units

ank Coefficients of fits to thermodynamic data depends on n

an
o Standard state specific Helmholtz free energy of the kth species ergs / g

a Mean specific Helmholtz free energy of a mixture ergs / g

Ak
o Standard state molar Helmholtz free energy of the kth species ergs / mole

A Mean molar Helmholtz free energy of a mixture ergs / mole

Ai Pre-exponential factor in the rate constant of the ith reaction depends on reaction

cpk Specific heat capacity at constant pressure of the kth species ergs / (g K)

cp Mean specific heat capacity at constant pressure ergs / (g K)

Cpk
o Standard state molar heat capacity at constant pressure of the kth species ergs / (mole K)

Cpk Molar heat capacity at constant pressure of the kth species ergs / (mole K)

Cp Mean molar heat capacity at constant pressure ergs / (mole K)

cvk Specific heat capacity at constant volume of the kth species ergs / (g K)

cv Mean specific heat capacity at constant volume ergs / (g K)

Cvk Molar heat capacity at constant volume of the kth species ergs / (mole K)

Cv Mean molar heat capacity at constant volume ergs / (mole K)

Ċk Chemical creation rate of the kth species moles / (cm3 sec)

Ḋk Chemical destruction rate of the kth species moles / (cm3 sec)

Ei Activation energy in the rate constant of the ith reaction [cal / mole]*

gk
o Standard state specific Gibbs free energy for the kth species ergs / g

g Mean specific Gibbs free energy of a mixture ergs / g

Gk
o Standard state molar Gibbs free energy for the kth species ergs / mole

G Mean molar Gibbs free energy of a mixture ergs / mole

hk Specific enthalpy of the kth species ergs / g

h Mean specific enthalpy of a mixture ergs / g

Hk
o Standard state molar enthalpy of the kth species ergs / mole

Hk Molar enthalpy of the kth species ergs / mole

H Mean molar enthalpy of a mixture ergs / mole

i Reaction index

I Total number of reactions

k Species index

k fi Forward rate constant of the ith reaction depends on reaction

kri Reverse rate constant of the ith reaction depends on reaction

K Total number of species

Kci Equilibrium constant in concentration units for the ith reaction depends on reaction
Kpi Equilibrium constant in pressure units for the ith reaction depends on reaction
M[] Total molar concentration of a mixture moles / cm3

* By default, Chemkin uses activation energies in calories instead of ergs.

CGS Units

8

N Number of coefficients in polynomial fits to C Rp
o

P Pressure dynes / cm2

Patm Pressure of one standard atmosphere dynes / cm2

qi Rate of progress of the ith reaction moles / (cm3 sec)

R Universal gas constant ergs / (mole K)

Rc Universal gas constant, in same units as activation energy [cal / (mole K)]

sk
o Standard state specific entropy of the kth species ergs / (g K)

s Mean specific entropy of a mixture ergs / (g K)

Sk
o Standard state molar entropy of the kth species ergs / (mole K)

Sk Molar entropy of the kth species ergs / (mole K)

S Mean molar entropy of a mixture ergs / (mole K)

T Temperature K

uk Specific internal energy of the kth species ergs / g

u Mean specific internal energy of a mixture ergs / g

Uk Molar internal energy of the kth species ergs / mole

U Mean molar internal energy of a mixture ergs / mole

Yk Mass fraction of the kth species

Xk Mole fraction of the kth species

Xk[] Molar concentration of the kth species moles / cm3

Wk Molecular weight of the kth species g / mole

W Mean molecular weight of a mixture g / mole

GREEK

αki Enhanced third-body efficiency of the kth species in the ith reaction

βi Temperature exponent in the rate constant of the ith reaction

ρ Mass density g / cm3

τ k Characteristic chemical destruction time of the kth species sec

υki Stoichiometric coefficient of the kth species in the ith reaction,

υ υ υki ki ki= ′ − ′′
′υki Stoichiometric coefficient of the kth reactant species in the ith reaction

′′υki Stoichiometric coefficient of the kth product species in the ith reaction

ω̇k Chemical production rate of the kth species mole / (cm3 sec)

9

CHEMKIN-III: A FORTRAN CHEMICAL KINETICS PACKAGE FOR THE ANALYSIS OF GAS-

PHASE CHEMICAL AND PLASMA KINETICS†

I. INTRODUCTION

The CHEMKIN package is one of three basic elements in a large and growing body of software
designed to facilitate simulations of elementary chemical reactions in flowing systems. The other
major elements are the transport property package1 and the surface chemistry package, Surface
CHEMKIN-III.2, 3 These packages should not be considered “programs” in the ordinary sense. That is,
they are not designed to accept input, solve a particular problem, and report the answer. Instead, they
are software tools intended to help a user work efficiently with large systems of chemical reactions and
develop FORTRAN representations of systems of equations that define a particular problem. It is up to
the user to solve the problem and interpret the answer. A general discussion of this structured approach
for simulating chemically reacting flow can be found in Kee and Miller.4

An important advantage of the general-purpose and problem-independent structure of
CHEMKIN is that it allows the analyst to work with the same chemical input regardless of the
particular problem. Thus there is no need to remember a different input protocol for different problems,
and consequently, the time required to switch between problems or to develop a new application is
minimized. Additionally, by making CHEMKIN easily transportable between computers, we hope to
facilitate the exchange of application codes and data between different sites. Often such exchanges are
hampered by machine-dependent or problem-specific coding.

Background

CHEMKIN-III is a revised, generalized version of CHEMKIN. The original CHEMKIN5 was
published in 1980. CHEMKIN II6 expanded these capabilities, with inclusion of an accurate and
efficient means of describing pressure-dependent reactions. The rate laws for reactions of this type do
not follow the modified Arrhenius form that was required in the original CHEMKIN. Other added
capabilities in CHEMKIN II included a Landau-Teller form of the rate expression for vibrational energy
transfer processes, a capability for specifying more than one rate expression for a reaction, and a
capability for explicitly specifying an Arrhenius expression for the reverse rate of a reversible
reaction.

The current extension of CHEMKIN allows for treatment of non-equilibrium multi-fluid systems.
Multi-fluid systems are systems in which the momentum or energy for one or more species in a gas
mixture differs significantly from that of the bulk mixture. In a plasma system, for example, ions and

† Copyright © 1996, Sandia Corporation. The U. S. Government retains a nonexclusive license in this
software as prescribed in AL 88-1 and AL 91-7. Export of this program may require a license from the
United States Government.

10

electrons may be subject to electric fields that do not affect the neutral species transport. To track the
motion of these species, a separate momentum equation must be solved that includes the force exerted by
the electric field on the charged species. Similarly, electrons are subject to Joule-heating as they move
along applied electric fields, requiring solution of a separate electron energy equation. Species
momentum and energy equations can be derived as second and third moments about the Boltzmann
equation, just as the species conservation equation results from the first moment of the Boltzmann
equation. When all species are in thermal equilibrium and none are subject to special external forces,
these equations can be summed over all species in the gas mixture to give the traditional equations of
motion for a thermal system. In the CHEMKIN-III formulations, we allow for different species
temperatures to control reaction dynamics and to determine species thermodynamic properties. For
systems that are in thermal equilibrium, however, these relations collapse back to the original
CHEMKIN formulations and should have no consequence to the CHEMKIN user.

In addition to the multi-fluid generalization, new capabilities have been added for the
inclusion of global reaction kinetics, with the option of user-specified reaction orders and the allowance
of non-integer stoichiometric coefficients. This capability is useful both for plasma systems and also for
describing thermal systems where information about detailed kinetics is not well known.

The application of CHEMKIN to non-equilibrium plasma systems still requires, at this point,
that the kinetics coefficients can be specified independent of the problem or application. For example,
some assumption must be made a priori about the electron-energy distribution function (EEDF) when
specifying electron-impact kinetics. In reality the EEDF will depend on the reactor conditions, such as
the local electric field magnitude or the degree of dissociation of a molecular gas. These conditions are
problem-dependent, such that including these effects requires close coupling between the kinetics-rate
determination and the EEDF determination. While we foresee a need in future CHEMKIN development
for treatment of fundamental reaction cross-section data, we believe there is still fairly wide
opportunity for the application of problem-independent kinetics in plasma modeling. Such
applications include plasma conditions where the EEDF is nearly Maxwellian, such as near-thermal
atmospheric-pressure plasma jets, or very low-pressure, high-electron-density systems for
microelectronics processing.

New capabilities in this version of CHEMKIN also include additional reaction-rate fit types for
expanded user flexibility. These fits have been specifically implemented for the incorporation of
electron-impact kinetics, which are occasionally difficult to fit with Arrhenius expressions.

Structure and Use of CHEMKIN

The CHEMKIN package is composed of two blocks of FORTRAN code and two files:

- the Interpreter (code)
- the Gas-Phase Subroutine Library (code)
- the Thermodynamic Database (file)
- the Linking File (file).

11

To apply CHEMKIN to a problem, the user first writes a FORTRAN program that describes a
particular set of governing equations. The programming required is reduced since the user need only call
CHEMKIN subroutines which define the terms in the governing equations that relate to equations of
state, chemical production, and thermodynamics, and combine the result to define the problem of
interest.

Next, the user runs the Interpreter, which first reads the symbolic description of the reaction
mechanism and then extracts the appropriate thermodynamic information for the species involved
from the Thermodynamic Database.7 The database has essentially the same format as that used by
the original NASA complex chemical equilibrium code by Gordon and McBride.8 The output of the
Interpreter is the Linking File, which contains all the pertinent information on the elements, species,
and reactions in the mechanism.

The Linking File is read by an initialization subroutine that is called from the user's code. The
purpose of the initialization is to create three data arrays (one integer, one floating point, and one
character data type) for use internally by the other subroutines in the Gas-Phase Subroutine Library.

The Gas-Phase Subroutine Library has over 100 subroutines that return information on elements,
species, reactions, equations of state, thermodynamic properties, and chemical production rates.
Generally, the input to these routines will be the state of the gas — pressure or density, temperature(s),
and species composition.

Example for a Single-Temperature Neutral Gas: Hydrogen Oxidation

The input file to the CHEMKIN Interpreter for a hydrogen-oxidation process is shown in Fig. 1.
First, the file specifies the elements and species that appear in the mechanism, and then includes the
reaction mechanism description. The input is essentially format free. The elements and species names
need only be separated by blank spaces. The character string that describes the reaction appears on the
left and is followed by the three Arrhenius coefficients (pre-exponential factor, temperature exponent,
and activation energy). Enhanced third body efficiencies for selected species are specified in the line
following that for a reaction which contains an arbitrary third body, M. Exclamation marks signify
the beginning of comments and the remainder of the line is ignored.

12

ELEMENTS H O N END
SPECIES H2 H O2 O OH HO2 H2O2 H2O N N2 NO END
REACTIONS

H2+O2=2OH 0.170E+14 0.00 47780
OH+H2=H20+H 0.117E+10 1.30 3626 !D-L&W
O+OH=O2+H 0.400E+15 -0.50 0 !JAM 1986
O+H2=OH+H 0.506E+05 2.67 6290 !KLEMM ET AL., 1986
H+O2+M=HO2+M 0.361E+18 -0.72 0 !DIXON-LEWIS
 H2O/18.6/ H2/2.86/ N2/1.26/
OH+HO2=H2O+O2 0.750E+13 0.00 0 !D-L
H+HO2=2OH 0.140E+15 0.00 1073 !D-L
O+HO2=O2+OH 0.140E+14 0.00 1073 !D-L
2OH=O+H2O 0.600E+09 1.30 0 !COHEN-WEST
H+H+M=H2+M 0.100E+19 -1.00 0 !D-L
 H2O/0.0/ H2/0.0/
H+H+H2=H2+H2 0.920E+17 -0.60 0
H+H+H2O=H2+H2O 0.600E+20 -1.25 0
H+OH+M=H2O+M 0.160E+23 -2.00 0 !D-L
 H2O/5/
H+O+M=OH+M 0.620E+17 -0.60 0 !D-L
 H2O/5/
O+O+M=O2+M 0.189E+14 0.00 -1788 !NBS
H+HO2=H2+O2 0.125E+14 0.00 0 !D-L
HO2+HO2=H2O2+O2 0.200E+13 0.00 0
H2O2+M=OH+OH+M 0.130E+18 0.00 45500
H2O2+H=HO2+H2 0.160E+13 0.00 3800
H2O2+OH=H2O+HO2 0.100E+14 0.00 1800
O+N2=NO+N 0.140E+15 0.00 75800
N+O2=NO+O 0.640E+10 1.00 6280
OH+N=NO+H 0.400E+14 0.00 0

END

Figure 1. Sample Neutral Reaction Mechanism as Read by the CHEMKIN Interpreter.

Assume the governing equation we wish to study is the energy conservation equation for a
constant-pressure environment:

dT

dt c
H

p
k k

k

K
= − ∑

=

1

1ρ
ω̇ ,

where T is the temperature, ρ the mass density, cp the mean specific heat, Hk the molar species
enthalpies, and ω̇k the species molar production rates. The representation of this equation begins with
CHEMKIN subroutine calls (the output variables are underlined to help distinguish them):

CALL CKINIT(LENIWK, LENRWK, LENCWK, LINKCK, LOUT, ICKWRK, RCKWRK, CCKWRK)

CALL CKINDX(ICKWRK, RCKWRK, MM, KK, II, NFIT)

CALL CKRHOY(P, T, Y, ICKWRK, RCKWRK, RHO)

CALL CKCPBS(T, Y, ICKWRK, RCKWRK, CPB)

CALL CKHML(T, ICKWRK, RCKWRK, HML)

CALL CKWYP(P, T, Y, ICKWRK, RCKWRK, WDOT)

13

The complete details for these calls are explained in later sections of this document, with the
object here being to illustrate the relative simplicity of a CHEMKIN application. Briefly, the first call
is to the initialization subroutine CKINIT, which reads the Linking File created by the Interpreter and
fills the three work arrays. LENIWK, LENRWK and LENCWK are dimensions provided by the user
for the data arrays ICKWRK, RCKWRK, and CCKWRK. LINKCK is the logical file number of the
Linking File, chem.bin, and LOUT is the logical file number for printed diagnostic and error messages.
The call to CKINDX provides index information about the reaction mechanism: MM is the number of
elements contained in the species, KK is the number of gas-phase species, II is the number of reactions,
and NFIT is the number of coefficients in the thermodynamic fits. In the remaining calls, P, T, and Y are
the pressure, temperature, and vector of species mass fractions, respectively. The output variables
correspond to the various terms for describing the equation, i.e., RHO = ρ , CPB = cp , HML = Hk , and
WDOT = ω̇k .

The FORTRAN representation of the governing equation, given by combining the results of the
above subroutine calls, is simply

SUM=0.0

DO 100 K=1,KK

SUM = SUM + HML(K)*WDOT(K)

100 CONTINUE

DTDT = -SUM/(RHO*CPB)

One can see from this example that relatively little programming effort is required to form a
conservation equation for an arbitrary reaction mechanism.

14

Example for a Multi-Temperature Plasma

The input file to the CHEMKIN Interpreter for a chlorine-plasma excitation process is shown in
Fig. 2. As with the previous hydrogen-oxidation example, the file first specifies the elements and
species that appear in the mechanism and then describes the reaction mechanism. Here, electrons must
be specified both as an element and as a species. The elemental composition of a unipositive ion is that
of the corresponding neutral minus one electron. This information is given in the species thermodynamic
data and will be described further in the next section. As in the thermal system, three Arrhenius
coefficients are used by default to describe reaction rates for electron-impact kinetics. The auxiliary
keyword ‘TDEP’ on a line following the reaction statement indicates that the reaction rate is a function
of the temperature of the species specified in the slashes following the TDEP keyword.

As shown in Fig. 2, most of the plasma reactions require some auxiliary information beyond the
Arrhenius coefficients to distinguish the reaction description from the default thermal reactions. TDEP
is one example of an auxiliary keyword that specifies the temperature dependence of the reaction.
EXCI is used typically to indicate an excitation reaction. Such “reactions” are often included to allow
calculation of inelastic energy loss rates for electrons, without requiring the user to include all excited
states as new species in the reaction mechanism. The auxiliary information following the keyword
EXCI represents the energy-loss per collision in electron volts. The keyword DUP is included to allow
multiple occurrences of reaction statements that have different rate coefficients or different auxiliary
information, but otherwise appear identical. This is frequently necessary in the specification of
multiple excitation reactions from the same ground-state species. The use of auxiliary keywords is
described in greater detail in Section IV.

Another important aspect of the plasma reactions shown in Fig. 2 is that they are all specified
as irreversible reactions. This is in contrast to thermal reactions, which are usually reversible and
reverse rates can be calculated directly from species thermodynamic properties. In the case of electron
kinetics, the interactions between electrons and neutral species can be intrinsically irreversible. While
detailed balancing may be appropriate for near-thermal plasmas, the use of CH E M K I N

thermodynamics is not appropriate for determining reverse rates. In such cases, the user should
explicitly supply reverse kinetic parameters, or specify a reverse path as an additional irreversible
reaction.

15

ELEMENTS E CL END
SPECIES E CL+ CL2+ CL- CL* CL CL2 END
REACTIONS KELVIN MOLECULES
! reaction rates from Maxwellian EEDF
 E + CL2 => E + CL2 2.5141E-02 -1.4443E+00 1.6650E+04
 TDEP/E/ !vibrational excitation
 EXCI/ 0.07/
 DUP
 E + CL2 => CL- + CL 5.8901E-09 -2.5619E-01 1.5834E+04
 TDEP/E/ !dissociative attachment
 E + CL2 => 2CL + E 1.5356E-06 -3.4642E-01 7.0850E+04
 TDEP/E/ !dissociation
 E + CL2 => E + CL2 6.3477E-06 -5.3987E-01 1.3920E+05
 TDEP/E/ !electronic excitation
 EXCI/ 9.25/
 DUP
 E + CL2 => CL2+ + 2E 1.1227E-04 -6.0067E-01 1.8070E+05
 TDEP/E/ !ionization
 E + CL- => CL + 2E 3.1197E-06 -2.8757E-01 7.2058E+04
 TDEP/E/ !detachment
 E + CL => E + CL* 1.2363E-05 -6.1356E-01 1.3297E+05
 TDEP/E/ !4s excitation
 E + CL => E + CL 1.2363E-05 -6.1356E-01 1.3297E+05
 TDEP/E/ !4s excitation energy loss
 EXCI/ 9.55/
 DUP
 E + CL => E + CL 9.4444E-05 -7.3093E-01 1.5413E+05
 TDEP/E/ !3d excitation
 EXCI/11.65/
 DUP
 E + CL => CL+ + 2E 2.3736E-04 -7.0894E-01 1.8374E+05
 TDEP/E/ !ionization
 E + CL* => CL+ + 2E 2.6471E-05 -4.3906E-01 6.3670E+04
 TDEP/E/ !Cl* ionization
 CL- + CL2+ => CL + CL2 5.00E-08 0.0 0
 CL- + CL+ => 2CL 5.00E-08 0.0 0
END

Figure 2. Sample Plasma Reaction Mechanism as Read by the CHEMKIN Interpreter.

Consider a simple form of the electron conservation equation for a closed system:

d X

dt
e

e
[] = ω̇ ,

where Xe[] is the electron molar concentration and ω̇e the electron molar production rate. The
representation of this equation begins with CHEMKIN subroutine calls:

16

CALL CKINIT(LENIWK, LENRWK, LENCWK, LINKCK, LOUT, ICKWRK, RCKWRK, CCKWRK)

CALL CKINDX(ICKWRK, RCKWRK, MM, KK, II, NFIT)

CALL PKINDX(ICKWRK, KEL, KKION)

CALL CKKTFL(ICKWRK, KTFL)

CALL CKWC(T, C, ICKWRK, RCKWRK, WDOT)

As in the hydrogen-oxidation example, the first call is to the initialization subroutine
CKINIT. CKINDX provides general chemistry indices, while PKINDX provides plasma-specific
index information. In this case, we call PKINDX to get KEL, the location in the species array of the
electron. In other words, there is no requirement for the species ‘E’ to be in any particular order in the
mechanism species list. KKION is the number of positive and negative ions in the chemistry
mechanism. The call to CKKTFL initializes the species temperature flag array in the CHEMKIN

workspace. Without this call, it is assumed that all species share a common temperature, which is
always the first entry in the temperature array passed to CHEMKIN in all subsequent calls. KTFL is a
user-defined vector that defines the locations in the temperature array that correspond to each species
temperature. This allows the application code to define a different number of temperatures in the
system than the total number of species. For example, in a two-temperature plasma, where T(1) is the
gas temperature and T(2) is the electron temperature, the user sets KTFL(KEL) = 2, and all other entries
are set to ‘1’. Finally, in the call to CKWC, T is the temperature array, and C is the vector of species
molar concentrations. The output variable, WDOT, is the ω̇k vector, where ω̇e is the KELth entry.

Transportability

The CHEMKIN-III package was developed on UNIX workstations and Cray/UNICOS computers.
However, we have not taken advantage of any special machine-dependent features. Written entirely
in ANSI standard FORTRAN-77, the code is easily transportable to other computer systems. Since
double-precision code is often required on small-word-length (i.e., 32 bit word) computers, we provide
both single- and double-precision versions of the source code. With the distribution of CHEMKIN, we
provide a software utility called CHANGE,9 which is an interactive routine that prompts the user to
toggle between single and double precision versions of source code prior to compilation.

Organization of this Report

Chapter II is a compendium of the important equations in gas-phase chemical kinetics. Many
of the equations are simply definitions; but, in any case, derivations are either sketchy or not given.
Although most readers will find all of the equations quite familiar, we find it useful to have these
equations stated concisely in one document. For most of the equations, the package contains a subroutine
that, when given the variables on the right-hand side, returns the variable on the left. For example,
Eq. (3) in Chapter II gives mean molecular weight in terms of the mass fractions. Subroutine CKMMWY
would be called to return this information.

Chapter III explains the mechanics of using CHEMKIN and describes the job control logic for
running a problem. Chapter IV explains the CHEMKIN Interpreter and how to set up the required
symbolic input to define a reaction mechanism. Chapters V and VI describe the Gas-Phase Subroutine

17

Library, Chapter V being composed of short descriptions for quick reference and Chapter VI (an
alphabetical listing) explaining the input and output in the call sequence as well as cross referencing
each subroutine to equation numbers in Chapter II. To demonstrate CHEMKIN explicitly, Chapter VII
goes through a sample problem in detail.

Appendix A defines the allocation of three work arrays that are created from the Linking File.
With this information, a user can create new subroutines for the library to suit a specialized need that
was not anticipated in the current library.

18

II. THERMODYNAMICS AND CHEMICAL RATE EXPRESSIONS

The purpose of this chapter is to list expressions and equations that are useful in formulating a
chemically reacting flow problem. For each expression/equation, the subroutine(s) that evaluates it is
named to the right, below the equation number.

Choice of Variables

The formulation of any problem requires that a set of state variables be chosen. Unfortunately
there is no clear choice that is generally superior for all problems. In the CHEMKIN package we have
decided to allow the user to select either pressure or density, temperature(s), and either mass fraction,
mole fraction, or molar concentration. In other words, to define the state of a gas, one variable must be
selected from each column of the array below.

P T Y

X

X

k k

k

k

ρ
[]















In making these options available from among the many possible, we have attempted to provide
combinations of variables that are natural ones for a wide class of problems. For example, pressure is a
natural choice in situations where pressure is fixed, and density is a natural variable where volume is
fixed. Moreover, density is a natural variable in many problems involving fluid mechanics because it is
determined directly from the mass continuity equation. Temperature is always taken as a natural
variable because the thermodynamic properties and the chemical rate constants both depend directly
on temperature. Mass fraction and mole fraction are convenient variables for describing the composition
of a gas. Molar concentration is sometimes a convenient variable because the rate of progress of
chemical reactions depends directly on the molar concentration of the reactants and products.

Equation of State and Conversion Formulas

The equation of state used is that of a ideal, multi-fluid gas. Comparing to earlier versions of
CHEMKIN, we have now allowed for a temperature to be specified for each species, Tk. The reader who
is more familiar with thermal systems may not immediately recognize these formulations as
representing the traditional ideal gas law. However, the formulations do collapse to the more usual
thermal relations in the case where all species temperatures, Tk , are equal to the gas temperature. The
general equation of state is given by:

P X RTk k
k

K
= []∑

=1
, (1)

[CKPY, CKPX, CKPC]

19

while the mean mass density is defined by:

ρ = []∑
=

X Wk k
k

K

1
. (2)

[CKRHOY, CKRHOX, CKRHOC]

The mean molecular weight W may be defined variously as

W
Y Wk kk

K=
∑ =

1

1
 , (3)

[CKMMWY]

W X Wk
k

K

k= ∑
=1

 , (4)
[CKMMWX]

or

W
X W

X
k kk

K

kk
K= []∑

[]∑
=

=

1

1
 .

(5)
[CKMMWC]

It is often convenient to represent a gas-mixture species composition variously as either mass
fraction, mole fraction, or molar concentration. Here we state the conversion formulas between these
ways of describing the mixture composition.

Mass fraction to mole fraction:

X
Y

W Y W

Y W

Wk
k

k j jj
K

k

k
=

∑
=

=1

(6)
[CKYTX]

Mass fraction to molar concentration:

X
P Y W

R Y T Wk
k k

j j jj
K[] =
()

∑ =1

(7)
[CKYTCP]

X
Y

Wk
k

k
[] = ρ (8)

[CKYTCR]

Mole fraction to mass fraction:

Y
X W

X W

X W

Wk
k k

j jj
K

k k=
∑

=
=1

(9)
[CKXTY]

20

Mole fraction to molar concentration:

X X
P

R X Tk k
k k

[] =
∑

(10)
[CKXTCP]

X X
Wk k[] = ρ (11)

[CKXTCR]

Molar concentration to mass fraction:

Y
X W

X W
k

k k

j jj
K

= []
[]∑ =1

(12)
[CKCTY]

Molar concentration to mole fraction:

X
X

X
k

k

jj
K

= []
[]∑ =1

(13)
[CKCTX]

21

Standard-State Thermodynamic Properties

CHEMKIN presumes that the standard-state thermodynamic properties are thermally
“perfect”, in that they are only functions of temperature,. and are given in terms of polynomial fits to
the molar heat capacities at constant pressure:

C

R
a Tpk

o

nk k
n

n

N
= ∑ −

=

()1

1
.

(14)

The superscript o refers to the standard-state 1 atmosphere. For perfect gases, however, the heat
capacities are independent of pressure, and the standard-state values are the actual values. Other
thermodynamic properties are given in terms of integrals of the molar heat capacities. First, the
standard-state molar enthalpy is given by

H C dT Hk
o

pk
oT

k
ok= ∫ + ()298 298 , (15)

so that

H

RT

a T

n

a

T
k
o

k

nk k
n

n

N N k

k
= ∑ +

−

=

+
()

,
1

1

1 ,
(16)

where the parameter a RN k+1, represents the standard heat of formation at 298 K.

The standard-state molar entropy is written as

S
C k

T
dT Sk

o p
o

T
k
ok= ∫ + ()298 298 ,

(17)

so that

S

R
a T

a T

n
ak

o

k k
nk k

n

N k
n

N
= +

−
+∑

−
+

=
1

1

2
2 1

ln
()

,()
,

(18)

where the constant of integration a RN k+2, is evaluated from knowledge of the standard-state entropy
at 298 K.

The above equations are stated for an arbitrary-order polynomial, but the CHEMKIN package is
designed to work with thermodynamic data in the form used in the NASA chemical equilibrium code.8

In this case, seven coefficients are needed for each of two temperature ranges.* These fits take the
following form, where the temperatures are in Kelvin:

C

R
a a T a T a T a T

p
o

k k k k k k k k k
k = + + + +1 2 3

2
4

3
5

4 ,
(19)

[CKCPOR]

* The Chemkin Interpreter can be modified for additional temperature ranges, which would then
require format changes to the thermodynamic data.

22

H

RT
a

a
T

a
T

a
T

a
T

a

T
k
o

k
k

k
k

k
k

k
k

k
k

k

k
= + + + + +1

2 3 2 4 3 5 4 6

2 3 4 5
,

(20)
[CKHORT]

S

R
a T a T

a
T

a
T

a
T ak

o

k k k k
k

k
k

k
k

k k= + + + + +1 2
3 2 4 3 5 4

72 3 4
ln .

(21)
[CKSOR]

Other thermodynamic properties are easily given in terms of Cp
o , Ho , and So . The specific heat

capacity at constant volume Cvk
o is

C C Rv
o

p
o

k k
= − , (22)

[CKCVML]

the internal energy Uk
o is

U H RTk
o

k
o

k= − , (23)
[CKUML]

the standard-state Gibbs free energy Gk
o is

G H T Sk
o

k
o

k k
o= − , (24)

[CKGML]

and the standard-state Helmholtz free energy Ak
o is

A U T Sk
o

k
o

k k
o= − . (25)

[CKAML]

For a perfect gas, the standard-state specific heats, enthalpies, and internal energies are also the
actual values. Therefore, we drop the superscript o on those quantities.

Often, specific thermodynamic properties are needed in mass units (per gram) rather than in
molar units (per mole). The conversion is made by dividing the property in molar units by the molecular
weight. The specific properties are thus

c
C

Wp
p

k
k

k= ,
(26)

[CKCPMS]

h
H

Wk
k

k
= , (27)

[CKHMS

s
S

Wk
o k

o

k
= ,

(28)
[CKSMS]

23

c
C

Wv
v

k
k

k= ,
(29)

[CKCVMS]

u
U

Wk
k

k
= , (30)

[CKUMS]

g
G

Wk
o k

o

k
= ,

(31)
[CKGMS]

and

a
A

Wk
o k

o

k
= .

(32)
[CKCAMS]

One also often needs mixture-averaged thermodynamic properties. As with the pure-species
properties, the CHEMKIN thermodynamics subroutines return properties in either mass or molar units.
The mixture-averaged specific heats are

C C Xp p k
k

K

k
= ∑

=1
, (33)

[CKCPBL]

c c Y C Wp p k
k

K

pk
= ∑ =

=1
, (34)

[CKCPBS]

C C Xv v k
k

K

k
= ∑

=1
, (35)

[CKCVBL]
and

c c Y C Wv v k
k

K

vk
= ∑ =

=1
; (36)

[CKCVBS]
the enthalpies are

H H Xk k
k

K
= ∑

=1
, (37)

[CKHBML]
and

h h Y H Wk k
k

K
= ∑ =

=1
; (38)

[CKHBMS]
and the internal energies are

U U Xk k
k

K
= ∑

=1
, (39)

[CKUBML]
and

u u Y U Wk k
k

K
= ∑ =

=1
. (40)

[CKUBMS

24

The mixture properties are more complex for the entropies and the Gibbs and Helmholtz free energies.
Here the actual values are not the same as the standard-state values and we must account for the
appropriate pressure and entropy-of-mixing terms. The entropy is then

S S R X R P Pk k
o

k= − − ()ln ln atm (41)

Thus the mixture-averaged entropies are

S S R X R P P Xk
o

k atm k
k

K
= − − ()()∑

=
ln ln ,

1

(42)
[CKSBML]

and
s S W= . (43)

[CKSBMS]
Similarly, the mixture-averaged Gibbs and Helmholtz free energies are

G H T S R X R P P Xk k k
o

k atm
k

K

k= − − − ()()[]∑
=

ln ln
1

, (44)
[CKGBML]

g G W= , (45)
[CKGBMS]

A U T S R X R P P Xk k k
o

k atm
k

K

k= − − − ()()[]∑
=

ln ln
1

, (46)
[CKABML]

and
a A W= . (47)

[CKABMS]

25

Chemical Reaction Rate Expressions

Consider elementary reversible (or irreversible) reactions involving K chemical species that
can be represented in the general form

′∑ ⇔ ′′∑
= =

υ χ υ χki k
k

K

ki k
k

K
i I

1 1
1 (= ,...,) . (48)

The stoichiometric coefficients υki are integer numbers and χk is the chemical symbol for the kt h
species. The superscript ' indicates forward stoichiometric coefficients, while " indicates reverse
stoichiometric coefficients. Normally, an elementary reaction involves only three or four species; hence
the υki matrix is quite sparse for a large set of reactions. For non-elementary reactions, Eq. (48) also
represents the reaction expression, but the stoichiometric coefficients may be non-integers. The use of
real stoichiometric coefficients is a new option in CHEMKIN-III.

The production rate ω̇k of the kth species can be written as a summation of the rate-of-progress
variables for all reactions involving the kth species:

˙ ,...,ω υk ki i
i

I
q k K= ∑ =

=1
1 (), (49)

[CKWYP, CKWYR, CKWXP,
CKWXR, CKWC, CKCONT]

where
υ υ υki ki ki= ′′ − ′ . (50)

[CKNU]
The rate of progress variable qi for the ith reaction is given by the difference of the forward and
reverse rates as

q k X k Xi i if k r
k

K

k
k

K
ki ki= [] −∏ []∏′

=

′′

=

υ υ

1 1
, (51)

[CKQYP, CKQYR, CKQXP,
CKQXR, CKQC, CKCONT]

where Xk[] is the molar concentration of the kth species and k fi and kri are the forward and reverse
rate constants of the ith reaction. As indicated in Eq. (51), the rate-of-progress of a reaction is
evaluated, by default, using the concentration of each reactant or product species raised to the power of
its stoichiometric coefficient. Thus, the rate-of-progress of a reaction that includes species A with a
coefficient of 2 will be second-order with respect to the concentration of A. Equation (51) is always
valid when mass-action kinetics are obeyed, and when the mechanism is written in terms of elementary
reactions. As it is often difficult to obtain elementary reaction kinetics, CHEMKIN-III includes the
option for the user to define an arbitrary reaction order for a species in a reaction in place of the
coefficients used in Eq. (33). This option is described further below.

The forward rate constants for the I reactions are generally assumed to have the following
Arrhenius temperature dependence:

k A T
E

R Tf i
i

c
i

i= −





β exp ,
(52)

[CKABE]

26

where the pre-exponential factor Ai , the temperature exponent βi , and the activation energy Ei are
specified.* These three parameters are required input to the CHEMKIN package for each reaction. In
Eqs. (52-57), T refers to the gas temperature, unless auxiliary reaction information is provided to
indicate that the reaction depends on a temperature associated with a particular species. Such
information would be specified using the auxiliary keyword, TDEP, which is described further in
Section IV. In the case where the TDEP keyword is included for reaction i, T represents the temperature
of the species whose name follows the TDEP keyword.

In thermal systems, the reverse rate constants kri are related to the forward rate constants
through the equilibrium constants by

k
k

Kr
f

c
i

i

i

= . (53)

Although Kci
 is given in concentration units, the equilibrium constants are more easily determined from

the thermodynamic properties in pressure units; they are related by

K K
P

RTc p
atm

i i

k
K

ki

= 





=∑ υ1
.

(54)
[CKEQYP, CKEQYR,

CKEQXP, CKEQXR, CKEQC]

The equilibrium constants Kpi are obtained with the relationship

K
S

R

H

RTp
i
o

i
o

i
= −







exp

∆ ∆
.

(55)

The ∆ refers to the change that occurs in passing completely from reactants to products in the ith
reaction; specifically,

∆S

R

S

R
i
o

k
k

K
k
o

i
= ∑

=
υ

1
,

(56)

∆H

RT

H

RT
i
o

k
k

K
k

i
= ∑

=
υ

1

0
.

(57)

For reactions involving electrons, the use of equilibrium constants to determine reverse rates is
usually not appropriate. In some cases, detailed balancing on electron-driven reactions can be applied
using the Saha equation (see, for example, Mitchner and Kruger10) that relates the ionization and
electron-third-body recombination reactions to the species partition functions. While such relations
can be used to calculate explicitly reverse rates from forward rates, they are not part of the built-in
features of CHEMKIN. To avoid erroneous results, it is therefore required that all reactions involving
electron species must either be specified as forward reactions only, or must include the reverse rate

* Two gas constants, R and Rc, are used throughout this report and the Chemkin code. Rc is used only in
conjunction with the activation energy Ei and has compatible units. The reason for the duality is that
many users would rather use units of calories/mole for the activation energies even though ergs/mole
are used elsewhere.

27

parameters explicitly stated using auxiliary keywords. The specification of reverse-rate parameters is
described in more detail in Section IV.

Arbitrary Reaction Order

Often in real-world applications the elementary kinetics are not known. In some cases, an
experimental measurement finds that the rate of reaction is proportional to the concentration of a
species raised to a some arbitrary power (different from its stoichiometric coefficient). CHEMKIN-III
allows the user to declare that the rate-of-progress of a reaction is proportional to the concentration of
any species (regardless of whether that species even appears as a reactant or a product in the reaction)
raised to any specified power. To modify the reaction order for the reaction in the forward or reverse
direction, the user must declare the FORD or RORD auxiliary keywords, respectively, in the
Interpreter input file. (These keywords are discussed in Chapter IV.)

When the reaction-order-dependence of reaction i is changed via the FORD or RORD keywords,
the rate-of-progress variable qi for the reaction is evaluated by :

qi = k f i
Xk[]

k =1

K
∏

Fki
− kri

Xk[]
k =1

K
∏

Rki
,

(58)

where Fki is the reaction order specified through the FORD keyword and Rki is the reaction order
specified through the RORD keyword for species k . The default for species participating in reaction i

is the normal mass-action kinetics values:

Fki = ′υki (59)

Rki = ′′υki (60)

if an order-change parameter is not given for species k .

The user should exercise caution when specifying a change of reaction order, as such a change
may produce unexpected and unphysical results in a kinetic simulation. For example, the user should
consider the kinetics of the reverse reaction when changing reaction-orders for the forward reaction.
Such a reaction may no longer satisfy microscopic reversibility. At equilibrium, elementary kinetics
ensure that

kri
/ k f i

= Xk[] ′υki

k =1

K
∏ / Xk[] ′′υki

k =1

K
∏ = Xk[] ′υki − ′′υki

k =1

K
∏ . (61)

A reaction for which one has specified a change in reaction order will not have the proper equilibrium
behavior unless

Fki − Rki = ′υki − ′′υki , k = 1,..., K(). (62)

28

The user specifying Fki may also wish to adjust Rki such that Eq. (62) is satisfied; CHEMKIN-III does
not do this automatically. Another alternative would be to simply specify that the reaction is
irreversible.

Three-Body Reactions

In some reactions a “third body” is required for the reaction to proceed; this is often the case in
dissociation or recombination reactions, such as

H O M HO M2 2+ + ⇔ + .

When a third body is needed, the concentration of the effective third body must appear in the
expression for the rate-of-progress variable. Accordingly, the rate-of-progress variable is different
from Eq. (51) by the first factor in the equation:

q X k X k Xi ki k
k

K

f k
k

K

r k
k

K

i i
iki k= ()[]∑







[]∏ − []∏




=

′

=

′′

=
α υ υ

1 1 1
 . (63)

[CKQYP, CKQYR, CKQXP,
CKQXR, CKQC, CKTHB]

If all species in the mixture contribute equally as third bodies, then αki = 1 for all k, and the first factor
is the total concentration of the mixture,

M Xk
k

K
[] = []∑

=1
. (64)

However, it is often the case that some species act more efficiently as third bodies than do others. The
αki that differ from 1 must be specified by input to the CHEMKIN Interpreter.

Pressure-Dependent Reactions

Under certain conditions, some reaction rate expressions depend on pressure as well as
temperature. CHEMKIN provides for two kinds of such reactions: unimolecular/recombination fall-off
reactions and chemically activated bimolecular reactions. Generally speaking, the rate for
unimolecular/recombination fall-off reactions increases with increasing pressure, while the rate for
chemically activated bimolecular reactions decreases with increasing pressure. In both cases,
CHEMKIN makes available various expressions that blend smoothly between high- and low-pressure
limiting rate expressions.

Unimolecular/Recombination Fall-off Reactions

As an example of a unimolecular/recombination fall-off reaction, consider methyl
recombination. In the high-pressure limit, the appropriate description of the reaction is
CH CH C H .3 3 2 6+ ⇔ In the low-pressure limit, a third-body collision is required to provide the energy
necessary for the reaction to proceed, i.e., the appropriate description is CH CH M C H M.3 3 2 6+ + ⇔ +

29

When such a reaction is at either limit, the (solely temperature-dependent) rate expressions discussed
in the preceding paragraphs are applicable. However, when the pressure and temperature are such
that the reaction is between the limits, the rate expressions are more complicated. To denote a reaction
that is in this “fall-off” region, we write the reaction with the +M enclosed in parentheses,

CH CH M C H M3 3 2 6+ +() ⇔ +() .

There are several methods of representing the rate expressions in this fall-off region. The
simplest one is due to Lindemann.11 There are also now two other (and related) methods that provide a
more accurate description of the fall-off region than does the simple Lindemann form. The CHEMKIN

package handles all three of these forms as options.

We begin first with the Lindemann approach. Arrhenius rate parameters are required for both
the high- and low-pressure limiting cases, and the Lindemann form for the rate coefficient blends them
to produce a pressure-dependent rate expression. In Arrhenius form, the parameters are given for the
high-pressure limit k∞() and the low-pressure limit k0() as follows:

k A T E R Tc0 0
0

0= −()β exp , (65)

k A T E R Tc∞ ∞
∞

∞= −()β exp . (66)

The rate constant at any pressure is then taken to be

k k
P

P
Fr

r
=

+




∞ 1

,
(67)

where the reduced pressure Pr is given by

P
k M

kr =
∞

0[] (68)

and [M] is the concentration of the mixture, possibly including enhanced third-body efficiencies.† (For
this example, note that the units for k are cm3/moles-sec, k0 are cm6/moles2-sec, and k∞ are
cm3/moles-sec.) If the F in Eq. (67) is unity, then this is the Lindemann form. The other descriptions
involve more complex expressions for the function F.

In the Troe form,12 F is given by

log
log

log
log centF

P c

n d P c
Fr

r
= + +

− +()


























−

1

2 1

.
(69)

† It is also possible that the third body in the fall-off region could be a specific species rather than the
mixture as a whole. In such a case, the reaction could be written, for example, as
CH CH N C H N3 3 2 2 6 2+ +() ⇔ +() In this case, the concentration of nitrogen [N2] would replace the total
concentration in the mixture [M] in these equations.

30

The constants in Eq. (69) are
c F= − −0 4 0 67. . log cent , (70)

n F= − −0 75 1 27. . log cent , (71)

d = 0 14. , (72)
and

 Fcent = (1 − α) exp(− T T***) + α exp(T T*) + exp(−T** T) . (73)

The four parameters α, T*** , T* , and T** must be specified as input to the CHEMKIN Interpreter. (It is
often the case that the parameter T** is not used. Thus CHEMKIN provides for the use of either three or
four parameters.)

The approach taken at SRI International by Stewart et al.13 is in many ways similar to that
taken by Troe, but the blending function F is approximated differently. Here, F is given by

F d a
b

T

T

c
T

X
e= −



 + −











 exp exp
(74)

where

X
Pr

=
+

1

1 2log
(75)

In addition to the six Arrhenius parameters — three each for the low-pressure limit k0() and high-
pressure limit k∞() expressions — the user must supply the parameters a, b, and c in the F expression.
The parameters d and e were not discussed by Stewart et al., but we have included them as additional
optional parameters to increase flexibility. If one wishes, d and e can be considered parameters that
define a weak-collision efficiency factor, in the event that one wants to compute strong-collision rate
parameters and correct them with such a factor.

1010

1011

1012

1013

1014

10-9 10-8 10-7 10-6 10-5 0.0001

CH
3
 + CH

3
 (+M) <=> C

2
H

6
 (+M)

k
(m

o
le

s/
cm

3
-s

ec
)

[M] (moles/cm3)

Lindemann form

High-pressure limit

Low-pressure
limit

T = 1000 K

Troe form
(Wagner and Wardlaw)

31

Figure 3. Rate constant as a function of pressure at fixed temperature for the
unimolecular fall-off reaction CH3 + CH3 (+M) ⇔ C2H6 (+M). The Troe
and Lindemann forms are illustrated as are the low- and high-pressure
limiting forms.

Figure 3 illustrates the pressure dependence of rate expressions for the example reaction,

 CH3 + CH3 (+M) ⇔ C2H6 (+M), evaluated at a fixed temperature of 1000 K. Both the Lindemann and
the Troe forms are shown, as well as the low- and high-pressure limits. The specific constants in fits to
the Troe form (A0 = 1.135E36 , β0 = −5.246 , E0 = 1704.8cal/mole, A∞ = 6.22E16 , β∞ = −1.174 ,
E∞ = 635.8 cal/mole, α = 0.405 , T*** = 1120K, T* = 69.6 K) are taken from Wagner and Wardlaw.14

For the relatively simple Lindemann case (F=1) , the behavior of the limiting behavior is apparent. In
the low-pressure limit, M[] → 0 , the denominator in Eq. (67) approaches unity and the rate expression
becomes k → k0 M[]. In the high-pressure limit, M[] → ∞ , the pressure-ratio factor approaches one and
the rate expression becomes k → k∞ , i.e., a constant. For both the Troe and SRI forms, F approaches
unity for both high and low pressures. Thus, all expressions recover the correct limiting behavior.

Chemically Activated Bimolecular Reactions

As an example of a chemically activated bimolecular reaction, consider CH3 + CH3
(+M) ⇔C2H5 + H (+M). This reaction, which is endothermic, occurs through the same chemically
activated C2H6* adduct as does the recombination reaction CH3 + CH3 (+M) ⇔C2H6 (+M). Figure 4
helps to illustrate the competition between these alternative channels using a reaction-energy
diagram. As the pressure increases, deactivating collisions of C2H6* with other molecules cause the
rate coefficient for C2H6 formation to increase. At the same time, these deactivating collisions
preclude the dissociation of C2H6* into C2H5 + H, thus causing this rate coefficient to decrease with
increasing pressure.

C2H6

C2H6*

CH3 + CH3

 C2H5 + H
+M

Figure 4. Energy versus reaction coordinate diagram that illustrates the competition
between a three-body recombination reaction, CH3 + CH3 (+M) ⇔ C2H6
(+M), and a chemically activated bimolecular reaction, CH3 + CH3 (+M)
⇔ C2H5 +H (+M).

32

We assume the rate coefficient for a chemically activated bimolecular reaction to be described
by the following function:

k = k0
1

1 + Pr







F , (76)

where 1 1 + Pr() is analogous to the Lindemann form of Eq. (67). Note that in Eq. (76) k0 is the pressure-
independent factor, whereas in Eq. (67) it is k∞ . The three choices for the F function are exactly the
same as for the unimolecular fall-off reactions, i.e., the Lindemann (F = 1), Troe, or SRI forms.

Figure 5 illustrates the rate-expression behavior for the example reaction, CH3 + CH3 (+M) ⇔C2H6
(+M). Both the Lindemann and the SRI formulations are shown, as well as the high- and low-pressure
limiting cases. The specific constants for the SRI form (A0 = 1012.698, β0 = 0.099 , E0 = 10,600cal/mole,
A∞ = 10−6.42 , β∞ = 4.838, E∞ = 7710 cal/mole, a = 1.641, b = 4334 , c = 2725) are taken from Stewart,
Larson, and Golden15. (For this example, note that the units for k are cm3/moles-sec, k0 are
cm3/moles-sec, and k∞ are 1/sec.) The limiting cases are recognized easily from the behavior of
Eq. (76). In the low-pressure limit, M[] → 0 , Pr << 1, causing the pressure-ratio factor in Eq. (76) to
approach unity. Hence, k → k0 , i.e., a pressure-independent function. In the high-pressure limit,
M[] → ∞ , Pr >> 1 and k → k0 Pr = k∞ M[].

109

1010

1011

10-7 10-6 10-5 0.0001 0.001 0.01

k
(c

m
3

/m
o

le
-s

ec
)

[M] (moles/cm3)

Lindemann form

High-pressure limit

Low-pressure limit

CH
3
 + CH

3
 (+M) <=> C

2
H

5
 + H (+M)

T = 1000 K

SRI form
(Stewart, Larson, Golden)

Figure 5. Rate constant as a function of pressure at fixed temperature for the
chemically activated reaction CH3 + CH3 (+M) ⇔ C2H5 + H (+M). The
SRI and Lindemann forms are illustrated as are the low- and high-pressure
limiting forms.

33

Landau-Teller Formulation of the Rate Expressions

For reactions such as vibrational energy transfer processes, the Arrhenius form of the rate
expression (Eq. 52) is often not used. Instead, it is common to use the Landau-Teller expression,

k A
B

T

C

T
f i

i i
i

= +





 exp 1 3 2 3/ / . (77)

In CHEMKIN, we have provided the possibility to blend the Arrhenius expression with the Landau-
Teller expression in the general expression, as follows:

k A T
E

R T

B

T

C

T
f i

i

c

i i
i

i= − + +






β exp 1 3 2 3/ / .
(78)

Clearly, by setting Ei and Ci to zero, the Arrhenius expression is recovered, and by setting Bi and Ei to
zero, the standard Landau-Teller expression is recovered. If appropriate, however, all the parameters
can be used together to provide more flexibility in the reaction-rate expression than could be afforded
by one of the forms alone.

Other Allowable Rate Constant Fitting Options

In the accommodation of plasma reactions, we have included two new rate-expression forms in
CHEMKIN-III. These fits require auxiliary keywords to specify additional parameters and to
distinguish the expression from CHEMKIN’s default of a modified Arrhenius form.

One form includes a polynomial fit to the logarithm of the temperature on which the reaction
depends, as follows:

k A T
E

T
b Tf i

i
n

n

n
i

i
i

= + ()∑




=

β exp ln .
1

9 (79)

This form is consistent with the rate-constant fits for electron-hydrogen and electron-helium processes
in a publication by Janev, Langer, Evans, and Post,16, when the Arrhenius parameters βi and Ei are
zero. The user can specify this rate-constant fit option using the auxiliary keyword JAN.

A second form introduces a power series within the exponential of a modified Arrhenius
expression, as follows:

k A T
b

T
f i

n
n

n
i

i= ∑β exp
=1

4
. (80)

The user may specify this rate-constant expression using the auxiliary keyword FIT1. The use of
auxiliary keywords are described in more detail in the next section.

34

Special Forms of the Rate Expressions

It is often convenient to separate the species chemical production rates into creation and
destruction rates. Furthermore, some numerical approaches take advantage of this separation.
Therefore, we provide subroutines that return the chemical rates in the following form:

˙ ˙ ˙ ,ωk k kC D= − (81)
[CKCDYP, CKCDYR,
CKCDXP, CKCDXR,

CKCDC]
where, for non-three-body reactions,

Ċ v k X k Xk ki r
i

I

j
j

K

ki f
i

I

j
j

K

i i

ji ji= ′∑ []∏ + ′′∑ []∏
=

′′

= =

′

=1 1 1 1

υ υ
υ (82)

and

˙ .D k X k Xk ki f
i

I

j ki r
i

I

j

K

j
j

K

i i

ji ji= ′∑ [] + ′′∑∏ []∏
=

′

==

′′

=
υ υ

υ υ

1 11 1

(83)

When third body reactions are involved, each sum in the above equations is multiplied by the third-
body concentration

M Xki k
k

K
[] = []∑

=
α
1

.

Another useful form for the chemical production rates is found by defining a creation rate and
characteristic time for the destruction rate, i.e.,

˙ ˙ .ω
τk k

k

k
C

X
= − [] (84)

[CKCTYP, CKCTYR,
CKCTXP, CKCTXR, CKCTC]

Here the characteristic time is given simply in terms of Ḋk as

τ k
k

k

X

D
= []

˙ .
(85)

As a precaution against Xk[] and Ḋk simultaneously approaching zero, the CHEMKIN implementation
of the destruction time is written as

τ
εk

k

k

X

D
= []

+˙ ,
(86)

[CKCTYP, CKCTYR,
CKCTXP, CKCTXR, CKCTC]

35

where ε is an arbitrary small number,* say 10-50.

In some numerical solution algorithms for chemically reacting flow, it is a significant
computational savings to separate the temperature-dependent part of the rate expressions (i.e. the rate
constants in most cases) from the concentration-dependent contribution. In particular, evaluation of
Jacobian matrix elements through perturbation of solution variables often relies on numerous function
evaluations and hence numerous calls to CHEMKIN to evaluate rate expressions. The temperature-
dependent portion of the rate expression contains an exponential, which is compuationally expensive to
evaluate. When the temperature variable is not being perturbed, it is unnecessary to repeat this
evaluation. To this end we have provided additional subroutines that either provide the temperature-
dependent rate coefficients or, given the rate coefficients, return the species’ net rates of production.
The subroutine for evaluating the temperature-dependent rate constant for each reaction is called
CKKFRT, while the subroutine that takes the rate constant as input and returns the species net rates of
production is called CKWYPK. The use of these subroutines is described in more detail in Sections V
and VI.

* This computer-dependent number is set in the Gas-Phase Subroutine Library at the time the library is
created.

36

III. THE MECHANICS OF USING CHEMKIN

CHEMKIN is a highly structured and modular package that requires the manipulation of a
number of programs, subroutines, and data files. This chapter describes the structure of the package and
the job-control logic that is required to use it.

Structure of CHEMKIN

The general structure of the CHEMKIN package is shown in Fig. 6. The Interpreter is a program
that reads a symbolic description of a reaction mechanism and then extracts the needed thermodynamic
data for each species involved from the Thermodynamic Database. The primary output from the
Interpreter is a binary file called the Linking File.‡ This file contains information that contains all
required information about the elements, species, and reactions in the user's mechanism.

The Linking File is a binary file called chem.bin. This file must be opened in the user's code and
a logical file number LINCK must be specified and passed to the CHEMKIN initialization routine (so
that the file can be read by the initialization subroutine).

In addition to the Linking File, three other files are needed by the Interpreter: an input file, an
output file, and a Thermodynamic Database file (therm.dat).7 The input to the Interpreter is read on
FORTRAN’s standard input unit and printed output is directed to FORTRAN’s standard output unit. User-
specified filenames can thereby be directed to and from the Interpreter on the Interpreter command line
for UNIX systems. The printed output contains a listing of the elements, species, and the reaction
mechanism, and it provides diagnostic error messages if they should be needed.

The Thermodynamic Database is opened as therm.dat on FORTRAN unit 17. This can be a large
file with information on many species, most of which are not needed for any given problem.
Thermodynamic data can also be read from the input file; these data can replace or add to those in the
Thermodynamic Database.

Once the Interpreter has been executed and the Linking File created, the user is ready to use the
Gas-Phase Subroutine Library. Subroutines from this library are called from the user's FORTRAN code.
The user's first step must be to dimension three storage arrays (one integer, one floating point, and one
character data type*) and then call the initialization subroutine CKINIT to create the storage arrays
from the Linking File.† One or more of these arrays is required input to nearly every other subroutine in
the CHEMKIN Package.

‡ It is also possible to generate an ASCII Linking File rather than the default binary file, by performing
a minor modifiation of the CHEMKIN -III Interpreter and Library source code using the CHANGE9

utility.
* The minimum length for the arrays can be found in Interpreter output.
† If there is an error in the input to the Interpreter, CKINIT will print a diagnostic message and
execution will stop.

37

Gas-Phase
Reactions
(chem.inp)

Thermodynamic
Database

(therm.dat)

Chemkin
Interpreter

Chemkin
link file

(chem.bin)

Printed
output file
(chem.out)

Gas-Phase
Subroutine

Library

Application Code

Figure 6. Schematic diagram showing the structure of the CHEMKIN package and its
relationship to an application code.

Selection of CHEMKIN subroutines for any given problem begins by finding the appropriate
equations in Chapter II. Most equations give a reference to a subroutine name, for which the input and
output lists are described in Chapters V and VI. Normally only a few of the subroutines in the package
would be called for any one problem. With some FORTRAN compilers, it may be necessary to use an
object library format* for the subroutine package, to assure that only those routines that are actually
called by the user's code are loaded at the time of execution.

* An object library is a collection of compiled subroutines that are stored in a special way so that the
computer only links those subroutines that are referenced in the user’s program. On unix systems,
libraries are created with the ‘ar’ command.

38

Job Control

By example we show here how to compile and run CHEMKIN. Figure 7 is an annotated UNIX

command procedure that outlines the important steps. Even though the example is specific to UNIX

systems, the same functionality must be invoked on any computer system.

UNIX Commands Meaning
f77 -o chem.exe ckinterp.f Compile and link the interpreter using

the f77 compiler. The executable is
named chem.exe.

chem.exe < chem.inp >chem.out Execute the interpreter. The interpreter
will try to open the mechanism file
chem.inp, as well as the Thermodynamic
Database, therm.dat. These files are
opened as units 5 and 17, respectively.
The interpreter creates the binary linking
file chem.bin and the ASCII output file
chem.out. These files use units 25 and 6,
respectively.

f77 -c cklib.f Compile the CHEMKIN Gas-Phase
Subroutine library.

f77 -c sample.f Compile the user’s FORTRAN program.

f77 -o sample.exe sample.o cklib.o Link the user’s FORTRAN program with
the CHEMKIN Gas-Phase Subroutine
Library.

sample.exe < sample.inp > sample.out Execute the user’s program, reading
‘sample.inp’ as unit 5 for the user’s input
and creating ‘sample.out’ on unit 6 for the
user’s output.

Figure 7. A sample UNIX command procedure showing the steps required to compile and run
an application code using the CHEMKIN package.

39

IV. USING THE INTERPRETER

The interpreter is used to read (from the Interpreter Input File) a symbolic description of an
elementary chemical reaction mechanism and create a Linking File (chem.bin) of pertinent information
about that mechanism. The information in the Linking File is subsequently accessed by various
subroutines to provide information on equation of state, thermodynamic properties, and chemical
production rates.

The Interpreter Input File includes information on elements, species, thermodynamic data, and
the reaction mechanism. Input information in the Interpreter Input File is given in 80-column format.
Element data are read first, species data are second, followed by optional thermodynamic data, with
reactions specified last. The thermodynamic data for the species may come from Interpreter Input File
and/or from a Thermodynamic Database (file therm.dat). The syntax for the four types of input is
described below.

With the exception of the thermodynamic data, all input is format free. For the
thermodynamic data, we have chosen to use a compatible format to that used in the original NASA
Chemical Equilibrium code by Gordon and McBride.8

Element Data

All chemical species in the reaction mechanism must be composed of chemical elements or
isotopes of chemical elements. Each element and isotope must be declared as a one- or two-character
symbol. The purpose of the element data is to associate atomic weights of the elements with their
character symbol representations and to identify the order in which arrays of element information in
the Gas-Phase Subroutine Library are referenced. For example, a FORTRAN array of atomic weights for
the elements is in exactly the same order in which the elements were declared in the element data. In
other words, if the atomic weights are stored in an array AWT, then AWT(3) is the atomic weight of
the third element declared in the element data.

For the elements appearing on the periodic chart, the Interpreter has the atomic weight (in
grams per mole) stored internally. For isotopes, a one- or two- character symbol must be input to the
Interpreter to identify each isotope, and a symbol and an atomic weight (in grams per mole) for each
must be defined. The same symbol must be used in the thermodynamic data to identify the elemental
composition of species involving the isotope. Once an isotope has been so defined, it is treated exactly
as a new element. If an ionic species is used in the reaction mechanism (i.e., OH+), an electron must be
declared as the element E.

Element data must start with the word ELEMENTS (or ELEM), followed by any number of
element symbols on any number of lines. Element symbols may appear anywhere on a line, but those on
the same line must be separated by blanks. Any line or portion of a line starting with an exclamation
mark (!) is considered a comment and will be ignored. Blank lines are ignored.

40

If an element is on the periodic chart,* then only the symbol identifying the element need
appear in the element data. For an isotope, the atomic weight must follow the identifying symbol and
be delimited by slashes (/). The atomic weight may be in integer, floating-point, or E format (e.g., 2,
2.0, 0.2E1), but internally it will be converted to a floating point number. For example, the isotope
deuterium may be defined as D/2.014/. If desired, the atomic weight of an element in the periodic
chart may be altered by including the atomic weight as input just as though the element were an
isotope.

Figure 8 shows several equivalent ways to describe element information. In this example the
elements are hydrogen, oxygen, nitrogen, and the isotope deuterium. Table I summarizes the rules for
element data.

ELEMENTS H D /2.014/ O N END

ELEM ! ELEM is equivalent to ELEMENTS
 H
 D / 2.014 /
 O
 N
END ! an END line is optional

ELEM H
ELEM D/2.014/
ELEM O
ELEM

Figure 8. Equivalent Ways to Describe Element Information

* The elements that Chemkin recognizes are as follows:
H, HE, LI, BE, B, C, N, O, F, NE, NA, MG, AL, SI, P, S, CL, AR, K, CA, SC, TI, V, CR, MN, FE, CO, NI,
CU, ZN, GA, GE, AS, SE, BR, KR, RB, SR, Y, ZR, NB, MO, TC, RU, RH, PD, AG, CD, IN, SN, SB, TE, I,
XE, CS, BA, LA, CE, PR, ND, PM, SM, EU, GD, TB, DY, HO, ER, TM, YB, LU, HF, TA, W, RE, OS, IR,
PT, AU, HG, TL, PB, BI, PO, AT, RN, FR, RA, AC, TH, PA, U, NP, PU, AM, CM, BK, CF, ES, FM, D, E

41

Table I. Summary of the Rules for Element Data

1. The first element line must start with the word ELEMENTS (or ELEM).

2. Element or isotope names are either one- or two-character symbols.

3. An isotope name (i.e., a name not on the periodic chart) must be followed by its
atomic weight (in grams per mole) delimited by slashes.

4. Each element or isotope should be declared only once; however, duplicated
element symbols will be ignored.

5. An element or isotope name may appear anywhere on the line.

6. Any number of element or isotope names may appear on a line, and more than one
line may be used.

7. Element or isotope names that appear on the same line must be separated by at
least one blank space.

8. An element or isotope name that begins on one line may not continue to the next
line.

9. Any blank spaces between an element or isotope name and the first slash are
ignored and any blank spaces between slashes and an atomic weight are also
ignored. However, no blank spaces are allowed within an element name or an
atomic weight.

10. There may be more than one ELEMENT statement.

11. All characters following an exclamation mark are comments.

42

Species Data

Each chemical species in a problem must be identified on one or more species line(s). Any set of
up to 16 upper or lower case characters* can be used as a species name. In addition each species must be
composed of elements that have been identified in the element data. As for the element data, one of
the primary purposes of the species data is to identify the order in which FORTRAN arrays of species
information are referenced in the Gas-Phase Subroutine Library.

Species data must start with the word SPECIES (or SPEC), followed by any number of species
symbols on any number of lines. Species symbols may appear anywhere on a line, but those on the same
line must be separated by blank spaces. Any line or portion of a line starting with an exclamation mark
(!) is considered to be a comment and will be ignored. Blank lines are ignored. Figure 9 shows several
equivalent ways to describe species information. The rules for species data are summarized in Table II.

SPECIES H2 O2 H O OH HO2 N2 N NO END

SPEC ! SPEC is equivalent to SPECIES
 H2 O2
 H O OH HO2 N2 N NO
END

SPEC H2
spec O2

Figure 9. Equivalent Ways to Describe Species Information

* Species names may not begin with a number, a +, or an =, or have imbedded blanks; an ionic species
may end with any number of +’s or −’s; an imbedded plus sign (+) must be enclosed in parentheses.

43

Table II. Summary of the Rules for Species Data

1. Species data must start with the word SPECIES (or SPEC).

2. Species names are composed of up to 16-character upper- or lower- case symbols.
The names cannot begin with the characters +, =, or a number; an ionic species
name may end with one or more +'s or -'s.

3. Each species should be declared only once; however, duplicated species symbols
will be ignored.

4. Each species that subsequently appears in a reaction must be declared.

5. A species name may appear anywhere on the line.

6. Any number of species names may appear on a line, and more than one line may be
used.

7. Species named on the same line must be separated by at least one blank space.

8. A species name that begins on one line may not continue to the next line.

9. There may be more than one SPECIES statement.

10. All characters following an exclamation mark are comments.

Thermodynamic Data

Any chemical species that appears in a problem must have thermodynamic data associated
with it. The data may be extracted from a database (file therm.dat) and/or read from the Interpreter
Input File. If all the thermodynamic data are to be extracted from the database, then no
thermodynamic data input is required. However, if the user wishes to override information in the
database or to provide data on species not in the database, then Interpreter input is needed. In any case,
the format for the information is the same.

The format (see Table III) is a minor modification of that used by Gordon and McBride8 for the
Thermodynamic Database in the NASA Chemical Equilibrium code. Our modification allows for a
different midpoint temperature for the fits to the properties of each chemical species. We also allow a
species to be composed of a maximum of five elements, not four. However, the formatting is such that
the CHEMKIN Interpreter can use the NASA database directly without any modification.

As indicated in Table III, the pertinent information includes the species name, the elemental
composition of the species, and the temperature ranges over which the polynomial fits to
thermodynamic data are valid. The fits to C R H RTp

o o, , and S Ro consist of seven coefficients for
each of two temperature ranges [see Eqs. (19) - (21)]. Further information about the fitting procedure
and data for many species can be found in a report on the CHEMKIN Thermodynamic Database.7

44

Table III. Summary of the Rules for Thermodynamic Data
Line
Number Contents Format Column
1 THERMO (or THERMO ALLa) Free Any

2b Temperature ranges for 2 sets of coefficients:
lowest T, common T, and highest T

3F10.0 1 to 30

3 Species name (must start in Column 1)

Date (not used in the code)

Atomic symbols and formula

Phase of species (S, L, or G for solid, liquid, or
gas, respectively)

Low temperature

High temperature

Common temperature (if needed)
(blank for default)

Atomic symbols and formula (if needed)
(blank for default)

The integer 1

18A1

6A1

4(2A1,I3)

A1

E10.0

E10.0

E8.0

2A1,I3

I1

1 to 18

19 to 24

25 to 44

45

46 to 55

56 to 65

66 to 73

74 to 78

80

4 Coefficients a1 - a5 in Eqs. (19) - (21),
for upper temperature interval

The integer 2

5(E15.0)

I1

1 to 75

80

5 Coefficients a6, a7 for upper temperature
interval, and a1, a2, and a3 for lower

The integer 3

5(E15.0)

I1

1 to 75

80

6 Coefficients a4, a5, a6, a7
for lower temperature interval

The integer 4

4(E15.0)

I1

1 to 60

80

... Repeat lines 3 - 6 for each species.

last END (Optional, end of thermodynamic data.) Free Any

a Use only when all the thermodynamic data are to be taken from Interpreter input.
b Include line 2 only with THERMO ALL (it is already in the Thermodynamic Database).

45

When thermodynamic data input is required, it must immediately follow species data.* The
first thermodynamic data line must start with the word THERMO (or THER). If all the
thermodynamic data are input directly to the Interpreter, then the first line must read THERMO ALL
and the code will not expect a Thermodynamic Database from file LTHRM; for this option the next line
must be line 2 of Table III. For either option, the subsequent thermodynamic data lines must be in the
format of lines 3 - 6 of Table III. (For the THERMO option the midpoint temperature is taken from the
line 2 information already in the Thermodynamic Database.) As many species as needed can be
included as THERMO input.

Figure 10 shows some examples of thermodynamic property input. In these examples for OH,
OH+, and OH−, it is seen from columns 25 - 34 that the elemental composition of each molecule is one O
atom and one H atom. In addition, columns 35 - 39 indicate that two of the species, OH+, and OH−, are
ionic since they contain −1 and +1 electrons (E), respectively. The G in column 45 indicates that all
three species are gaseous. The 1000.00 in columns 66 - 73 for OH indicates that the common temperature
between the high- and low-temperature fits is 1000.00 K. If columns 66 - 73 are left blank, as they are
for OH+ and OH−, then the common temperature is that given in columns 21 - 31 of line 2 in Table III,
which in this example is in the Thermodynamic Database.

THERMO
OH 121286O 1H 1 G 0300.00 5000.00 1000.00 1
 0.02882730E+02 0.10139743E-02-0.02276877E-05 0.02174683E-09-0.05126305E-14 2
 0.03886888E+05 0.05595712E+02 0.03637266E+02 0.01850910E-02-0.16761646E-05 3
 0.02387202E-07-0.08431442E-11 0.03606781E+05 0.13588605E+01 4
OH+ 121286O 1H 1E -1 G 0300.00 5000.00 1
 0.02719058E+02 0.15085714E-02-0.05029369E-05 0.08261951E-09-0.04947452E-13 2
 0.15763414E+06 0.06234536E+02 0.03326978E+02 0.13457859E-02-0.03777167E-04 3
 0.04687749E-07-0.01780982E-10 0.15740294E+06 0.02744042E+02 4
OH- 121286O 1H 1E 1 G 0300.00 5000.00 1
 0.02846204E+02 0.10418347E-02-0.02416850E-05 0.02483215E-09-0.07775605E-14 2
-0.01807280E+06 0.04422712E+02 0.03390037E+02 0.07922381E-02-0.01943429E-04 3
 0.02001769E-07-0.05702087E-11-0.01830493E+06 0.12498923E+01 4
END

Figure 10. Examples of Thermodynamic Data Input.

* In the original Chemkin, the thermodynamic data preceeded the species data.

46

The following is a summary of the possibilities for specifying thermodynamic data:

Case 1: All thermodynamic data from database file
1. The database file is therm.dat.
2. No THERMO data required as input.

Case 2: Thermodynamic data from database and input files
1. The database file is therm.dat
2. Include the following lines in the Interpreter Input File, after the species data:

THERMO
Data in Table III format (lines 3 - 6 repeated) for each species not in the database or to
override species in database
END

Case 3: All thermodynamic data from input file
1. No therm.dat file required
2. Include the following lines in the Interpreter Input File, after the species data:

THERMO ALL
Data in Table III format (lines 3 - 6 repeated) for at least all species named in the species
data
END

Reaction Mechanism Description

The reaction mechanism may consist of any number of chemical reactions involving the species
named in the species data. A reaction may be reversible or irreversible; it may be a three-body reaction
with an arbitrary third body and/or enhanced third body efficiencies; it may have a Lindemann,11

Troe,12 or SRI* fall-off formulation† ; it may involve a photon; it may depend on a species temperature
other than that of the bulk gas.

Reaction data must start with the word REACTIONS (or REAC). On the same line, the user
may specify units of the Arrhenius rate coefficients [Eq. (52)] to follow by including the word
CAL/MOLE, KCAL/MOLE, JOULES/MOLE, KELVINS, or EVOLTS for Ei, and/or MOLES or
MOLECULES for Ai. If MOLECULES is specified, then the units for Ai are cm-molecules-sec-K. If units
are not specified, Ai and Ei must be in cm-mole-sec-K and cal/mole, respectively. Note that T is always
in Kelvin. The lines following the REACTION line contain reaction descriptions together with their
Arrhenius rate coefficients. The reaction description is composed of reaction data and perhaps
auxiliary information data.

* SRI refers to the formulation of Stewart, et al.13, who are at SRI International, Menlo Park, CA.
† See Section III for a discussion of the different formulations.

47

Reaction Data

Each reaction line is divided into two fields. The first contains the symbolic description of the
reaction while the second contains the Arrhenius rate coefficients. Both fields are format free and
blank spaces are ignored. Any line or portion of a line starting with an exclamation mark (!) is
considered a comment and is ignored. Blank lines are ignored.

The reaction description, given in the first field, must be composed of the species symbols,
coefficients, delimiters, and special symbols.

Species Symbols: Each species in a reaction is described with the unique sequence of
characters as they appear in the species data and the
thermodynamic data.

Coefficients: A species symbol may be preceded by an integer or real coefficient.
The coefficient has the meaning that there are that many moles
of the particular species present as either reactants or products;
e.g., 2OH is equivalent to OH + OH. Note: non-integer
coefficients are allowed in CHEMKIN-III, but the element balance
in the reaction must still be maintained.

Delimiters:

+ A plus sign is the delimiter between each reactant species and
each product species.

= An equality sign is the delimiter between the last reactant and
the first product in a reversible reaction.

<=> An equality sign enclosed by angle brackets can also be used as the
delimiter between the last reactant and the first product in a
reversible reaction.

=> An equality sign with an angle bracket on the right is the
delimiter between the last reactant and the first product in an
irreversible reaction

48

Special Symbols:

+M An M as a reactant and/or product stands for an arbitrary third
body. Normally it would appear as both a reactant and a
product. However, it has the identical meaning even if it
appears only as a reactant or a product. In other words, an M
anywhere in the reaction description indicates that a third body
is participating in the reaction. In a reaction containing an M,
species can be specified to have enhanced third body efficiencies,
in which case auxiliary information data (described below) must
follow the reaction line. If no enhanced third body efficiencies
are specified, then all species act equally as third bodies and the
effective concentration of the third body is the total concentration
of the mixture.

(+M) An M as a reactant and/or product surrounded by parentheses
indicates that the reaction is a pressure-dependent reaction, in
which case auxiliary information line(s) (described below) must
follow the reaction to identify the fall-off formulation and
parameters. A species may also be enclosed in parenthesis. Here,
for example, (+H2O) indicates that water is acting as the third
body in the fall-off region, not the total concentration M.

H V The symbol HV as a reactant and/or product indicates that
photon radiation (hv) is present. If HV appears in a reaction
description, the wavelength of the radiation may be specified on
the auxiliary information line (described below). Although this
information is not used internally in the CHEMKIN routines, it is
available to the user through a subroutine call.

E The symbol E as a reactant and/or product is used to represent an
electron. An electron is treated just like any other species, and is
composed of the element E, which must be declared as element
data. If an E appears in any reaction, then it must also be
declared as a species in the species data and thermodynamic data
must be supplied for it.

! An exclamation mark means that all following characters are
comments on the reaction. For example, the comment may be used
to give a reference to the source of the reaction and rate data.

The second field of the reaction line is used to define the Arrhenius rate coefficients Ai , βi , and
Ei , in that order, as given by Eq. (52). At least one blank space must separate the first number and the
last symbol in the reaction. The three numbers must be separated by at least one blank space, be stated

49

in either integer, floating point, or E format (e.g., 123 or 123.0 or 12.3E1), and have units associated with
them. Unless modified by the REACTION line, the default units for Ai are in cgs (cm, sec, K, mole), the
exact units depending on the reaction. The factor βi is dimensionless. The default units for the
activation energies are cal/mole.

Examples of some reaction data are shown in Figure 11, and Table IV is a summary of the
reaction data rules.

REACTIONS CAL/MOLE

H2 + O2 = 2OH 1.7E13 0 47780. ! Ref. 21

! H2 + O2 = OH + H 1.7E13 0 47780. ! same as previous reaction,

! commented to prevent a duplication error

H + O2 + M = HO2 + M 2.0E15 0.000 -870.

! H + O2 + M = HO2 2.0E15 0.000 -870.

! H + O2 = HO2 + M 2.0E15 0.000 -870.

OH+ + H + E = H2O 1.E19 0 0.0

O + HV = O(*) 1.3A5 0 0

0.5H2 + 0.5O2 = OH ! example of real coefficients

END ! END statement is optional;

! <eof> condition is equivalent

Figure 11. Examples of Reaction Data

Table IV. Summary of the Rules for Reaction Data

1. The first reaction line must start with the word REACTIONS (or REAC), and may include units
definition(s).

2. The reaction description can begin anywhere on the line. All blank spaces, except those
between Arrhenius coefficients, are ignored.

3. Each reaction description must have =, <=> or => between the last reactant and the first
product.

4. Each reaction description must be contained on one line, unless the continuation character ‘&’ is
included at the end of the line

5. Continuation to the following line is indicated by an ‘&’ at the end of the reaction line.

5. Three Arrhenius coefficients must appear in order (Ai , βi , and Ei) on each Reaction line,
separated from each other and from the reaction description by at least one blank space; no
blanks are allowed within the numbers themselves.

6. There cannot be more than six reactants or six products in a reaction.

7. Comments are any and all characters following an exclamation mark.

50

Auxiliary Information Data

The format of an auxiliary information line is a character-string keyword followed by a slash-
delimited (/) field containing an appropriate number of parameters (either integer, floating point, or E
format).

Neutral Third Body and Pressure Dependent Reaction Parameters

If a reaction contains M as a reactant and/or product, auxiliary information lines may follow
the reaction line to specify enhanced third body efficiencies of certain species [i.e., αki , Eq. (63)]. To
define an enhanced third body efficiency, the keyword is the species name of the third body, and its
one parameter is its enhanced efficiency factor. A species that acts as an enhanced third body must be
declared as a species.

If a pressure-dependent reaction is indicated by a (+M) or by a species contained in parentheses,
say (+H2O), then one or more auxiliary information lines must follow to define the pressure-dependence
parameters. The Arrhenius coefficients on the reaction line are for the high-pressure limit (A∞ , β∞ ,
and E∞) for unimolecular fall-off reactions and represent the low-pressure limit (Ao , βo , and Eo) for
chemically activated bimolecular reactions (see the description of these reaction types in Section II.
For all pressure-dependent reactions an auxiliary information line must follow to specify either the
low-pressure limit Arrhenius parameters (for fall-off reactions) or the high-pressure limit Arrhenius
parameters (for chemically activated reactions). For fall-off reactions, the keyword LOW must
appear on the auxiliary information line, with three rate parameters Ao , βo , and Eo [Eq. (65)]. For
chemically activated bimolecular reactions, the keyword HIGH must appear on the auxiliary
information line, with the three rate parameters A∞ , β∞ , and E∞ [Eq. (66)]. There are then three
possible interpretations of the pressure-dependent reaction:

1) To define the Lindemann11 formulation of a pressure-dependent reaction, no additional parameters
are defined.

2) To define a Troe12 pressure-dependent reaction, in addition to the LOW or HIGH parameters,
the keyword TROE followed by three or four parameters must be included in the following
order: a, T***, T*, and T** [Eq. (73)]. The fourth parameter is optional and if omitted, the last
term in Eq. (73) is not used.

3) To define an SRI pressure-dependent reaction*, in addition to the LOW or HIGH parameters,
the keyword SRI followed by three or five parameters must be included in the following order:
a, b, c, d, and e [Eq. (74)]. The fourth and fifth parameters are options. If only the first three
are stated, then by default d = 1 and e = 0.

* SRI refers to the formulation of Stewart et al.13, who are at SRI International, Menlo Park, CA.

51

Landau-Teller reactions

To specify Landau-Teller parameters, the keyword LT must be followed by two parameters 
the coefficients Bi and Ci from Eq. (77). The Arrhenius parameters Ai , βi , and Ei are taken from the
numbers specified on the reaction line itself. If reverse parameters are specified in a Landau-Teller
reaction by REV (see below under “Reverse Rate Parameters”), the reverse Landau-Teller parameters
must also be defined, with the keyword RLT and two coefficients Bi and Ci for the reverse rate.

Optional Rate Fit Expressions

To specify the optional rate-constant fit expression described by Eq. (79), the keyword JAN
must be followed by nine parameters  the coefficients bn from Eq. (79). The Arrhenius parameters Ai ,
βi , and Ei are taken from the numbers specified on the reaction line itself. If fewer than nine

parameters are required for the fit, the user must provide zeros for the remainder of the parameters in
the auxiliary parameter list.

To specify the optional rate-constant fit expression described by Eq. (80), the keyword FIT1
must be followed by four parameters  the coefficients bn from Eq. (80). Again, the Arrhenius
parameters Ai , βi , and Ei are read from the reaction line.

Radiation Wavelength Parameter

If a reaction contains HV as a reactant and/or product, an auxiliary information line may
follow the reaction to specify radiation wavelength. For the wavelength specification, the keyword is
HV and its one parameter is the wavelength in angstroms. This information is not used in the Gas-
Phase Subroutine Library, but it is available to the user through a subroutine call.

Species Temperature Dependence

When solving multi-fluid problems that involve multiple temperatures (for example, electron
temperature and neutral gas temperature), the auxiliary information data may follow the reaction to
specify the species on whose temperature the reaction depends. Here the species name follows the
auxiliary keyword TDEP. This option causes the reaction rate constant to be evaluated using the
specified species temperature and the rate parameters given in the reaction data. In the case when
there is more than one temperature defined in the system, the application code must call the CHEMKIN

subroutine CKKTFL to indicate which temperature in the temperature array corresponds to each
species.

Energy Loss Parameter

Auxiliary data may be used to specify the energy loss per reaction event by specifying the
keyword EXCI, followed by the value of the energy loss per event in units of electron volts. This option
overrides the calculation of energy loss from the change in enthalpy determined by the reaction
description and the thermodynamic data of the reactants and products. The option is useful in
describing electron-impact excitation reactions, for example, where the user does not wish to keep track

52

of the excited-species density, but wants to include the energy loss to the electrons due to the excitation
process.

Plasma Momentum-Transfer Collision Frequency Options

To indicate that the reaction parameters describe the momentum-transfer collision frequency
for electrons, the auxiliary keyword MOME may be used. This keyword requires no supplemental data,
but changes the treatment of the reaction-rate coefficients. The option causes the reaction to be flagged
as an electron momentum-transfer reaction, and assumes that the reaction rate constant is in units of
cm3/mole-s or cm3/molecule-s, depending on the units specified in the REACTION statement. These
reactions are treated as special cases when CHEMKIN subroutines evaluate reaction rates-of-progress,
as described in Section II.

Auxiliary data may also be used to flag a reaction as representing collision cross-section
information for the determination of ion momentum-transfer collision frequencies in a plasma
simulation. Here the auxiliary keyword is XSMI, and no auxiliary parameters are required. In this
case the units of the evaluated rate-constant are assumed to be in cm2, and are left as such when
CHEMKIN subroutines evaluate rates of progress for other reactions. Again, the use of this option is
described in more detail in Section II.

Reverse Rate Parameters

For a reversible reaction, auxiliary information data may follow the reaction to specify
Arrhenius parameters for the reverse-rate expression. Here, the three Arrhenius parameters (Ai , βi ,
and Ei) for the reverse rate must follow the keyword REV. This option overrides the reverse rates that
would be normally computed by satisfying microscopic reversibility through the equilibrium constant,
Eq. (53).

Reaction Order Parameters

Auxiliary data may be included to override the reaction order for a species, using the auxiliary
keywords FORD or RORD, for forward and reverse reaction descriptions, respectively. Each occurrence
of these keywords must be followed by the species name and the new reaction order. This option
overrides the values of ′υki and ′′υki in Eq. (51), for the species included in the auxiliary data.

Reaction Units

It is sometimes convenient to specify the units for a particular reaction rate fit that may differ
from the default units specified for other reaction expressions in the chemistry mechanism. In this case,
the user employs the auxiliary keyword UNITS. This keyword must be followed by one or more of the
following unit descriptors: MOLE(CULE), CAL, KCAL, JOUL, KJOU, KELV(IN), or EVOL(TS), where
the letters in parentheses are optional. The inclusion of MOLE(CULE) would indicate that the
reaction rate expression is in units of molecules/cm3 rather than moles/cm3. The remaining unit
descriptors specify the units of the energy Ei in the rate expression. Note that the units of T in the rate
expression are always in Kelvin.

53

Duplicate Reaction Descriptions

It sometime happens that two or more reactions can involve the same set of reactants and
products, but proceed through distinctly different processes. In these cases, it may be appropriate to
state a reaction mechanism that has two or more reactions that are the same, but have different rate
parameters. However, duplicate reactions are normally considered errors by the Interpreter. If the user
requires duplication (e.g., the same reactants and products with different Arrhenius parameters), an
auxiliary information statement containing the keyword DUP (with no parameters) must follow the
reaction line of each duplicate reaction (including the first occurrence of the reaction that is
duplicated). For example, if the user wishes to specify different rate expressions for each of three
identical reactions, there must be three occurrences of the DUP keyword, one following each of the
reactions.

Any number of auxiliary information lines may follow a reaction line, in any order, and any
number of keywords or enhanced third bodies* may appear on an auxiliary information line; however,
a keyword and its parameter(s) must appear on the same line.

Examples of equivalent ways to state auxiliary information are shown in Figure 12. The above
rules are summarized in Table V.

Problems Having No Reactions

In some problems only information about the elements and species is needed (e.g., chemical
equilibrium computations). For these it is not necessary to include reaction data. The Interpreter will
create the chem.bin file, but it will not contain any reaction information. Therefore, no subroutines in
the Gas-Phase Subroutine Library that deal with chemical reactions (e.g., chemical production rates)
may be used.

* If more than ten species have enhanced third body efficiencies in any one reaction, some dimensioning
needs to be changed in the Interpreter.

54

REACTIONS CAL/MOLE

HCO+M=H+CO+M 0.250E+15 0.000 16802.000 ! Warnatz
CO/1.87/ H2/1.87 CH4/2.81/ CO2/3./ H2O/5./

H+C2H4(+M)=C2H5(+M) 0.221E+14 0.000 2066.000 ! Michael
LOW / 6.369E27 -2.76 -54.0 / !Lindemann fall-off reaction
H2/2/ CO/2/ CO2/3/ H2O/5/ ! enhanced third-body efficiencies

CH3+CH3(+M)=C2H6(+M) 9.03E16 -1.18 654.
LOW / 3.18E41 -7.03 2762 /
TROE / 0.6041 6927. 132. / ! TROE fall-off reaction, with 3 parameters
H2/2/ CO/2/ CO2/3/ H2O/5/ ! enhanced third-body efficiencies

CH3+H(+M)=CH4(+M) 6.0E16 -1.0 0.0
LOW / 8.0E26 -3.0 0.0/
SRI / 0.45 797. 979. / ! SRI fall-off reaction
H2/2/ CO/2/ CO2/3/ H2O/5/ ! enhanced third-body efficiencies

CH4+H=CH3+H2 1.25E14 0 1.190E4 ! Westbrook
REV / 4.80E12 0 1.143E4 /

! The following two reactions are acceptable duplicates:

H2+O2 = 2OH 1.7E13 0 47780
DUPLICATE

H2+O2 = 2OH 1.0E13 0 47000.
DUPLICATE

H2(1)+H2O(000)=H2(0)+H2O(001) 2.89E15 0 0
LT / -67 62.1/ ! Landau-Teller reaction

! The following reactions allow plasma kinetics descriptions
E + E + AR+ <=> AR + E 1.414E+39 -4.500 0.00 ! Mansbach & Keck

TDEP/E/ REV/6.807E+31 -3.0 364218./ !electron temperature dependence

E + AR => AR + E 4.9E-7 0.162 8.7634E3
TDEP/E/ MOME !Momentum-transfer collision frequency

AR+ + AR => AR+ + AR 1.E-16 0.0 0.0 !units of cm^2
XSMI !Ion momentum-transfer collision cross-section

E + AR => AR + E 2.235E16 0.0 3.47E5
TDEP/E/ EXCI/11.60/ ! metastable excitation reaction
DUP

END !END line is optional

Figure 12. Examples of Auxiliary Information Definitions

55

Table V. Summary of the Rules for Auxiliary Information Data

1. Auxiliary information lines may follow reaction lines that contain an M to specify enhanced
third-body efficiencies, a reaction that contains an HV to specify the radiation wavelength, a
reversible reaction to specify the reverse rate parameters explicitly, or any reaction that
specifies Landau-Teller parameters. Auxiliary information must follow any duplicate
reactions as well as all reactions that indicate pressure-dependent behavior by (+M) (i.e.,
provide fall-off parameters).

2. A species may have only one enhanced third body efficiency associated with it in any one
reaction.

3. Only one radiation wavelength may be declared in a reaction.

4. The order in which the enhanced third body declarations are given is the order in which
arrays of enhanced third body information are referenced in the subroutine package.

5. There cannot be more than ten enhanced third bodies in a reaction.

6. Keyword declarations may appear anywhere on the line, in any order.

7. Any number of keywords may appear on a line and more than one line may be used; however, a
keyword and its parameter(s) must appear on the same line.

8. Keyword declarations that appear on the same line must be separated by at least one blank
space.

9. Any blank spaces between a keyword and the first slash are ignored and any blanks between
the slashes and parameter(s) are also ignored. However, no blank spaces are allowed within a
keyword or a parameter.

10. All characters following an exclamation mark are comments.

11. In ion momentum-transfer collision cross-section reactions there must be exactly two reactant
species, one of which must be an ion.

12. In electron momentum-transfer collision frequency reactions, there must be exactly two reactant
species, one of which must be the electron.

56

Error Checks

The Interpreter checks each input line for proper syntax and writes diagnostic messages on
logical file LOUT if errors are encountered. If an error condition occurs, the Interpreter continues to read
and diagnose the input, but an error flag is written to the Linking file and CHEMKIN subroutine CKINIT
will not initialize the work arrays. Therefore, the input must be error free before any of the CHEMKIN

subroutines can be called. The possibilities for an error condition are listed below:

Element Data

Atomic weight for an element or isotope is not declared, and the element is not found in the Interpreter’s
database.

Atomic weight has been declared, but not enclosed by two slashes (/).

If an element is declared twice, a diagnostic message is printed, but the duplicate is simply eliminated
from consideration and is not considered a fatal error.

There are more elements than the corresponding dimension in the Interpreter.

Species Data

If a species is declared twice, a diagnostic message is printed, but the duplicate is eliminated from
consideration and is not considered a fatal error.

No thermodynamic data have been found for a declared species.

There are more species than the corresponding dimension in the Interpreter.

Thermodynamic Data

Thermodynamic data are format sensitive and therefore provide possibilities for error if not formatted
exactly as described by Table III.

An element in the thermodynamic data for a declared species has not been included in the element
data.

With the THERMO ALL option, line 2 (Table III) is not found.

Reaction Data

A delimiter =>, <=>, or = between the reactants and the products is not found.

Three Arrhenius parameters are not found.

Reactants and/or products have not been properly delineated by a plus sign (+).

57

A species as a reactant or product has not been declared in the species data.

The reaction does not balance.

The charge of the reaction does not balance.

A reaction is a duplicate not declared by the auxiliary data keyword DUP.

A third-body species enclosed in parentheses in a fall-off reaction appears as reactant or product, but
not both.

The third-body reactant is not the same as the third-body product in a fall-off reaction.

A species is a third-body in a fall-off reaction, and +M also appears in the reaction.

More than one +M or third body appear as reactants and/or products.

HV declared as a reactant and as a product.

There are more reactions than the corresponding dimension in the Interpreter.

There are more than six reactants or six products.

Auxiliary Data

There is an unknown or misspelled keyword or enhanced third-body species name.

Parameters for a keyword are not enclosed in slashes.

The wrong number of parameters appear for a keyword.

There are duplicate keywords for a reaction.

LOW, HIGH, TROE, OR SRI are found after a reaction that did not have a species or M in parentheses.

LOW or HIGH is not found after a pressure-dependent reaction.

TROE and SRI are both found.

LT and REV are found for a Landau-Teller reaction, but RLT is not found.

LT or REV are given for a fall-off reaction.

There are more than ten enhanced third bodies.

There are more than or less than two reactants specified with XSMI or MOME keywords.

58

An ionic species is not specified as a reactant with the XSMI keyword.

The electron is not a reactant when using the MOME keyword.

59

V. QUICK REFERENCE GUIDE TO THE GAS-PHASE SUBROUTINE LIBRARY

This chapter is arranged by topical area to provide a quick reference to each of the Gas-Phase
Library Subroutines. In addition to the subroutine call list itself, the purpose of the subroutine is briefly
described. Where appropriate, the description refers to an equation number in Chapter II. Detailed
descriptions of the subroutines are included alphebetically in Chapter VI.

Mnemonics

There are some good rules of thumb that explain the subroutine naming conventions. All
subroutine names (with the exception of PKINDX) begin with the letters CK so that CHEMKIN

subroutines are easily recognized and so that they are likely different from any user subroutine names.
The four remaining letters identify the purpose of the subroutine: The first one or two usually refer to
the variable that is being computed; the last letters refer to either the input variables or the units.

State variables are denoted by P (pressure), T (temperature), Y (mass fraction), X (mole
fraction), and C (molar concentration). Thermodynamic properties are referred to by CP and CV
(Specific heats), H (enthalpy), S (entropy), U (internal energy), G (Gibbs free energy), and A
(Helmholtz free energy). The thermodynamic property subroutines may be called to return properties
in mass units, denoted by MS or S as the last letter(s), or in molar units, denoted by ML or L as the last
letter(s). The letter B (for the bar as in Cp) in a thermodynamic property subroutine name indicates
that it returns mean mixture properties.

Subroutines that return net chemical production rates have a W (for ω̇k) following the CK, and
routines that return creation and destruction rates or creation rates and destruction times have a CD or a
CT, respectively, following the CK. Rate-of-progress variables are denoted by Q and equilibrium
constants by EQ.

The mnemonics for the input and output variable names in the subroutine calls are roughly the
same as for the subroutine names. However, because six letters can be used (only four are available in
the subroutine names because CK occupies two), the mnemonics can be more explicit.

In most cases the subroutines are functionally identical with the corresponding routines in the
original CHEMKIN. However, there are some cases where either the functionality is different or the
call list is changed, but we have still used the same subroutine name. These routines are identified by
an asterisk. Subroutines whose call lists have changed since the release of CHEMKIN II are indicated
by a double asterisk.

60

1. INITIALIZATION

 SUBROUTINE CKINDX (ICKWRK, RCKWRK, MM, KK, II, NFIT)*
 Returns a group of indices defining the size of the particular
 reaction mechanism

 SUBROUTINE CKINIT (LENICK, LENRCK, LENCCK, LINC, LOUT, ICKWRK,
 RCKWRK, CCKWRK, IFLAG)**
 Reads the linkfile and creates the internal work arrays ICKWRK,
 RCKWRK and CCKWRK. CKINIT must be called before any other CHEMKIN
 subroutine can be used, as the work arrays must be available as
 their input.

 SUBROUTINE CKKTFL (ICKWRK, KTFL)
 Allows the user to assign a location in the temperature array
 to use for each gas-phase species.

 SUBROUTINE CKLEN (LINC, LOUT, LENI, LENR, LENC, IFLAG)
 Returns the lengths required for work arrays.

 SUBROUTINE CKPNT (LSAVE, LOUT, NPOINT, VERS, PREC, LENI, LENR,
 LENC, KERR)
 Reads from a file information about a CHEMKIN linkfile, and
 pointers for work arrays.

 SUBROUTINE CKSAVE (LOUT, LSAVE, ICKWRK, RCKWRK, CCKWRK)
 Writes to a binary file information about a CHEMKIN linkfile,
 pointers for the CHEMKIN Library, and CHEMKIN work arrays.

 SUBROUTINE PKINDX (ICKWRK, KELECT, KKION)
 Returns plasma indices for the particular reaction mechanism.

2. INFORMATION ABOUT ELEMENTS

 SUBROUTINE CKAWT (ICKWRK, RCKWRK, AWT)
 Returns the atomic weights of the elements

 SUBROUTINE CKCOMP (IST, IRAY, II, I)*
 Returns the index of an element of a reference character string
 array which corresponds to a character string;
 leading and trailing blanks are ignored.

 SUBROUTINE CKSYME (CCKWRK, LOUT, ENAME, KERR)*
 Returns the character strings of element names.

3. INFORMATION ABOUT SPECIES

 SUBROUTINE CKCHRG (ICKWRK, RCKWRK, KCHARG)
 Returns the electronic charges of the species.

61

 SUBROUTINE CKCOMP (IST, IRAY, II, I)*
 Returns the index of an element of a reference character string
 array which corresponds to a character string;
 leading and trailing blanks are ignored.

 SUBROUTINE CKION (ICKWRK, KION)
 Returns the ion species indices

 SUBROUTINE CKNCF (MDIM, ICKWRK, RCKWRK, NCF)
 Returns the elemental composition of the species

 SUBROUTINE CKPHAZ (ICKWRK, RCKWRK, KPHASE)
 Returns a set of flags indicating phases of the species

 SUBROUTINE CKSYMS (CCKWRK, LOUT, KNAME, KERR)*
 Returns the character strings of species names

 SUBROUTINE CKWT (ICKWRK, RCKWRK, WT)
 Returns the molecular weights of the species

4. INFORMATION ABOUT REACTIONS

 SUBROUTINE CKABE (ICKWRK, RCKWRK, RA, RB, RE)
 Returns the Arrhenius coefficients of the reactions; see Eq. (52).

 SUBROUTINE CKFAL (NDIM, ICKWRK, RCKWRK, IFOP, IFLO, KFAL, FPAR)
 Returns a set of flags indicating whether a reaction has pressure-
 dependent behavior and an array of parameters.

 SUBROUTINE CKHRX (I, HML, ICKWRK, RCKWRK, HRXI)
 Returns the molar heat of reaction I.

 SUBROUTINE CKIEXC (ICKWRK, RCKWRK, IEXC, EEXC)
 Returns a set of flags indicating whether the reactions are
 excitation reactions and, if so, the energy loss per event in eV.

 SUBROUTINE CKIMOM (ICKWRK, IMOM)
 Returns a set of flags indicating whether the reactions are
 electron momentum-transfer collision frequencies and, if so,
 the index of the species with which the electron collides.

 SUBROUTINE CKINU (I, NDIM, ICKWRK, RCKWRK, NSPEC, KI, NU)
 Returns a count of species in a reaction, and their indices
 and stoichiometric coefficients; see Eq. (50).

 SUBROUTINE CKIORD (IDIM, KDIM, ICKWRK, RCKWRK, NFORD, IFORD, FORD,
 NRORD, IRORD, RORD)
 Returns the count and indices of reactions with modified species
 order and the order values for the species.

62

 SUBROUTINE CKIRNU (IDIM, NDIM, ICKWRK, RCKWRK, NIRNU, IRNU, NSPEC,
 KI, RNU)
 Returns the count and indices of reactions with real stoichiometric
 coefficients, counts of species in the reactions, and the species
 indices and coefficients; see Eq. (50).

 SUBROUTINE CKITDE (ICKWRK, RCKWRK, ITDE)
 Returns a set of flags indicating whether the reactions are
 non-thermal, and if so, returns the index of the species on
 which the reaction depends.

 SUBROUTINE CKITR (ICKWRK, RCKWRK, ITHB, IREV)
 Returns a set of flags indicating whether the reactions are
 reversible or whether they contain arbitrary third bodies

 SUBROUTINE CKIXSM (ICKWRK, IXSM, IXSK)
 Returns a set of flags indicating whether the reactions are ion
 momentum-transfer cross sections.

 SUBROUTINE CKNU (KDIM, ICKWRK, RCKWRK, NUKI)
 Returns the stoichiometric coefficients of the reactions;
 see Eq. (50).

 SUBROUTINE CKNUF (KDIM, ICKWRK, RCKWRK, NUKI)
 Returns the forward stoichiometric coefficients for reactions;
 by definition, reactants' coefficients are negative; see Eq. (50).
 Contrast this subroutine with subroutine CKNU, which returns the
 net stoichiometric coefficients for a reaction.

 SUBROUTINE CKRAEX (I, RCKWRK, RA)*
 Get/put the Pre-exponential coefficient of the Ith reaction

 SUBROUTINE CKSYMR (I, ICKWRK, RCKWRK, CCKWRK, LT, ISTR, KERR)*
 Returns a character string which describes the Ith reaction,
 and the effective length of the character string.

 SUBROUTINE CKTHB (KDIM, ICKWRK, RCKWRK, AKI)
 Returns matrix of enhanced third body coefficients; see Eq. (63).

 SUBROUTINE CKWL (ICKWRK, RCKWRK, WL)
 Returns a set of flags providing information on the wave length
 of photon radiation

5. GAS CONSTANTS AND UNITS

 SUBROUTINE CKRP (ICKWRK, RCKWRK, RU, RUC, PA)
 Returns universal gas constants and the pressure of one standard
 atmosphere

63

6. EQUATION OF STATE AND MOLE-MASS CONVERSION

 SUBROUTINE CKMMWC (C, ICKWRK, RCKWRK, WTM)
 Returns the mean molecular weight of the gas mixture given molar
 concentrations; see Eq. (5).

 SUBROUTINE CKMMWX (X, ICKWRK, RCKWRK, WTM)
 Returns the mean molecular weight of the gas mixture given mole
 fractions; see Eq. (4).

 SUBROUTINE CKMMWY (Y, ICKWRK, RCKWRK, WTM)
 Returns the mean molecular weight of the gas mixture given mass
 fractions; see Eq. (3).

 SUBROUTINE CKPC (RHO, T, C, ICKWRK, RCKWRK, P)
 Returns the pressure of the gas mixture given mass density,
 temperature(s) and molar concentrations; see Eq. (1).

 SUBROUTINE CKPX (RHO, T, X, ICKWRK, RCKWRK, P)
 Returns the pressure of the gas mixture given mass density,
 temperature(s) and mole fractions; see Eq. (1).

 SUBROUTINE CKPY (RHO, T, Y, ICKWRK, RCKWRK, P)
 Returns the pressure of the gas mixture given mass density,
 temperature(s) and mass fractions; see Eq. (1).

 SUBROUTINE CKRHOC (P, T, C, ICKWRK, RCKWRK, RHO)
 Returns the mass density of the gas mixture given pressure,
 temperature(s) and molar concentrations; see Eq. (2).

 SUBROUTINE CKRHOX (P, T, X, ICKWRK, RCKWRK, RHO)
 Returns the mass density of the gas mixture given pressure,
 temperature(s) and mole fractions; see Eq. (2).

 SUBROUTINE CKRHOY (P, T, Y, ICKWRK, RCKWRK, RHO)
 Returns the mass density of the gas mixture given pressure,
 temperature(s) and mass fractions; see Eq. (2).

 SUBROUTINE CKCTX (C, ICKWRK, RCKWRK, X)
 Returns the mole fractions given molar concentrations; see Eq. (13).

 SUBROUTINE CKCTY (C, ICKWRK, RCKWRK, Y)
 Returns the mass fractions given molar concentrations; see Eq. (12).

 SUBROUTINE CKXTCP (P, T, X, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given pressure, temperature(s)
 and mole fractions; see Eq. (10).

 SUBROUTINE CKXTCR (RHO, T, X, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given mass density, temperature(s),
 and mole fractions; see Eq. (11).

64

 SUBROUTINE CKXTY (X, ICKWRK, RCKWRK, Y)
 Returns the mass fractions given mole fractions; see Eq. (9).

 SUBROUTINE CKYTCP (P, T, Y, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given pressure, temperature(s)
 and mass fractions; see Eq. (7).

 SUBROUTINE CKYTCR (RHO,T, Y, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given mass density, temperature(s),
 and mass fractions; see Eq. (8).

 SUBROUTINE CKYTX (Y, ICKWRK, RCKWRK, X)
 Returns the mole fractions given mass fractions; see Eq. (6).

7. THERMODYNAMIC PROPERTIES (NONDIMENSIONAL)

 SUBROUTINE CKATHM (NDIM1, NDIM2, ICKWRK, RCKWRK, MAXTP, NT, TMP, A)
 Returns the coefficients of the fits for thermodynamic properties
 of species; see Eqns. (19)-(21).

 SUBROUTINE CKCPOR (T, ICKWRK, RCKWRK, CPOR)
 Returns the nondimensional specific heats at constant pressure;
 see Eq. (19).

 SUBROUTINE CKHORT (T, ICKWRK, RCKWRK, HORT)
 Returns the nondimensional enthalpies; see Eq. (20).

 SUBROUTINE CKMXTP (ICKWRK, MAXTP)
 Returns the maximum number of temperatures used in fitting the
 thermodynamic properties of the species.

 SUBROUTINE CKRHEX (K, RCKWRK, A6)
 Returns an array of the sixth thermodynamic polynomial
 coefficients for a species, or changes their value,
 depending on the sign of K.

 SUBROUTINE CKSMH (T, ICKWRK, RCKWRK, SMH)*
 Returns the array of entropies minus enthalpies for species.
 It is normally not called directly by the user.

 SUBROUTINE CKSOR (T, ICKWRK, RCKWRK, SOR)
 Returns the nondimensional entropies; see Eq. (21).

8. THERMODYNAMIC PROPERTIES (MASS UNITS)

 SUBROUTINE CKAMS (T, ICKWRK, RCKWRK, AMS)
 Returns the standard state Helmholtz free energies in mass units;
 see Eq. (32).

65

 SUBROUTINE CKCPMS (T, ICKWRK, RCKWRK, CPMS)
 Returns the specific heats at constant pressure in mass units;
 see Eq. (26).

 SUBROUTINE CKCVMS (T, ICKWRK, RCKWRK, CVMS)
 Returns the specific heats at constant volume in mass units;
 see Eq. (29).

 SUBROUTINE CKGMS (T, ICKWRK, RCKWRK, GMS)
 Returns the standard state Gibbs free energies in mass units;
 see Eq. (31).

 SUBROUTINE CKHMS (T, ICKWRK, RCKWRK, HMS)
 Returns the enthalpies in mass units; see Eq. (27).

 SUBROUTINE CKSMS (T, ICKWRK, RCKWRK, SMS)
 Returns the standard state entropies in mass units; see Eq. (28).

 SUBROUTINE CKUMS (T, ICKWRK, RCKWRK, UMS)
 Returns the internal energies in mass units; see Eq. (30).

9. THERMODYNAMIC PROPERTIES (MOLAR UNITS)

 SUBROUTINE CKAML (T, ICKWRK, RCKWRK, AML)
 Returns the standard state Helmholtz free energies in molar units;
 see Eq. (25).

 SUBROUTINE CKCPML (T, ICKWRK, RCKWRK, CPML)
 Returns the specific heats at constant pressure in molar units.

 SUBROUTINE CKCVML (T, ICKWRK, RCKWRK, CVML)
 Returns the specific heats in constant volume in molar units;
 see Eq. (22).

 SUBROUTINE CKGML (T, ICKWRK, RCKWRK, GML)
 Returns the standard state Gibbs free energies in molar units;
 see Eq. (24).

 SUBROUTINE CKHML (T, ICKWRK, RCKWRK, HML)
 Returns the enthalpies in molar units.

 SUBROUTINE CKSML (T, ICKWRK, RCKWRK, SML)
 Returns the standard state entropies in molar units.

 SUBROUTINE CKUML (T, ICKWRK, RCKWRK, UML)
 Returns the internal energies in molar units; see Eq. (23).

66

10. MEAN THERMODYNAMIC PROPERTIES (MASS UNITS)

 SUBROUTINE CKABMS (P, T, Y, ICKWRK, RCKWRK, ABMS)*
 Returns the mean Helmholtz free energy of the mixture in mass units
 given pressure, temperature(s) and mass fractions; see Eq. (47).

 SUBROUTINE CKCPBS (T, Y, ICKWRK, RCKWRK, CPBMS)
 Returns the mean specific heat at constant pressure; see Eq. (34).

 SUBROUTINE CKCVBS (T, Y, ICKWRK, RCKWRK, CVBMS)
 Returns the mean specific heat at constant volume in mass units;
 see Eq. (36).

 SUBROUTINE CKGBMS (P, T, Y, ICKWRK, RCKWRK, GBMS)*
 Returns the mean Gibbs free energy of the mixture in mass units
 given pressure, temperature(s), and mass fractions; see Eq. (45).

 SUBROUTINE CKHBMS (T, Y, ICKWRK, RCKWRK, HBMS)
 Returns the mean enthalpy of the mixture in mass units; see Eq. (38).

 SUBROUTINE CKSBMS (P, T, Y, ICKWRK, RCKWRK, SBMS)*
 Returns the mean entropy of the mixture in mass units given pressure,
 temperature(s) and mass fractions; see Eq. (43).

 SUBROUTINE CKUBMS (T, Y, ICKWRK, RCKWRK, UBMS)
 Returns the mean internal energy of the mixture in mass units;
 see Eq. (40).

11. MEAN THERMODYNAMIC PROPERTIES (MOLAR UNITS)

 SUBROUTINE CKABML (P, T, X, ICKWRK, RCKWRK, ABML)*
 Returns the Helmholtz free energy of the mixture in molar units
 given pressure, temperature(s), and mole fractions; see Eq. (46).

 SUBROUTINE CKCPBL (T, X, ICKWRK, RCKWRK, CPBML)
 Returns the mean specific heat at constant pressure in molar units;
 see Eq. (33).

 SUBROUTINE CKCVBL (T, X, ICKWRK, RCKWRK, CVBML)
 Returns the mean specific heat at constant volume in molar units;
 see Eq. (35).

 SUBROUTINE CKGBML (P, T, X, ICKWRK, RCKWRK, GBML)*
 Returns the mean Gibbs free energy of the mixture in molar units
 given pressure, temperature(s) and mole fractions; see Eq. (44).

 SUBROUTINE CKHBML (T, X, ICKWRK, RCKWRK, HBML)
 Returns the mean enthalpy of the mixture in molar units;
 see Eq. (37).

67

 SUBROUTINE CKSBML (P, T, X, ICKWRK, RCKWRK, SBML)*
 Returns the mean entropy of the mixture in molar units given
 pressure, temperature(s) and mole fractions; see Eq. (42).

 SUBROUTINE CKUBML (T, X, ICKWRK, RCKWRK, UBML)
 Returns the mean internal energy of the mixture in molar units;
 see Eq. (39).

12. CHEMICAL PRODUCTION RATES

 SUBROUTINE CKCDC (T, C, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the nolar creation and destruction rates of the species
 given temperature(s) and molar concentrations; see Eq. (81).

 SUBROUTINE CKCDXP (P, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given pressure, temperature(s) and mole fractions; see Eq. (81).

 SUBROUTINE CKCDXR (RHO, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given mass density, temperature(s) and mole fractions; see Eq. (81).

 SUBROUTINE CKCDYP (P, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given mass density, temperature(s) and mass fractions; see Eq. (81).

 SUBROUTINE CKCDYR (RHO, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given mass density, temperature(s) and mass fractions; see Eq. (81).

 SUBROUTINE CKCONT (K, Q, ICKWRK, RCKWRK, CIK)
 Returns the contributions of the reactions to the molar production
 rate of a species; see Eqs. (49) and (51).

 SUBROUTINE CKCTC (T, C, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given temperature(s) and molar concentrations;
 see Eqs. (84) and (86).

 SUBROUTINE CKCTXP (P, T, X, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given pressure, temperature(s) and mole
 fractions; see Eqs. (84) and (86).

 SUBROUTINE CKCTXR (RHO, T, X, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given mass density, temperature(s) and mole
 fractions; see Eqs. (84) and (86).

68

 SUBROUTINE CKCTYP (P, T, Y, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given mass density, temperature(s) and mass
 fractions; see Eqs. (84) and (86).

 SUBROUTINE CKCTYR (RHO, T, Y, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given mass density, temperature(s) and mass
 fractions; see Eqs. (84) and (86).

 SUBROUTINE CKKFKR (P, T, X, ICKWRK, RCKWRK, FWDK, REVK)
 Returns the forward and reverse reaction rates for reactions
 given pressure, temperature(s) and mole fractions.

 SUBROUTINE CKKFRT (P, T, ICKWRK, RCKWRK, RKFT, RKRT)
 Returns the forward and reverse reaction rates for reactions
 given pressure and temperature(s).

 SUBROUTINE CKRDEX (I, RCKWRK, RD)*
 Get/put the perturbation factor of the Ith reaction

 SUBROUTINE CKWC (T, C, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given
 temperature(s) and molar concentrations; see Eq. (49).

 SUBROUTINE CKWXP (P, T, X, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given pressure,
 temperature(s) and mole fractions; see Eq. (49).

 SUBROUTINE CKWXR (RHO, T, X, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given mass
 density, temperature(s) and mole fractions; see Eq. (49).

 SUBROUTINE CKWYP (P, T, Y, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given pressure,
 temperature(s) and mass fractions; see Eq. (49).

 SUBROUTINE CKWYPK (P, T, Y, RKFT, RKRT, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given pressure,
 temperature(s), mass fractions, and forward and reverse rates coefficients; see Eq. (49).

 SUBROUTINE CKWYR (RHO, T, Y, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given mass
 density, temperature and mass fractions; see Eq. (49).

13. EQUILIBRIUM CONSTANTS AND RATE OF PROGRESS VARIABLES

 SUBROUTINE CKEQC (T, C, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants of the reactions given
 temperature(s) and molar concentrations; see Eq. (54).

69

 SUBROUTINE CKEQXP (P, T, X, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants for reactions given pressure,
 temperature(s) and mole fractions; see Eq. (54).

 SUBROUTINE CKEQXR (RHO, T, X, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants of the reactions given mass
 density, temperature(s) and mole fractions; see Eq. (54).

 SUBROUTINE CKEQYP (P, T, Y, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants for reactions given pressure
 temperature(s) and mass fractions; see Eq. (54).

 SUBROUTINE CKEQYR (RHO, T, Y, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants of the reactions given mass
 density, temperature(s) and mass fractions; see Eq. (54).

 SUBROUTINE CKQC (T, C, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given temperature(s)
 and molar concentrations; see Eqs. (51) and (63).

 SUBROUTINE CKQXP (P, T, X, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given pressure,
 temperature(s) and mole fractions; see Eqs. (51) and (63).

 SUBROUTINE CKQYP (P, T, Y, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given pressure,
 temperature(s) and mass fractions; see Eqs. (51) and (63).

 SUBROUTINE CKQYR (RHO, T, Y, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given mass density,
 temperature(s) and mass fractions; see Eqs. (51) and (63).

70

14. UTILITIES

 SUBROUTINE CKCRAY (LINE, NN, KRAY, LOUT, NDIM, NRAY, NF, KERR)
 Searches a character string, LINE, and compares the space-delimited
 substrings in LINE, to an array of character strings, KRAY;
 if a substring in LINE is located in KRAY, the index of its location
 in KRAY is stored in the integer array NRAY. For example, the
 subroutine might be called to assign CHEMKIN species indices to a
 given list of species names. This application is illustrated in the
 following example:

input: LINE = “OH N2 NO”

KRAY(*) = “H2” “O2” “N2” “H” “O” “N” “OH” “H2O” “NO”

N N = 9, the number of entries in KRAY(*)

LOUT = 6, a logical unit number for diagnostic messages

NDIM = 10, the dimension of array NRAY(*)

output: NRAY(*) = 7, 3, 9, the index numbers of the entries in KRAY(*)

 corresponding to the substrings in LINE.

NF = 3, the number of correspondences found.

KERR = .FALSE.

 SUBROUTINE CKI2CH (NUM, STR, I, KERR)
 Returns a character string representation of an integer and the
 character count of the string.

 SUBROUTINE CKNPAR (LINE, NPAR, LOUT, IPAR, ISTART, KERR)
 Searches a character string LINE from last to first character,
 to create a substring IPAR containing NPAR blank-delimited numbers;
 ISTART is the column of LINE containing IPAR. This allows format-
 free input of combined alpha-numeric data. For example,

input: LINE*80 = “t1 t2 dt 300.0 3.0E3 50”

NPAR = 3, the number of substrings requested

LOUT = 6, a logical unit number for diagnostic messages

output: IPAR*80 = “300.0 3.0E3 50”

 corresponding to the substrings in LINE.

ISTART = 11, the starting column in LINE of the NPAR substrings

KERR = .FALSE.

 SUBROUTINE CKR2CH (RNUM, STR, I, KERR)
 Returns a character string representation of a real number
 and the effective length of the string.

71

 SUBROUTINE CKSNUM (LINE, NEXP, LOUT, KRAY, NN, KNUM, NVAL,
 RVAL, KERR)
 Search a character string, LINE, for (1) a character substring which
 may also appear in an array of character substrings KRAY, and
 (2) some number of character substrings representing numbers.
 In the case of (1), if the character substring appears in KRAY,
 KNUM is its index position.
 In the case of (2), the character substrings are converted to
 NVAL real numbers and stored in RVAL, until NEXP are converted.
 This allows format-free input of combined alpha-numeric data.
 For example, the subroutine might be called to find a CHEMKIN
 species index and convert the other substrings to real values:

input: LINE = “N2 1.2”

NEXP = 1, the number of values expected

LOUT = 6, a logical unit number for diagnostic messages

KRAY(*) = “H2” “O2” “N2” “H” “O” “N” “OH” “H2O” “NO”

N N = 9, the number of entries in KRAY(*)

output: KNUM = 3, the index number of the element in KRAY(*)

 which corresponds to the first substring in LINE.

NVAL = 1, the number of values found in LINE following the

 first substring

RVAL(*) = 1.200E+00, the substring converted to a number

KERR = .FALSE.

 SUBROUTINE CKSUBS (LINE, LOUT, NDIM, SUB, NFOUND, KERR)
 Returns an array of substrings in a character string with blanks
 as the delimiter

 SUBROUTINE CKXNUM (LINE, NEXP, LOUT, NVAL, RVAL, KERR)
 Searches a character string, LINE, for NEXP space-delimited
 substrings representing numbers, until NVAL real values are
 converted and stored in the array, RVAL.
 This allows format-free input of numerical data. For example:

input: LINE = “0.170E+14 0 47780.”

NEXP = 3, the number of values requested

LOUT = 6, a logical unit number for diagnostic messages

output: NVAL = 3, the number of values found

RVAL(*) = 1.700E+13, 0.00E+00, 4.778E+04

KERR = .FALSE.

72

VI. ALPHABETICAL LISTING OF THE GAS-PHASE SUBROUTINE LIBRARY WITH DETAILED
DESCRIPTIONS OF THE CALL LISTS

Each subroutine in the Gas-Phase Subroutine Library is described in this chapter, together with
a detailed description of the variables in the call lists. For all arrays, information is given on the
required dimensioning in the calling program. For all variables having units, the cgs units are stated.
In many cases a reference to the most applicable equation in Chapter II is also given.

In most cases the subroutines are functionally identical with the corresponding routines in the
original CHEMKIN. However, there are some cases where either the functionality is different or the
call list is changed, but we have still used the same subroutine name. These routines are identified by
an asterisk. Subroutines whose call lists have changed since the release of CHEMKIN II, are indicated
by a double asterisk.

73

 CKABE CKABE CKABE CKABE CKABE CKABE CKABE
 **

 SUBROUTINE CKABE (ICKWRK, RCKWRK, RA, RB, RE)
 Returns the Arrhenius coefficients of the reactions; see Eq. (52).

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 RA(*) - Real array, pre-exponential constants for reactions;
 dimension at least II, the total reaction count.
 cgs units, mole-cm-sec-K
 RB(*) - Real array, temperature dependence exponents for
 reactions;
 dimension at least II, total reaction count.
 cgs units none
 RE(*) - Real array, activation energies for reactions;
 dimension at least II, the total reaction count.
 cgs units, K

 CKABML CKABML CKABML CKABML CKABML CKABML CKABML
 **

 SUBROUTINE CKABML (P, T, X, ICKWRK, RCKWRK, ABML)*
 Returns the Helmholtz free energy of the mixture in molar units
 given pressure, temperature(s), and mole fractions; see Eq. (46).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 ABML - Real scalar, mean Helmholtz free energy.
 cgs units, ergs/mole

74

 CKABMS CKABMS CKABMS CKABMS CKABMS CKABMS CKABMS
 **

 SUBROUTINE CKABMS (P, T, Y, ICKWRK, RCKWRK, ABMS)*
 Returns the mean Helmholtz free energy of the mixture in mass units
 given pressure, temperature(s) and mass fractions; see Eq. (47).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 ABMS - Real scalar, mean Helmholtz free energy.
 cgs units, ergs/gm

 CKAML CKAML CKAML CKAML CKAML CKAML CKAML
 **

 SUBROUTINE CKAML (T, ICKWRK, RCKWRK, AML)
 Returns the standard state Helmholtz free energies in molar units;
 see Eq. (25).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 AML(*) - Real array, standard state Helmholtz free energies
 for species;
 dimension at least KK, the total species count.
 cgs units, ergs/mole

75

 CKAMS CKAMS CKAMS CKAMS CKAMS CKAMS CKAMS
 **

 SUBROUTINE CKAMS (T, ICKWRK, RCKWRK, AMS)
 Returns the standard state Helmholtz free energies in mass units;
 see Eq. (32).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 AMS(*) - Real array, standard state Helmholtz free energies
 for species;
 dimension at least KK, the total species count.
 cgs units, ergs/gm

76

 CKATHM CKATHM CKATHM CKATHM CKATHM CKATHM CKATHM
 **

 SUBROUTINE CKATHM (NDIM1, NDIM2, ICKWRK, RCKWRK, MAXTP, NT, TMP,
 A)
 Returns the coefficients of the fits for thermodynamic properties
 of species; see Eqns. (19)-(21).

 INPUT
 NDIM1 - Integer scalar, first dimension of A, the three-
 dimensional array of thermodynamic fit coefficients;
 NDIM1 must be at least NPCP2, the total number of
 coefficients for one temperature range.
 NDIM2 - Integer scalar, second dimension of A; NDIM2 must be
 at least MXTP-1, the total number of temperature ranges.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.
 MAXTP - Integer scalar, number of temperatures used to divide
 the temperature ranges of thermodynamic fits.

 OUTPUT
 NT(*) - Integer array, total number of temperatures used in
 fitting coefficients of thermodynamic properties for
 the species;
 dimension at least KK, the total species count.
 TMP(*,*) - Real matrix, temperatures for dividing the
 thermodynamic fits for species; dimension at least
 MAXTP for the first, and at least KK for the second,
 the total species count.
 cgs units, K
 A(*,*,*) - Real three-dimensioned array of fit coefficients to the
 thermodynamic data for species;
 dimension exactly NPCP2 for the first, exactly MAXTP-1
 for the second, and at least KKTOT for the third, the
 total species count.
 The indicies in A(N,L,K) mean-
 N = 1,NN represent polynomial coefficients in CP/R
 CP/R(K)=A(1,L,K) + A(2,L,K)*T + A(3,L,K)*T**2 + ...
 N = NN+1 is for the formation enthalpies, i.e.,
 HO/R = A(NN+1,L,K)
 N = NN+2 is for the formation entropies, i.e.,
 SO/R = A(NN+2,L,K)
 L = 1 is for temperature <= TMP(2,K)
 L = 2 is for TMP(2,K) < temperature <= TMP(3)
 :
 L = (NTMP-1) is for TMP(NTMP-1) <= temperature;
 K is the species index

77

 CKAWT CKAWT CKAWT CKAWT CKAWT CKAWT CKAWT
 **

 SUBROUTINE CKAWT (ICKWRK, RCKWRK, AWT)
 Returns the atomic weights of the elements

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 AWT(*) - Real array, atomic weights of the elements;
 dimension at least MM, the total element count.
 cgs units, gm/mole

 CKCDC CKCDC CKCDC CKCDC CKCDC CKCDC CKCDC
 **

 SUBROUTINE CKCDC (T, C, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the nolar creation and destruction rates of the species
 given temperature(s) and molar concentrations; see Eq. (81).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 DDOT(*) - Real array, chemical destruction rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

78

 CKCDXP CKCDXP CKCDXP CKCDXP CKCDXP CKCDXP CKCDXP
 **

 SUBROUTINE CKCDXP (P, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given pressure, temperature(s) and mole fractions; see Eq. (81).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 DDOT(*) - Real array, chemical destruction rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

 CKCDXR CKCDXR CKCDXR CKCDXR CKCDXR CKCDXR CKCDXR
 **

 SUBROUTINE CKCDXR (RHO, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given mass density, temperature(s) and mole fractions; see Eq. (81).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 DDOT(*) - Real array, chemical destruction rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

79

 CKCDYP CKCDYP CKCDYP CKCDYP CKCDYP CKCDYP CKCDYP
 **

 SUBROUTINE CKCDYP (P, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given mass density, temperature(s) and mass fractions; see Eq. (81).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 DDOT(*) - Real array, chemical destruction rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

 CKCDYR CKCDYR CKCDYR CKCDYR CKCDYR CKCDYR CKCDYR
 **

 SUBROUTINE CKCDYR (RHO, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
 Returns the molar creation and destruction rates of the species
 given mass density, temperature(s) and mass fractions; see Eq. (81).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 DDOT(*) - Real array, chemical destruction rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

80

 CKCHRG CKCHRG CKCHRG CKCHRG CKCHRG CKCHRG CKCHRG
 **

 SUBROUTINE CKCHRG (ICKWRK, RCKWRK, KCHARG)
 Returns the electronic charges of the species.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 KCHARG(*) - Integer array, electronic charges of the species;
 dimension at least KK, the total species count.
 KCHARG(K)=-2 indicates that species K has two
 excess electrons.

 CKCOMP CKCOMP CKCOMP CKCOMP CKCOMP CKCOMP CKCOMP
 **

 SUBROUTINE CKCOMP (IST, IRAY, II, I)*
 Returns the index of an element of a reference character string
 array which corresponds to a character string;
 leading and trailing blanks are ignored.

 INPUT
 IST - Character string; length determined by application
 program.
 IRAY(*) - Character string array; dimension at least II, the total
 number of character strings for be searched.
 II - Integer scalar, the length of IRAY to be searched.

 OUTPUT
 I - Integer scalar, the first array index in IRAY of a
 character string IST, or 0 if IST is not found.

81

 CKCONT CKCONT CKCONT CKCONT CKCONT CKCONT CKCONT
 **

 SUBROUTINE CKCONT (K, Q, ICKWRK, RCKWRK, CIK)
 Returns the contributions of the reactions to the molar production
 rate of a species; see Eqs. (49) and (51).

 INPUT
 K - Integer scalar; species index number.
 Q(*) - Real array, rates of progress for reactions;
 dimension at least II, the total reaction count.
 cgs units, moles/(cm**3*sec)
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CIK(*) - Real array, contributions of the reactions to the
 production rate of species K;
 dimension least II, the total reaction count.
 cgs units, mole/(cm**3*sec)

 CKCPBL CKCPBL CKCPBL CKCPBL CKCPBL CKCPBL CKCPBL
 **

 SUBROUTINE CKCPBL (T, X, ICKWRK, RCKWRK, CPBML)
 Returns the mean specific heat at constant pressure in molar units;
 see Eq. (33).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CPBML - Real scalar, mean specific heat at constant pressure.
 cgs units, ergs/(mole*K)

82

 CKCPBS CKCPBS CKCPBS CKCPBS CKCPBS CKCPBS CKCPBS
 **

 SUBROUTINE CKCPBS (T, Y, ICKWRK, RCKWRK, CPBMS)
 Returns the mean specific heat at constant pressure; see Eq. (34).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CPBMS - Real scalar, mean specific heat at constant pressure.
 cgs units - ergs/(gm*K)

 CKCPML CKCPML CKCPML CKCPML CKCPML CKCPML CKCPML
 **

 SUBROUTINE CKCPML (T, ICKWRK, RCKWRK, CPML)
 Returns the specific heats at constant pressure in molar units.

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CPML(*) - Real array, specific heats at constant pressure for
 the species;
 dimension at least KK, the total species count.
 cgs units, ergs/(mole*K)

83

 CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS
 **

 SUBROUTINE CKCPMS (T, ICKWRK, RCKWRK, CPMS)
 Returns the specific heats at constant pressure in mass units;
 see Eq. (26).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CPMS(*) - Real array, specific heats at constant pressure for
 species;
 dimension at least KK, the total species count.
 cgs units, ergs/(gm*K)

 CKCPOR CKCPOR CKCPOR CKCPOR CKCPOR CKCPOR CKCPOR
 **

 SUBROUTINE CKCPOR (T, ICKWRK, RCKWRK, CPOR)
 Returns the nondimensional specific heats at constant pressure;
 see Eq. (19).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CPOR(*) - Real array, nondimensional specific heats at constant
 pressure for species;
 dimension at least KK, the total species count.

84

 CKCRAY CKCRAY CKCRAY CKCRAY CKCRAY CKCRAY CKCRAY
 **

 SUBROUTINE CKCRAY (LINE, NN, KRAY, LOUT, NDIM, NRAY, NF, KERR)
 Searches a character string, LINE, and compares the space-delimited
 substrings in LINE, to an array of character strings, KRAY;
 if a substring in LINE is located in KRAY, the index of its location
 in KRAY is stored in the integer array NRAY. For example, the
 subroutine might be called to assign CHEMKIN species indices to a
 given list of species names. This application is illusgrated in the
 following example:
 input: LINE = "OH N2 NO"
 KRAY(*) = "H2" "O2" "N2" "H" "O" "N" "OH" "H2O" "NO"
 NN = 9, the number of entries in KRAY(*)
 LOUT = 6, a logical unit number on which to write
 diagnostic messages.
 NDIM = 10, the dimension of array NRAY(*)
 output: NRAY(*) = 7, 3, 9, the index numbers of the entries
 in KRAY(*) corresponding to the substrings
 in LINE
 NF = 3, the number of correspondences found.
 KERR = .FALSE.

 INPUT
 LINE - Character string.
 KRAY(*) - Character string array; dimension at least NN.
 NN - Integer scalar, total character string count of KRAY.
 LOUT - Integer scalar, formatted output file unit.
 NDIM - Integer scalar, dimension of the integer array NRAY.

 OUTPUT
 NRAY(*) - Integer array, indices of the elements of KRAY
 which correspond to the substrings in LINE;
 dimension at least NDIM.
 NF - Integer scalar, count of correspondences found.
 KERR - Logical, syntax or dimensioning Error flag.

85

 CKCTC CKCTC CKCTC CKCTC CKCTC CKCTC CKCTC
 **

 SUBROUTINE CKCTC (T, C, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given temperature(s) and molar concentrations;
 see Eqs. (84) and (86).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 C(*) - Real array, concentrations of species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 TAU(*) - Real array, characteristic destruction times of species;
 dimension at least KK, the total species count.
 cgs units, sec

 CKCTX CKCTX CKCTX CKCTX CKCTX CKCTX CKCTX
 **

 SUBROUTINE CKCTX (C, ICKWRK, RCKWRK, X)
 Returns the mole fractions given molar concentrations; see Eq. (13).

 INPUT
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units - mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 X(*) - Real array, mole fraction of the mixture;
 dimension at least KK, the total species count.

86

 CKCTXP CKCTXP CKCTXP CKCTXP CKCTXP CKCTXP CKCTXP
 **

 SUBROUTINE CKCTXP (P, T, X, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given pressure, temperature(s) and mole
 fractions; see Eqs. (84) and (86).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 TAU(*) - Real array, characteristic destruction times of the
 species;
 dimension at least KK, the total species count.
 cgs units, sec

 CKCTXR CKCTXR CKCTXR CKCTXR CKCTXR CKCTXR CKCTXR
 **

 SUBROUTINE CKCTXR (RHO, T, X, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given mass density, temperature(s) and mole
 fractions; see Eqs. (84) and (86).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 TAU(*) - Real array, characteristic destruction times of species;
 dimension at least KK, the total species count.
 cgs units, sec

87

 CKCTY CKCTY CKCTY CKCTY CKCTY CKCTY CKCTY
 **

 SUBROUTINE CKCTY (C, ICKWRK, RCKWRK, Y)
 Returns the mass fractions given molar concentrations; see Eq. (12).

 INPUT
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.

 CKCTYP CKCTYP CKCTYP CKCTYP CKCTYP CKCTYP CKCTYP
 **

 SUBROUTINE CKCTYP (P, T, Y, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given mass density, temperature(s) and mass
 fractions; see Eqs. (84) and (86).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 TAU(*) - Real array, characteristic destruction times of the
 species;
 dimension at least KK, the total species count.
 cgs units, sec

88

 CKCTYR CKCTYR CKCTYR CKCTYR CKCTYR CKCTYR CKCTYR
 **

 SUBROUTINE CKCTYR (RHO, T, Y, ICKWRK, RCKWRK, CDOT, TAU)
 Returns the molar creation rates and characteristic destruction
 times of the species given mass density, temperature(s) and mass
 fractions; see Eqs. (84) and (86).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CDOT(*) - Real array, chemical creation rates of the species;
 dimension at least KK, the total species count.
 cgs units, mole/(cm**3*sec)
 TAU(*) - Real array, characteristic destruction times of the
 species;
 dimension at least KK, the total species count.
 cgs units, sec

 CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL
 **

 SUBROUTINE CKCVBL (T, X, ICKWRK, RCKWRK, CVBML)
 Returns the mean specific heat at constant volume in molar units;
 see Eq. (35).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CVBML - Real scalar, mean specific heat at constant volume.
 cgs units, ergs/(mole*K)

89

 CKCVBS CKCVBS CKCVBS CKCVBS CKCVBS CKCVBS CKCVBS
 **

 SUBROUTINE CKCVBS (T, Y, ICKWRK, RCKWRK, CVBMS)
 Returns the mean specific heat at constant volume in mass units;
 see Eq. (36).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CVBMS - Real scalar, mean specific heat at constant volume.
 cgs units, ergs/(gm*K)

 CKCVML CKCVML CKCVML CKCVML CKCVML CKCVML CKCVML
 **

 SUBROUTINE CKCVML (T, ICKWRK, RCKWRK, CVML)
 Returns the specific heats in constant volume in molar units;
 see Eq. (22).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CVML(*) - Real array, specific heats at constant volume for
 species;
 dimension at least KK, the total species count.
 cgs units, ergs/(mole*K)

90

 CKCVMS CKCVMS CKCVMS CKCVMS CKCVMS CKCVMS CKCVMS
 **

 SUBROUTINE CKCVMS (T, ICKWRK, RCKWRK, CVMS)
 Returns the specific heats at constant volume in mass units;
 see Eq. (29).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 CVMS(*) - Real array, specific heats at constant volume for
 species;
 dimension at least KK, the total species count.
 cgs units, ergs/(gm*K)

 CKEQC CKEQC CKEQC CKEQC CKEQC CKEQC CKEQC
 **

 SUBROUTINE CKEQC (T, C, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants of the reactions given
 temperature(s) and molar concentrations; see Eq. (54).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 EQKC(*) - Real array, equilibrium constants in concentration units
 for reactions;
 dimension at least II, the total reaction count.
 cgs units, (mole/cm**3)**some power, depending on
 the reaction

91

 CKEQXP CKEQXP CKEQXP CKEQXP CKEQXP CKEQXP CKEQXP
 **

 SUBROUTINE CKEQXP (P, T, X, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants for reactions given pressure,
 temperature(s) and mole fractions; see Eq. (54).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 EQKC(*) - Real array, equilibrium constants for reactions;
 dimension at least II, the total reaction count.
 cgs units, (mole/cm**3)**some power, depending on
 the reaction

 CKEQXR CKEQXR CKEQXR CKEQXR CKEQXR CKEQXR CKEQXR
 **

 SUBROUTINE CKEQXR (RHO, T, X, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants of the reactions given mass
 density, temperature(s) and mole fractions; see Eq. (54).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 species.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 EQKC(*) - Real array, equilibrium constants in concentration units
 for reactions;
 dimension at least II, the total reaction count.
 cgs units, (mole/cm**3)**some power, depending on
 the reaction

92

 CKEQYP CKEQYP CKEQYP CKEQYP CKEQYP CKEQYP CKEQYP
 **

 SUBROUTINE CKEQYP (P, T, Y, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants for reactions given pressure
 temperature(s) and mass fractions; see Eq. (54).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 EQKC(*) - Real array, equilibrium constants in concentration units
 for reactions;
 dimension at least II, the total reaction count.
 cgs units, (mole/cm**3)**some power, depending on
 the reaction

 CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR
 **

 SUBROUTINE CKEQYR (RHO, T, Y, ICKWRK, RCKWRK, EQKC)
 Returns the equilibrium constants of the reactions given mass
 density, temperature(s) and mass fractions; see Eq. (54).

 INPUT
 RHO - Real scalar, mass density.
 cgs units; gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 EQKC(*) - Real array, equilibrium constants in concentration units
 for reactions;
 dimension at least II, the total reaction count.
 cgs units; (mole/cm**3)**some power, depending on
 the reaction

93

 CKFAL CKFAL CKFAL CKFAL CKFAL CKFAL CKFAL
 **

 SUBROUTINE CKFAL (NDIM, ICKWRK, RCKWRK, IFOP, IFLO, KFAL, FPAR)
 Returns a set of flags indicating whether a reaction has pressure-
 dependent behavior and an array of parameters.

 INPUT
 NDIM - Integer scalar, first dimension of the matrix FPAR;
 NDIM must be greater than or equal to NFAR, the
 maximum number of supplemental rate parameters, which
 is currently equal to 8.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 IFOP(*) - Integer array, flags indicating pressure-dependent
 behavior;
 dimension at least II, the total reaction count.
 IFOP(I) indicates the pressure-dependent behavior
 of reaction I:
 0 - No pressure dependency
 1 - Lindeman form (3 parameters)
 2 - SRI form (8 parameters)
 3 - Troe form (6 parameters)
 4 - Troe form (7 parameters)
 IFLO(*) - Integer array, flags indication pressure-depencency;
 dimension at least II, the total reaction count.
 IFLO(I) indicates
 0 - unimolecular fall-off,
 1 - chemically activated bi-molecular.
 KFAL(*) - Integer array, flags indicating type of bath-gas
 concentration to be used in expressions
 (see footnote on page 27);
 dimension at least II, the total reaction count.
 KFAL(I) indicates the type of reaction I:
 0 - Use total concentration of gas mixture
 (with the added capability of using enhanced
 third body coefficients) (default)
 K - Use the concentration of species K
 FPAR(*,*) - Real matrix, pressure dependency parameters;
 dimension at least NFAR for the first, the maximum
 number of parameters (currently 8), and
 at least II for the second, the total reaction
 count.
 The number of parameters depends on the
 particular functional form indicated by the IFOP array:
 FPAR(1,I), FPAR(2,I), FPAR(3,I) are always the
 parameters entered on the LOW auxiliary keyword line
 in the CHEMKIN interpretor input file.
 FPAR(1,I) = Pre-exponential for low pressure
 limiting rate constant
 cgs units, mole-cm-sec-K
 FPAR(2,I) = Temperature dependence exponents
 for the low pressure limiting rate
 constants.
 FPAR(3,I) = Activation energy for the low
 pressure limiting rate constant.
 cgs units, K
 Additional FPAR values depend on IFOP:

94

 IFOP(I) = 2:
 FPAR(4,I) = a (See Eqn. (74))
 FPAR(5,I) = b (Kelvin) (See Eqn. (74))
 FPAR(6,I) = c (Kelvin) (See Eqn. (74))
 FPAR(7,I) = d (See Eqn. (74))
 FPAR(8,I) = e (See Eqn. (74))
 IFOP(I) = 3:
 FPAR(4,I) = a (See Eqn. (73))
 FPAR(5,I) = T*** (Kelvin) (See Eqn. (73))
 FPAR(6,I) = T* (Kelvin) (See Eqn. (73))
 IFOP(I) = 4:
 FPAR(4,I) = a (See Eqn. (73))
 FPAR(5,I) = T*** (Kelvin) (See Eqn. (73))
 FPAR(6,I) = T* (Kelvin) (See Eqn. (73))
 FPAR(7,I) = T** (Kelvin) (See Eqn. (73))

 CKGBML CKGBML CKGBML CKGBML CKGBML CKGBML CKGBML
 **

 SUBROUTINE CKGBML (P, T, X, ICKWRK, RCKWRK, GBML)*
 Returns the mean Gibbs free energy of the mixture in molar units
 given pressure, temperature(s) and mole fractions; see Eq. (44).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 GBML - Real scalar, mean Gibbs free energy.
 cgs units, ergs/mole

95

 CKGBMS CKGBMS CKGBMS CKGBMS CKGBMS CKGBMS CKGBMS
 **

 SUBROUTINE CKGBMS (P, T, Y, ICKWRK, RCKWRK, GBMS)*
 Returns the mean Gibbs free energy of the mixture in mass units
 given pressure, temperature(s), and mass fractions; see Eq. (45).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 GBMS - Real scalar, mean Gibbs free energy.
 cgs units, ergs/gm

 CKGML CKGML CKGML CKGML CKGML CKGML CKGML
 **

 SUBROUTINE CKGML (T, ICKWRK, RCKWRK, GML)
 Returns the standard state Gibbs free energies in molar units;
 see Eq. (24).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 GML(*) - Real array, standard state gibbs free energies for
 the species;
 dimension at least KK, the total species count.
 cgs units, ergs/mole

96

 CKGMS CKGMS CKGMS CKGMS CKGMS CKGMS CKGMS
 **

 SUBROUTINE CKGMS (T, ICKWRK, RCKWRK, GMS)
 Returns the standard state Gibbs free energies in mass units;
 see Eq. (31).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 GMS(*) - Real array, standard state Gibbs free energies for
 the species;
 dimension at least KK, the total species count.
 cgs units, ergs/gm

 CKHBML CKHBML CKHBML CKHBML CKHBML CKHBML CKHBML
 **

 SUBROUTINE CKHBML (T, X, ICKWRK, RCKWRK, HBML)
 Returns the mean enthalpy of the mixture in molar units;
 see Eq. (37).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 HBML - Real scalar, mean enthalpy.
 cgs units - ergs/mole

97

 CKHBMS CKHBMS CKHBMS CKHBMS CKHBMS CKHBMS CKHBMS
 **

 SUBROUTINE CKHBMS (T, Y, ICKWRK, RCKWRK, HBMS)
 Returns the mean enthalpy of the mixture in mass units; see Eq. (38).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 HBMS - Real scalar, mean enthalpy.
 cgs units, ergs/gm

 CKHML CKHML CKHML CKHML CKHML CKHML CKHML
 **

 SUBROUTINE CKHML (T, ICKWRK, RCKWRK, HML)
 Returns the enthalpies in molar units.

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 HML(*) - Real array, enthalpies for species;
 dimension at least KK, the total species count.
 cgs units, ergs/mole

98

 CKHMS CKHMS CKHMS CKHMS CKHMS CKHMS CKHMS
 **

 SUBROUTINE CKHMS (T, ICKWRK, RCKWRK, HMS)
 Returns the enthalpies in mass units; see Eq. (27).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 HMS(*) - Real array, enthalpies for species;
 dimension at least KK, the total species count.
 cgs units, ergs/gm

 CKHORT CKHORT CKHORT CKHORT CKHORT CKHORT CKHORT
 **

 SUBROUTINE CKHORT (T, ICKWRK, RCKWRK, HORT)
 Returns the nondimensional enthalpies; see Eq. (20).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 HORT(*) - Real array, nondimensional enthalpies for species;
 dimension at least KK, the total species count.

99

 CKHRX CKHRX CKHRX CKHRX CKHRX CKHRX CKHRX
 **

 SUBROUTINE CKHRX (I, HML, ICKWRK, RCKWRK, HRXI)
 Returns the molar heat of reaction I.

 INPUT
 I - Integer scalar, reaction index.
 HML(*) - Real array, molar enthalpies for species;
 dimension at lest KK, the total species count.
 cgs units, ergs/mole
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 HRXI - Real scalar, molar heat of reaction I.
 cgs units, ergs/mole

 CKI2CH CKI2CH CKI2CH CKI2CH CKI2CH CKI2CH CKI2CH
 **

 SUBROUTINE CKI2CH (NUM, STR, I, KERR)
 Returns a character string representation of an integer and the
 character count of the string.

 INPUT
 NUM - Integer scalar, to be converted to a character string;
 the maximum magnitude of NUM is machine-dependent.

 OUTPUT
 STR - Character string, left-justified character representation
 of NUM.
 I - Integer scalar, the non-blank character count of STR.
 KERR - Logical, character length error flag.

100

 CKIEXC CKIEXC CKIEXC CKIEXC CKIEXC CKIEXC CKIEXC
 **

 SUBROUTINE CKIEXC (ICKWRK, RCKWRK, IEXC, EEXC)
 Returns a set of flags indicating whether the reactions are
 excitation reactions and, if so, the energy loss per event in eV.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 IEXC(*) - Integer array, excitation-only reaction flag;
 dimension at least II, the total reaction count.
 IEXC(I)= -1 reaction I is not an excitation-only reax
 IEXC(I)= 1 reaction I is an excitation reaction
 EEXC(*) - Real array, excitation energy loss per event in forward
 direction for reactions;
 dimension at least II, the total reaction count.

 CKIMOM CKIMOM CKIMOM CKIMOM CKIMOM CKIMOM CKIMOM
 **

 SUBROUTINE CKIMOM (ICKWRK, IMOM)
 Returns a set of flags indicating whether the reactions are
 electron momentum-transfer collision frequencies and, if so,
 the index of the species with which the electron collides.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.

 OUTPUT
 IMOM(*) - Integer array, electron momentum-transfer collision
 frequency flags for reactions;
 dimension at least II, the total reaction count.
 IMOM(I)= -1 reaction I is not a mom-transfer coll freq
 IMOM(I)= K reaction I is a mom-transfer coll frequency
 and K is species index of the electron's
 collision partner

101

 CKINDX CKINDX CKINDX CKINDX CKINDX CKINDX CKINDX
 **

 SUBROUTINE CKINDX (ICKWRK, RCKWRK, MM, KK, II, NFIT)*
 Returns a group of indices defining the size of the particular
 reaction mechanism

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 MM - Integer scalar, mechanism total element count.
 KK - Integer scalar, mechanism total species count.
 II - Integer scalar, mechanism total reaction count.
 NFIT - Integer scalar, number of coefficients in fits to
 thermodynamic data for a temperature range;
 NFIT=number of coefficients in polynomial fits to CP/R
 plus 2.

 CKINIT CKINIT CKINIT CKINIT CKINIT CKINIT CKINIT
 **

 SUBROUTINE CKINIT (LENICK, LENRCK, LENCCK, LINC, LOUT, ICKWRK,
 RCKWRK, CCKWRK, IFLAG)**
 Reads the linkfile and creates the internal work arrays ICKWRK,
 RCKWRK and CCKWRK. CKINIT must be called before any other CHEMKIN
 subroutine can be used, as the work arrays must be available as
 their input.

 INPUT
 LENICK - Integer scalar, length of the integer work array, ICKWRK.
 LENRCK - Integer scalar, length of the real work array, RCKWRK.
 LENCCK - Integer scalar, length of the character work array, CCKWRK.
 LINC - Integer scalar, linkfile input file unit number.
 LOUT - Integer scalar, formatted output file unit number.

 OUTPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.
 CCKWRK(*) - Character string workspace array;
 dimension at least LENCCK.
 IFLAG - Integer scalar to indicate successful reading of
 linkfile; IFLAG>0 is an error type.

102

 CKINU CKINU CKINU CKINU CKINU CKINU CKINU
 **

 SUBROUTINE CKINU (I, NDIM, ICKWRK, RCKWRK, NSPEC, KI, NU)
 Returns a count of species in a reaction, and their indices
 and stoichiometric coefficients; see Eq. (50).

 INPUT
 I - Integer scalar, index of a reaction;
 I must be positive, and less than or equal to NII,
 the total reaction count.
 NDIM - Integer scalar, dimension of the arrays KI and NU;
 NDIM must be at least MAXSP, the maximum number of
 species allowed in a reaction.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 NSPEC - Integer scalar, the total species count for reaction I.
 KI(*) - Integer array, species indices for those in
 reaction I; dimension at least MAXSP, the maximum
 number of species allowed in a reaction.
 KI(N) is the index of the Nth species in reaction I.
 NU(*) - Integer array, stoichiometric coefficients for those
 in reaction I;
 dimension at least MAXSP, the maximum number of
 species allowed in a reaction.
 NU(N) is the stoichiometric coefficient of the Nth
 Nth species in reaction I, and
 NU < 0 if the Nth species is a reactant;
 NU > 0 if the Nth species is a product.

 CKION CKION CKION CKION CKION CKION CKION
 **

 SUBROUTINE CKION (ICKWRK, KION)
 Returns the ion species indices

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 KION(*) - Integer array, ion species indices;
 dimension at least NKKI, the total ion count.

103

 CKIORD CKIORD CKIORD CKIORD CKIORD CKIORD CKIORD
 **

 SUBROUTINE CKIORD (IDIM, KDIM, ICKWRK, RCKWRK, NFORD, IFORD, FORD,
 NRORD, IRORD, RORD)
 Returns the count and indices of reactions with modified species
 order and the order values for the species.

 INPUT
 IDIM - Integer scalar, dimension of arrays IFORD and IRORD;
 IDIM must be at least NORD, the total number of
 reactions with modified species orders.
 KDIM - Integer scalar, first dimension of the arrays FORD and
 RORD;
 KDIM must be at least NKK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 NFORD - Integer scalar, total number of reactions with modified
 forward species orders.
 IFORD(*) - Integer array, indices of reactions with modified forward
 species orders; dimension at least NFORD.
 FORD(*,*) - Real matrix, the modified forward species orders for the
 NFORD reactions;
 dimension at least NKK for the first, the total species
 count, and at least NFORD for the second.
 FORD(K,N) is the forward order of species K for the Nth
 change-order reaction.
 NRORD - Integer scalar, total number of reactions with modified
 reverse species orders.
 IRORD(*) - Integer array, indices of reactions with modified reverse
 species orders; dimension at least NRORD.
 RORD(*,*) - Real matrix, the modified reverse species orders for the
 NRORD reactions;
 dimension at least NKK for the first, the total species
 count, and at least NRORD for the second.
 RORD(K,N) is the reverse order of species K for the Nth
 change-order reaction.

104

 CKIRNU CKIRNU CKIRNU CKIRNU CKIRNU CKIRNU CKIRNU
 **

 SUBROUTINE CKIRNU (IDIM, NDIM, ICKWRK, RCKWRK, NIRNU, IRNU, NSPEC,
 KI, RNU)
 Returns the count and indices of reactions with real stoichiometric
 coefficients, counts of species in the reactions, and the species
 indices and coefficients; see Eq. (50).

 INPUT
 IDIM - Integer scalar, dimension of the arrays IRNU and NSPEC,
 and the second dimension of matrices KI and RNU;
 IDIM must be at least NIRNU, the number of reactions
 with real stoichiometric coefficients.
 NDIM - Integer scalar, first dimension of matrices KI and RNU;
 NDIM must be at least MAXSP, the maximum number of
 species allowed in a reaction.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 NIRNU - Integer scalar, total number of reactions with real
 stoichiometric coefficients.
 IRNU(*) - Integer array, indices of reactions with real
 stoichiometric coefficients; dimension at least NIRNU.
 NSPEC(*) - Integer array, total number of species in a reaction;
 dimension at least NIRNU.
 KI(*,*) - Integer matrix, species indices for species in the
 NIRNU reactions; dimension at least MAXSP for the first,
 and at least NIRNU for the second.
 KI(M,N) is the species index of the Mth species in the
 Nth real coefficient reaction.
 RNU(*,*) - Real matrix, stoichiometric coefficients for species
 in the NIRNU reactions; dimension at least MAXSP for
 the first, and at least NIRNU for the second.
 RNU(M,N) is the stoichiometric coefficient of the Mth
 species in the Nth real coefficient reaction, and
 RNU(M,*) < 0 if the Mth species is a reactant;
 RNU(M,*) > 0 if the Mth species is a product.

 CKITDE CKITDE CKITDE CKITDE CKITDE CKITDE CKITDE
 **

 SUBROUTINE CKITDE (ICKWRK, RCKWRK, ITDE)
 Returns a set of flags indicating whether the reactions are
 non-thermal, and if so, returns the index of the species on
 which the reaction depends.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 ITDE(*) - Integer array, electron-impact flags for reactions;
 dimension at least II, the total reaction count.
 ITDE(I)= -1 reaction I is not a third-body reactions
 ITDE(I)= K reaction I is a third-body reaction with
 temperature dependence on species # K

105

 CKITR CKITR CKITR CKITR CKITR CKITR CKITR
 **

 SUBROUTINE CKITR (ICKWRK, RCKWRK, ITHB, IREV)
 Returns a set of flags indicating whether the reactions are
 reversible or whether they contain arbitrary third bodies

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 ITHB(*) - Integer array, third-body indices for reactions;
 dimension at least II, the total reaction count.
 ITHB(I)= -1 reaction I is not a third-body reactions
 ITHB(I)= 0 reaction I is is a third-body reaction with
 no enhanced third body efficiencies
 ITHB(I)= N reaction I is a third-body reaction with
 N species enhanced third-body efficiencies.
 IREV(*) - Integer array, reversibility indices and species
 count (reactants plus products) for reactions;
 dimension at least II, the total reaction count.
 IREV(I)=+N, reversible reaction I has N species
 IREV(I)=-N, irreversible reaction I has N species

 CKIXSM CKIXSM CKIXSM CKIXSM CKIXSM CKIXSM CKIXSM
 **

 SUBROUTINE CKIXSM (ICKWRK, IXSM, IXSK)
 Returns a set of flags indicating whether the reactions are ion
 momentum-transfer cross sections.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.

 OUTPUT
 IXSM(*) - Integer array, ion momentum-transfer cross-section flag;
 dimension at least II, the total reaction count.
 IXSM(I)= -1 reaction I is not a ion mom-transfer x-sec
 IXSM(I)= KI reaction I is a ion mom-trans cross-section
 and KI is the ion species index
 IXSK(*) - Integer array, species indices for the collision partner
 of the ion momentum-transfer cross-section reactions;
 dimension at least II, the total reaction count.

106

 CKKFKR CKKFKR CKKFKR CKKFKR CKKFKR CKKFKR CKKFKR
 **

 SUBROUTINE CKKFKR (P, T, X, ICKWRK, RCKWRK, FWDK, REVK)
 Returns the forward and reverse reaction rates for reactions
 given pressure, temperature(s) and mole fractions.

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 FWDK(*) - Real array, forward reaction rates for reactions;
 dimension at least II, the total reaction count.
 cgs units, depends on the reaction
 REVK(*) - Real array, reverse reaction rates for reactions;
 dimension at least II, the total reaction count.
 cgs units, depends on the reaction

 CKKFRT CKKFRT CKKFRT CKKFRT CKKFRT CKKFRT CKKFRT
 **

 SUBROUTINE CKKFRT (P, T, ICKWRK, RCKWRK, RKFT, RKRT)
 Returns the forward and reverse reaction rates for reactions
 given pressure and temperature(s).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 RKFT(*) - Real array, forward reaction rates for reactions;
 dimension at least II, the total reaction count.
 cgs units, depends on the reaction
 RKRT(*) - Real array, reverse reaction rates for reactions;
 dimension at least II, the total reaction count.
 cgs units, depends on the reaction

107

 CKKTFL CKKTFL CKKTFL CKKTFL CKKTFL CKKTFL CKKTFL
 **

 SUBROUTINE CKKTFL (ICKWRK, KTFL)
 Allows the user to assign a location in the temperature array
 to use for each gas-phase species.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 KTFL(*) - Integer array, indices into the temperature(s) for
 species;
 dimension at least KK, the total species count.
 Default value stored in ICKWRK is set to 1 in CKINIT.

 CKLEN CKLEN CKLEN CKLEN CKLEN CKLEN CKLEN
 **

 SUBROUTINE CKLEN (LINC, LOUT, LENI, LENR, LENC, IFLAG)
 Returns the lengths required for work arrays.

 INPUT
 LINC - Integer scalar, input file unit for the linkfile.
 LOUT - Integer scalar, formatted output file unit.

 OUTPUT
 LENI - Integer scalar, minimum length required for the
 integer work array.
 LENR - Integer scalar, minimum length required for the
 real work array.
 LENC - Integer scalar, minimum length required for the
 character work array.
 IFLAG - Integer scalar, indicates successful reading of
 linkfile; IFLAG>0 indicates error type.

 CKMMWC CKMMWC CKMMWC CKMMWC CKMMWC CKMMWC CKMMWC
 **

 SUBROUTINE CKMMWC (C, ICKWRK, RCKWRK, WTM)
 Returns the mean molecular weight of the gas mixture given molar
 concentrations; see Eq. (5).

 INPUT
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WTM - Real scalar, mean molecular weight of the mixture.
 cgs units, gm/mole

108

 CKMMWX CKMMWX CKMMWX CKMMWX CKMMWX CKMMWX CKMMWX
 **

 SUBROUTINE CKMMWX (X, ICKWRK, RCKWRK, WTM)
 Returns the mean molecular weight of the gas mixture given mole
 fractions; see Eq. (4).

 INPUT
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WTM - Real scalar, mean molecular weight of the mixture.
 cgs units, gm/mole

 CKMMWY CKMMWY CKMMWY CKMMWY CKMMWY CKMMWY CKMMWY
 **

 SUBROUTINE CKMMWY (Y, ICKWRK, RCKWRK, WTM)
 Returns the mean molecular weight of the gas mixture given mass
 fractions; see Eq. (3).

 INPUT
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WTM - Real scalar, mean molecular weight of the mixture.
 cgs units, gm/mole

 CKMXTP CKMXTP CKMXTP CKMXTP CKMXTP CKMXTP CKMXTP
 **

 SUBROUTINE CKMXTP (ICKWRK, MAXTP)
 Returns the maximum number of temperatures used in fitting the
 thermodynamic properties of the species.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.

 OUTPUT
 MXTP - Integer scalar, maximum number of temperatures used
 to fit the thermodynamic properties of the species.

109

 CKNCF CKNCF CKNCF CKNCF CKNCF CKNCF CKNCF
 **

 SUBROUTINE CKNCF (MDIM, ICKWRK, RCKWRK, NCF)
 Returns the elemental composition of the species

 INPUT
 MDIM - Integer scalar, first dimension of the matrix NCF;
 MDIM must be equal to or greater than MM, the total
 element count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 NCF(*,*) - Real matrix, the elemental composition of the species;
 dimension at least MM for the first, the total element
 count, and at least KK for the second, the total species
 count.
 NCF(M,K) is the quantity of the element M in species K.

 CKNPAR CKNPAR CKNPAR CKNPAR CKNPAR CKNPAR CKNPAR
 **

 SUBROUTINE CKNPAR (LINE, NPAR, LOUT, IPAR, ISTART, KERR)
 Searches a character string LINE from last to first character,
 to create a substring IPAR containing NPAR blank-delimited numbers;
 ISTART is the column of LINE containing IPAR. This allows format-
 free input of combined alpha-numeric data. For example,
 input: LINE*80 = "t1 t2 dt 300.0 3.0E3 50"
 NPAR = 3, the number of substrings requested
 LOUT = 6, a logical unit number on which to write
 diagnostic messages.
 output: IPAR*80 = "300.0 3.0E3 50"
 ISTART = 13, the starting column in LINE of the
 NPAR substrings
 KERR = .FALSE.

 INPUT
 LINE - Character string; length determined by calling routine.
 NPAR - Integer scalar, number of substrings expected.
 LOUT - Integer scalar, output unit for printed diagnostics.

 OUTPUT
 IPAR - Character string, subset of LINE, containing only the
 NPAR substrings.
 ISTART - Integer scalar, starting location in LINE of the NPAR
 substrings.
 KERR - Logical, character length or syntax error flag.

110

 CKNU CKNU CKNU CKNU CKNU CKNU CKNU
 **

 SUBROUTINE CKNU (KDIM, ICKWRK, RCKWRK, NUKI)
 Returns the stoichiometric coefficients of the reactions;
 see Eq. (50).

 INPUT
 KDIM - Integer scalar, first dimension of the matrix NUKI;
 KDIM must be greater than or equal to KK, the total
 species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 NUKI(*,*) - Integer matrix, stoichiometric coefficients of the
 species in the reactions; dimension at least KK for
 the first, the total species count, and at least II
 for the second, the total reaction count.
 NUKI(K,I) is the stoichiometric coefficient of
 species K in reaction I.

 CKNUF CKNUF CKNUF CKNUF CKNUF CKNUF CKNUF
 **

 SUBROUTINE CKNUF (KDIM, ICKWRK, RCKWRK, NUKI)
 Returns the forward stoichiometric coefficients for reactions;
 by definition, reactants' coefficients are negative; see Eq. (50).
 Contrast this subroutine with subroutine CKNU, which returns the
 net stoichiometric coefficients for a reaction.

 INPUT
 KDIM - Integer scalar, first dimension of the matrix NUKI;
 KDIM must be greater than or equal to KK, the total
 species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 NUFKI(*,*)- Integer matrix, stoichiometric coefficients of the
 species in the forward direction of the reactions
 (reactants only); dimension at least KK in the first,
 the total species count, and at least II for the
 second, the total reaction count.
 NUKI(K,I) is the stoichiometric coefficient of
 species K in forward direction of reaction I.

111

 CKPC CKPC CKPC CKPC CKPC CKPC CKPC
 **

 SUBROUTINE CKPC (RHO, T, C, ICKWRK, RCKWRK, P)
 Returns the pressure of the gas mixture given mass density,
 temperature(s) and molar concentrations; see Eq. (1).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2

 CKPHAZ CKPHAZ CKPHAZ CKPHAZ CKPHAZ CKPHAZ CKPHAZ
 **

 SUBROUTINE CKPHAZ (ICKWRK, RCKWRK, KPHASE)
 Returns a set of flags indicating phases of the species

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 KPHASE(*) - Integer array, phases of the species;
 dimension at least KK, the total species count.
 KPHASE(K)=-1, species K is solid
 KPHASE(K)= 0, species K is gaseous
 KPHASE(K)=+1, species K is liquid

112

 CKPNT CKPNT CKPNT CKPNT CKPNT CKPNT CKPNT
 **

 SUBROUTINE CKPNT (LSAVE, LOUT, NPOINT, VERS, PREC, LENI, LENR,
 LENC, KERR)
 Reads from a file information about a CHEMKIN linkfile, and
 pointers for work arrays.

 INPUT
 LSAVE - Integer scalar, input unit for binary data file.
 LOUT - Integer scalar, formatted output file unit number.

 OUTPUT
 NPOINT - Integer scalar, total pointers count.
 VERS - Real scalar, version number of the CHEMKIN linkfile.
 PREC - Character string, machine precision of the linkfile.
 LENI - Integer scalar, length required for integer work array.
 LENR - Integer scalar, length required for real work array.
 LENC - Integer scalar, length required for character work array.
 KERR - Logical, error flag.

 CKPX CKPX CKPX CKPX CKPX CKPX CKPX
 **

 SUBROUTINE CKPX (RHO, T, X, ICKWRK, RCKWRK, P)
 Returns the pressure of the gas mixture given mass density,
 temperature(s) and mole fractions; see Eq. (1).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2

113

 CKPY CKPY CKPY CKPY CKPY CKPY CKPY
 **

 SUBROUTINE CKPY (RHO, T, Y, ICKWRK, RCKWRK, P)
 Returns the pressure of the gas mixture given mass density,
 temperature(s) and mass fractions; see Eq. (1).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2

 CKQC CKQC CKQC CKQC CKQC CKQC CKQC
 **

 SUBROUTINE CKQC (T, C, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given temperature(s)
 and molar concentrations; see Eqs. (51) and (63).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 Q(*) - Real array, rates of progress for reactions;
 dimension at least II, the total reaction count.
 cgs units, moles/(cm**3*sec)

114

 CKQXP CKQXP CKQXP CKQXP CKQXP CKQXP CKQXP
 **

 SUBROUTINE CKQXP (P, T, X, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given pressure,
 temperature(s) and mole fractions; see Eqs. (51) and (63).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 Q(*) - Real array, rates of progress for reactions;
 dimension at least II, the total reaction count.
 cgs units, moles/(cm**3*sec)

 CKQYP CKQYP CKQYP CKQYP CKQYP CKQYP CKQYP
 **

 SUBROUTINE CKQYP (P, T, Y, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given pressure,
 temperature(s) and mass fractions; see Eqs. (51) and (63).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, Mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 Q(*) - Real array, rates of progress for reactions;
 dimension at least II, the total reaction count.
 cgs units, moles/(cm**3*sec)

115

 CKQYR CKQYR CKQYR CKQYR CKQYR CKQYR CKQYR
 **

 SUBROUTINE CKQYR (RHO, T, Y, ICKWRK, RCKWRK, Q)
 Returns the rates of progress for reactions given mass density,
 temperature(s) and mass fractions; see Eqs. (51) and (63).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 Q(*) - Real array, rates of progress for reactions;
 dimension at least II, the total reaction count.
 cgs units, moles/(cm**3*sec)

 CKR2CH CKR2CH CKR2CH CKR2CH CKR2CH CKR2CH CKR2CH
 **

 SUBROUTINE CKR2CH (RNUM, STR, I, KERR)
 Returns a character string representation of a real number
 and the effective length of the string.

 INPUT
 RNUM - Real scalar, to be converted to a string;
 the maximum magnitude of RNUM is machine-dependent.

 OUTPUT
 STR - Character string, left-justified representation of RNUM;
 i.e., RNUM= 0.0 returns STR=" 0.00"
 RNUM= -10.5 returns STR="-1.05E+01"
 RNUM= 1.86E-100 returns in STR=" 1.86E-100"
 the minimum length of STR required is 5
 I - Integer scalar, total non-blank characters in RNUM.
 KERR - Logical, character length error flag.

116

 CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX
 **

 SUBROUTINE CKRAEX (I, RCKWRK, RA)*
 Get/put the Pre-exponential coefficient of the Ith reaction

 INPUT
 I - Integer scalar, reaction index;
 I > 0 gets RA(I) from RCKWRK
 I < 0 puts RA(I) into RCKWRK
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.
 If I < 1:
 RA - Real scalar, pre-exponential coefficient for reaction I.
 cgs units, mole-cm-sec-K

 OUTPUT
 If I > 1:
 RA - Real scalar, pre-exponential coefficient for reaction I.
 cgs units, mole-cm-sec-K

 CKRDEX CKRDEX CKRDEX CKRDEX CKRDEX CKRDEX CKRDEX
 **

 SUBROUTINE CKRDEX (I, RCKWRK, RD)*
 Get/put the perturbation factor of the Ith reaction

 INPUT
 I - Integer scalar, reaction index;
 I > 0 gets RD(I) from RCKWRK
 I < 0 puts RD(I) into RCKWRK
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.
 If I < 1:
 RD - Real scalar, perturbation factor for reaction I;
 cgs units, mole-cm-sec-K.

 OUTPUT
 If I > 1:
 RD - Real scalar, perturbation factor for reaction I;
 cgs units, mole-cm-sec-K.

117

 CKRHEX CKRHEX CKRHEX CKRHEX CKRHEX CKRHEX CKRHEX
 **

 SUBROUTINE CKRHEX (K, RCKWRK, A6)
 Returns an array of the sixth thermodynamic polynomial
 coefficients for a species, or changes their value,
 depending on the sign of K.

 INPUT
 K - Integer scalar, species index;
 K>0 gets A6(*) from RCKWRK,
 K<0 puts A6(*) into RCKWRK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 A6(*) - Real array, the 6th thermodynamic polynomial
 coefficients for species K, over the number
 of fit temperature ranges; dimension at least (MXTP-1),
 where MXTP is the maximum number of temperatures used
 to divide the thermodynamic fits.

 CKRHOC CKRHOC CKRHOC CKRHOC CKRHOC CKRHOC CKRHOC
 **

 SUBROUTINE CKRHOC (P, T, C, ICKWRK, RCKWRK, RHO)
 Returns the mass density of the gas mixture given pressure,
 temperature(s) and molar concentrations; see Eq. (2).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3

118

 CKRHOX CKRHOX CKRHOX CKRHOX CKRHOX CKRHOX CKRHOX
 **

 SUBROUTINE CKRHOX (P, T, X, ICKWRK, RCKWRK, RHO)
 Returns the mass density of the gas mixture given pressure,
 temperature(s) and mole fractions; see Eq. (2).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3

 CKRHOY CKRHOY CKRHOY CKRHOY CKRHOY CKRHOY CKRHOY
 **

 SUBROUTINE CKRHOY (P, T, Y, ICKWRK, RCKWRK, RHO)
 Returns the mass density of the gas mixture given pressure,
 temperature(s) and mass fractions; see Eq. (2).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3

119

 CKRP CKRP CKRP CKRP CKRP CKRP CKRP
 **

 SUBROUTINE CKRP (ICKWRK, RCKWRK, RU, RUC, PA)
 Returns universal gas constants and the pressure of one standard
 atmosphere

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 RU - Real scalar, universal gas constant.
 cgs units, 8.314510E7 ergs/(mole*K)
 RUC - Real scalar, universal gas constant used only in
 conjuction with activation energy.
 preferred units, RU / 4.184 cal/(mole*K)
 PA - Real scalar, pressure of one standard atmosphere.
 cgs units, 1.01325E6 dynes/cm**2

 CKSAVE CKSAVE CKSAVE CKSAVE CKSAVE CKSAVE CKSAVE
 **

 SUBROUTINE CKSAVE (LOUT, LSAVE, ICKWRK, RCKWRK, CCKWRK)
 Writes to a binary file information about a CHEMKIN linkfile,
 pointers for the CHEMKIN Library, and CHEMKIN work arrays.

 INPUT
 LOUT - Integer scalar, formatted output file unit number.
 LSAVE - Integer scalar, binary output file unit number.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.
 CCKWRK(*) - Character string workspace array;
 dimension at least LENCCK.

120

 CKSBML CKSBML CKSBML CKSBML CKSBML CKSBML CKSBML
 **

 SUBROUTINE CKSBML (P, T, X, ICKWRK, RCKWRK, SBML)*
 Returns the mean entropy of the mixture in molar units given
 pressure, temperature(s) and mole fractions; see Eq. (42).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 SBML - Real scalar, mean entropy.
 cgs units, ergs/(mole*K)

 CKSBMS CKSBMS CKSBMS CKSBMS CKSBMS CKSBMS CKSBMS
 **

 SUBROUTINE CKSBMS (P, T, Y, ICKWRK, RCKWRK, SBMS)*
 Returns the mean entropy of the mixture in mass units given pressure,
 temperature(s) and mass fractions; see Eq. (43).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 SBMS - Real scalar, mean entropy.
 cgs units, ergs/(gm*K)

121

 CKSMH CKSMH CKSMH CKSMH CKSMH CKSMH CKSMH
 **

 SUBROUTINE CKSMH (T, ICKWRK, RCKWRK, SMH)*
 Returns the array of entropies minus enthalpies for species.
 It is normally not called directly by the user.

 INPUT
 T(*) - Real array, temepratures;
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 SMH(*) - Real array, entropy minus enthalpy for species,
 SMH(K) = S(K)/R - H(K)/RT;
 dimension at least KK, the total species count.

 CKSML CKSML CKSML CKSML CKSML CKSML CKSML
 **

 SUBROUTINE CKSML (T, ICKWRK, RCKWRK, SML)
 Returns the standard state entropies in molar units.

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 SML(*) - Real array, standard state entropies for species;
 dimension at least KK, the total species count.
 cgs units, ergs/(mole*K)

122

 CKSMS CKSMS CKSMS CKSMS CKSMS CKSMS CKSMS
 **

 SUBROUTINE CKSMS (T, ICKWRK, RCKWRK, SMS)
 Returns the standard state entropies in mass units; see Eq. (28).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 SMS(*) - Real array, standard state entropies for species;
 dimension at least KK, the total species count.
 cgs units, ergs/(gm*K)

123

 CKSNUM CKSNUM CKSNUM CKSNUM CKSNUM CKSNUM CKSNUM
 **

 SUBROUTINE CKSNUM (LINE, NEXP, LOUT, KRAY, NN, KNUM, NVAL,
 RVAL, KERR)
 Search a character string, LINE, for (1) a character substring which
 may also appear in an array of character substrings KRAY, and
 (2) some number of character substrings representing numbers.
 In the case of (1), if the character substring appears in KRAY,
 KNUM is its index position.
 In the case of (2), the character substrings are converted to
 NVAL real numbers and stored in RVAL, until NEXP are converted.
 This allows format-free input of combined alpha-numeric data.
 For example, the subroutine might be called to find a CHEMKIN
 species index and convert the other substrings to real values:
 input: LINE = "N2 1.2"
 NEXP = 1, the number of values expected
 LOUT = 6, a logical unit number on which to write
 diagnostic messages.
 KRAY(*) = "H2" "O2" "N2" "H" "O" "N" "OH" "H2O" "NO"
 NN = 9, the number of entries in KRAY(*)
 output: KNUM = 3, the index number of the substring in
 KRAY(*) which corresponds to the first
 substring in LINE
 NVAL = 1, the number of values found in LINE
 following the first substring
 RVAL(*) = 1.200E+00, the substring converted to a number
 KERR = .FALSE.

 INPUT
 LINE - Character string; length depends on calling routine.
 NEXP - Integer scalar, number of values to be found in LINE.
 If NEXP < 0, then IABS(NEXP) values are expected, but
 it is not an error condition if less values are found.
 LOUT - Integer scalar, formatted output file unit.
 KRAY(*) - Character string array.
 NN - Integer scalar, total number of character strings
 in KRAY.

 OUTPUT
 KNUM - Integer scalar, index of character string in KRAY
 which corresponds to the first substring in LINE.
 NVAL - Integer scalar, count of real values found in LINE.
 RVAL(*) - Real array, real values found in LINE; dimension at least
 NEXP.
 KERR - Logical, syntax or dimensioning error flag;
 corresponding string not found, or total of
 values found is not the number of values expected,
 will result in KERR = .TRUE.

124

 CKSOR CKSOR CKSOR CKSOR CKSOR CKSOR CKSOR
 **

 SUBROUTINE CKSOR (T, ICKWRK, RCKWRK, SOR)
 Returns the nondimensional entropies; see Eq. (21).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 SOR(*) - Real array, nondimensional entropies for species;
 dimension at least KK, the total species count.

 CKSUBS CKSUBS CKSUBS CKSUBS CKSUBS CKSUBS CKSUBS
 **

 SUBROUTINE CKSUBS (LINE, LOUT, NDIM, SUB, NFOUND, KERR)
 Returns an array of substrings in a character string with blanks
 as the delimiter

 INPUT
 LINE - Character string; length determined by calling routine.
 LOUT - Integer scalar, formatted output file unit.
 NDIM - Integer scalar, dimension of a character string array.

 OUTPUT
 SUB(*) - Character string array, the character substrings of
 LINE; dimension SUB at least NDIM.
 NFOUND - Integer scalar, count of substrings found in LINE.
 KERR - Logical, error flag; dimensioning errors will result in
 KERR = .TRUE.

 CKSYME CKSYME CKSYME CKSYME CKSYME CKSYME CKSYME
 **

 SUBROUTINE CKSYME (CCKWRK, LOUT, ENAME, KERR)*
 Returns the character strings of element names.

 INPUT
 CCKWRK(*) - Character string workspace array;
 dimension at least LENCCK.
 LOUT - Integer scalar, formatted output file unit.

 OUTPUT
 ENAME(*) - Character string array, element names; dimension at
 least MM, the total element count.
 KERR - Logical, character length error flag.

125

 CKSYMR CKSYMR CKSYMR CKSYMR CKSYMR CKSYMR CKSYMR
 **

 SUBROUTINE CKSYMR (I, ICKWRK, RCKWRK, CCKWRK, LT, ISTR, KERR)*
 Returns a character string which describes the Ith reaction,
 and the effective length of the character string.

 INPUT
 I - Integer scalar, reaction index.
 LOUT - Integer scalar, formatted output file unit.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.
 CCKWRK(*) - Character string workspace array;
 dimension at least LENCCK.

 OUTPUT
 ISTR - Character string, description of reaction I.
 LT - Integer scalar, number of non-blank characters in ISTR.
 KERR - Logical, character length error flag.

 CKSYMS CKSYMS CKSYMS CKSYMS CKSYMS CKSYMS CKSYMS
 **

 SUBROUTINE CKSYMS (CCKWRK, LOUT, KNAME, KERR)*
 Returns the character strings of species names

 INPUT
 CCKWRK(*) - Character string workspace array;
 dimension at least LENRCK.
 LOUT - Integer scalar, formatted output file unit.

 OUTPUT
 KNAME(*) - Character string array, species names;
 dimension at least KK, the total species count.
 KERR - Logical, character length error flag.

126

 CKTHB CKTHB CKTHB CKTHB CKTHB CKTHB CKTHB
 **

 SUBROUTINE CKTHB (KDIM, ICKWRK, RCKWRK, AKI)
 Returns matrix of enhanced third body coefficients; see Eq. (63).

 INPUT
 KDIM - Integer scalar, first dimension of the matrix AKI;
 KDIM must be at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 AKI(*,*) - Real matrix, enhanced third body efficiencies of the
 species in the reactions;
 dimension at least KK for first, the total species count,
 and at least II for the second, the total reaction count.
 AKI(K,I) is the enhanced efficiency of species K in
 reaction I.

 CKUBML CKUBML CKUBML CKUBML CKUBML CKUBML CKUBML
 **

 SUBROUTINE CKUBML (T, X, ICKWRK, RCKWRK, UBML)
 Returns the mean internal energy of the mixture in molar units;
 see Eq. (39).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 UBML - Real scalar, mean internal energy.
 cgs units, ergs/mole

127

 CKUBMS CKUBMS CKUBMS CKUBMS CKUBMS CKUBMS CKUBMS
 **

 SUBROUTINE CKUBMS (T, Y, ICKWRK, RCKWRK, UBMS)
 Returns the mean internal energy of the mixture in mass units;
 see Eq. (40).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 UBMS - Real scalar, mean internal energy.
 cgs units, ergs/gm

 CKUML CKUML CKUML CKUML CKUML CKUML CKUML
 **

 SUBROUTINE CKUML (T, ICKWRK, RCKWRK, UML)
 Returns the internal energies in molar units; see Eq. (23).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 UML(*) - Real array, internal energies for species;
 dimension at least KK, the total species count.
 cgs units, ergs/mole

128

 CKUMS CKUMS CKUMS CKUMS CKUMS CKUMS CKUMS
 **

 SUBROUTINE CKUMS (T, ICKWRK, RCKWRK, UMS)
 Returns the internal energies in mass units; see Eq. (30).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 UMS(*) - Real array, internal energies for species;
 dimension at least KK, the total species count.
 cgs units, ergs/gm

 CKWC CKWC CKWC CKWC CKWC CKWC CKWC
 **

 SUBROUTINE CKWC (T, C, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given
 temperature(s) and molar concentrations; see Eq. (49).

 INPUT
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WDOT(*) - Real array, chemical production rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

129

 CKWL CKWL CKWL CKWL CKWL CKWL CKWL
 **

 SUBROUTINE CKWL (ICKWRK, RCKWRK, WL)
 Returns a set of flags providing information on the wave length
 of photon radiation

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WL(*) - Real array, radiation wavelengths for reactions;
 dimension at least II, total reaction count.
 cgs units, angstrom.
 WL(I)= 0. reaction I does not have radiation as
 either a reactant or product
 WL(I)=-A reaction I has radiation of wavelength A
 as a reactant
 WL(I)=+A reaction I has radiation of wavelength A
 as a product
 If A = 1.0 then no wavelength information was given;

 CKWT CKWT CKWT CKWT CKWT CKWT CKWT
 **

 SUBROUTINE CKWT (ICKWRK, RCKWRK, WT)
 Returns the molecular weights of the species

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WT(*) - Real array, molecular weights of the species;
 dimension at least KK, the total species count.
 cgs units, gm/mole

130

 CKWXP CKWXP CKWXP CKWXP CKWXP CKWXP CKWXP
 **

 SUBROUTINE CKWXP (P, T, X, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given pressure,
 temperature(s) and mole fractions; see Eq. (49).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WDOT(*) - Real array, chemical production rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

 CKWXR CKWXR CKWXR CKWXR CKWXR CKWXR CKWXR
 **

 SUBROUTINE CKWXR (RHO, T, X, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given mass
 density, temperature(s) and mole fractions; see Eq. (49).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WDOT(*) - Real array, chemical production rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

131

 CKWYP CKWYP CKWYP CKWYP CKWYP CKWYP CKWYP
 **

 SUBROUTINE CKWYP (P, T, Y, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given pressure,
 temperature(s) and mass fractions; see Eq. (49).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WDOT(*) - Real array, chemical production rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

 CKWYPK CKWYPK CKWYPK CKWYPK CKWYPK CKWYPK CKWYPK
 **

 SUBROUTINE CKWYPK (P, T, Y, RKFT, RKRT, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given pressure,
 temperature(s), mass fractions and reaction rates;see Eq. (49).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 RKFT(*) - Real array, forward reaction rates for reactions;
 dimension at least II, the total reaction count.
 cgs units, depends on the reaction
 RKRT(*) - Real array, reverse reaction rates for reactions;
 dimension at least II, the total reaction count.
 cgs units, depends on the reaction
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WDOT(*) - Real array, chemical production rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

132

 CKWYR CKWYR CKWYR CKWYR CKWYR CKWYR CKWYR
 **

 SUBROUTINE CKWYR (RHO, T, Y, ICKWRK, RCKWRK, WDOT)
 Returns the molar production rates of the species given mass
 density, temperature and mass fractions; see Eq. (49).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature;
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 WDOT(*) - Real array, chemical production rates of the species;
 dimension at least KK, the total species count.
 cgs units, moles/(cm**3*sec)

 CKXNUM CKXNUM CKXNUM CKXNUM CKXNUM CKXNUM CKXNUM
 **

 SUBROUTINE CKXNUM (LINE, NEXP, LOUT, NVAL, RVAL, KERR)
 Searches a character string, LINE, for NEXP space-delimited
 substrings representing numbers, until NVAL real values are
 converted and stored in the array, RVAL.
 This allows format-free input of numerical data. For example:
 input: LINE = " 0.170E+14 0 47780.0"
 NEXP = 3, the number of values requested
 LOUT = 6, a logical unit number on which to write
 diagnostic messages.
 output: NVAL = 3, the number of values found
 RVAL(*) = 1.700E+13, 0.000E+00, 4.778E+04
 KERR = .FALSE.

 INPUT
 LINE - Character string, length established by calling program.
 NEXP - Integer scalar, number of real values to be found in LINE;
 If NEXP < 0 then IABS(NEXP) values are expected, but
 it is not an error condition if fewer values are found.
 LOUT - Integer scalar, output unit for printed diagnostics.

 OUTPUT
 NVAL - Integer scalar, count of real values found in LINE.
 RVAL - Real array, values converted from characters in LINE;
 dimension at least NEXP.
 KERR - Logical, syntax or dimensioning error flag.

133

 CKXTCP CKXTCP CKXTCP CKXTCP CKXTCP CKXTCP CKXTCP
 **

 SUBROUTINE CKXTCP (P, T, X, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given pressure, temperature(s)
 and mole fractions; see Eq. (10).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3

 CKXTCR CKXTCR CKXTCR CKXTCR CKXTCR CKXTCR CKXTCR
 **

 SUBROUTINE CKXTCR (RHO, T, X, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given mass density, temperature(s),
 and mole fractions; see Eq. (11).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3

134

 CKXTY CKXTY CKXTY CKXTY CKXTY CKXTY CKXTY
 **

 SUBROUTINE CKXTY (X, ICKWRK, RCKWRK, Y)
 Returns the mass fractions given mole fractions; see Eq. (9).

 INPUT
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.

 CKYTCP CKYTCP CKYTCP CKYTCP CKYTCP CKYTCP CKYTCP
 **

 SUBROUTINE CKYTCP (P, T, Y, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given pressure, temperature(s)
 and mass fractions; see Eq. (7).

 INPUT
 P - Real scalar, pressure.
 cgs units, dynes/cm**2
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3

135

 CKYTCR CKYTCR CKYTCR CKYTCR CKYTCR CKYTCR CKYTCR
 **

 SUBROUTINE CKYTCR (RHO,T, Y, ICKWRK, RCKWRK, C)
 Returns the molar concentrations given mass density, temperature(s),
 and mass fractions; see Eq. (8).

 INPUT
 RHO - Real scalar, mass density.
 cgs units, gm/cm**3
 T(*) - Real array, temperature(s); dimension is determined by
 the application program to be the total number of
 species temperatures, nominally 1.
 cgs units, K
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 C(*) - Real array, concentrations of the species;
 dimension at least KK, the total species count.
 cgs units, mole/cm**3

 CKYTX CKYTX CKYTX CKYTX CKYTX CKYTX CKYTX
 **

 SUBROUTINE CKYTX (Y, ICKWRK, RCKWRK, X)
 Returns the mole fractions given mass fractions; see Eq. (6).

 INPUT
 Y(*) - Real array, mass fractions of the mixture;
 dimension at least KK, the total species count.
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.
 RCKWRK(*) - Real workspace array; dimension at least LENRCK.

 OUTPUT
 X(*) - Real array, mole fractions of the mixture;
 dimension at least KK, the total species count.

 PKINDX PKINDX PKINDX PKINDX PKINDX PKINDX PKINDX
 **

 SUBROUTINE PKINDX (ICKWRK, KELECT, KKION)
 Returns plasma indices for the particular reaction mechanism.

 INPUT
 ICKWRK(*) - Integer workspace array; dimension at least LENICK.

 OUTPUT
 KELECT - Integer scalar, species array index for the electron.
 KKION - Integer scalar, total ion count.

136

VII. SAMPLE PROBLEM

Before applying CHEMKIN, the user must (1) define a system of governing equations, (2) define a
reaction mechanism, and (3) choose a solution method. In this sample problem we will solve the
equations describing constant pressure combustion for a hydrogen-air reaction mechanism. The
governing energy and mass conservation equations are

dT

dt c
h W

p
k

k

K

k k= − ∑
=

1

1ρ
ω̇ ,

dY

dt

W
k Kk k k= =

˙
, , , .

ω
ρ

1K

where T is temperature and Yk are the mass fractions of the K species involved. The independent
variable t is time. Other variables are ρ, mass density; cp , mean specific heat at constant pressure; hk,
the specific enthalpies of the species; ω̇k , the molar production rates of the species; and Wk, the
molecular weights of the species.

The governing system of ordinary differential equations and accompanying initial conditions
form an initial value problem. The equations will be solved using VODE.17 We find this code to be
highly reliable for the solution of a wide range of stiff initial-value problems.

The FORTRAN code for the solution of the sample problem is given in Section 4 below. After
initializing CHEMKIN, the code reads the initial nonzero moles from input. It then repeatedly calls
subroutine VODE to obtain the solution at uniform print intervals. The governing equation formulation
is found in SUBROUTINE FUN, which is called by VODE.

The sections below present a sample shell script containing the UNIX command procedure for the
sample problem, CHEMKIN Interpreter input and output, the input FORTRAN code, called CONP, and
output for the CONP execution. The last section describes how to use VODE.

137

1. UNIX Shell Script for Running the Sample Problem

#!/bin/sh
to execute: sh conp.sh logname &

sh 1> ${1}.log 2>&1 << ENDSH

set -x

#cd /scr/$LOGNAME #go to user's scratch directory
#mkdir "${1}$$" #make subdirectory /myrun##
#cd "${1}$$" #go to /myrun##

cat << EOF > makefile

include chemmake.h

OBJS = conp.o cklib.o vode.o math.o
INPS = therm.dat chem.inp conp.inp
OUTS = chem.out chem.bin conp.out
EXES = chem.exe conp.exe

chem.exe: ckinterp.o
 $(LINK) chem.exe ckinterp.o

conp.exe: $(OBJS)
 $(LINK) conp.exe $(OBJS)

EOF

cat << EOF > chem.inp
ELEMENTS H O N END
SPECIES H2 H O2 O OH HO2 H2O2 H2O N N2 NO END
REACTIONS
 H2+O2=2OH 0.170E+14 0.00 47780
 OH+H2=H2O+H 0.117E+10 1.30 3626 ! D-L&W
 O+OH=O2+H 0.400E+15 -0.50 0 ! JAM 1986
 O+H2=OH+H 0.506E+05 2.67 6290 ! KLEMM,ET AL
 H+O2+M=HO2+M 0.361E+18 -0.72 0 ! DIXON-LEWIS
 H2O/18.6/ H2/2.86/ N2/1.26/
 OH+HO2=H2O+O2 0.750E+13 0.00 0 ! D-L
 H+HO2=2OH 0.140E+15 0.00 1073 ! D-L
 O+HO2=O2+OH 0.140E+14 0.00 1073 ! D-L
 2OH=O+H2O 0.600E+09 1.30 0 ! COHEN-WEST.
 H+H+M=H2+M 0.100E+19 -1.00 0 ! D-L
 H2O/0.0/ H2/0.0/
 H+H+H2=H2+H2 0.920E+17 -0.60 0
 H+H+H2O=H2+H2O 0.600E+20 -1.25 0
 H+OH+M=H2O+M 0.160E+23 -2.00 0 ! D-L
 H2O/5/
 H+O+M=OH+M 0.620E+17 -0.60 0 ! D-L
 H2O/5/
 O+O+M=O2+M 0.189E+14 0.00 -1788 ! NBS
 H+HO2=H2+O2 0.125E+14 0.00 0 ! D-L
 HO2+HO2=H2O2+O2 0.200E+13 0.00 0
 H2O2+M=OH+OH+M 0.130E+18 0.00 45500
 H2O2+H=HO2+H2 0.160E+13 0.00 3800
 H2O2+OH=H2O+HO2 0.100E+14 0.00 1800
 O+N2=NO+N 0.140E+15 0.00 75800
 N+O2=NO+O 0.640E+10 1.00 6280
 OH+N=NO+H 0.400E+14 0.00 0
END
EOF

138

cat << EOF > conp.inp
1 1000
H2 1
O2 3
N2 .1
END
3.0E-4 3.0E-5
EOF

touch makefile; make chem.exe conp.exe
chem.exe <chem.inp >chem.out
conp.exe < conp.inp > conp.out

ENDSH

139

2. Sample Input to the Interpreter

ELEMENTS H O N END
SPECIES H2 H O2 O OH HO2 H2O2 H2O N N2 NO END
REACTIONS
 H2+O2=2OH 0.170E+14 0.00 47780
 OH+H2=H2O+H 0.117E+10 1.30 3626 ! D-L&W
 O+OH=O2+H 0.400E+15 -0.50 0 ! JAM 1986
 O+H2=OH+H 0.506E+05 2.67 6290 ! KLEMM,ET AL
 H+O2+M=HO2+M 0.361E+18 -0.72 0 ! DIXON-LEWIS
 H2O/18.6/ H2/2.86/ N2/1.26/
 OH+HO2=H2O+O2 0.750E+13 0.00 0 ! D-L
 H+HO2=2OH 0.140E+15 0.00 1073 ! D-L
 O+HO2=O2+OH 0.140E+14 0.00 1073 ! D-L
 2OH=O+H2O 0.600E+09 1.30 0 ! COHEN-WEST.
 H+H+M=H2+M 0.100E+19 -1.00 0 ! D-L
 H2O/0.0/ H2/0.0/
 H+H+H2=H2+H2 0.920E+17 -0.60 0
 H+H+H2O=H2+H2O 0.600E+20 -1.25 0
 H+OH+M=H2O+M 0.160E+23 -2.00 0 ! D-L
 H2O/5/
 H+O+M=OH+M 0.620E+17 -0.60 0 ! D-L
 H2O/5/
 O+O+M=O2+M 0.189E+14 0.00 -1788 ! NBS
 H+HO2=H2+O2 0.125E+14 0.00 0 ! D-L
 HO2+HO2=H2O2+O2 0.200E+13 0.00 0
 H2O2+M=OH+OH+M 0.130E+18 0.00 45500
 H2O2+H=HO2+H2 0.160E+13 0.00 3800
 H2O2+OH=H2O+HO2 0.100E+14 0.00 1800
 O+N2=NO+N 0.140E+15 0.00 75800
 N+O2=NO+O 0.640E+10 1.00 6280
 OH+N=NO+H 0.400E+14 0.00 0
END

140

3. Output from the Interpreter for the Sample Input

 CHEMKIN-III GAS-PHASE MECHANISM INTERPRETER:
 DOUBLE PRECISION Vers. 5.0 March 1, 1996
 Copyright 1995, Sandia Corporation.
 The U.S. Government retains a limited license in this software.

 ELEMENTS ATOMIC
 CONSIDERED WEIGHT

 1. H 1.00797
 2. O 15.9994
 3. N 14.0067

 C
 P H
 H A
 A R
 SPECIES S G MOLECULAR TEMPERATURE ELEMENT COUNT
 CONSIDERED E E WEIGHT LOW HIGH H O N

 1. H2 G 0 2.01594 300 5000 2 0 0
 2. H G 0 1.00797 300 5000 1 0 0
 3. O2 G 0 31.99880 300 5000 0 2 0
 4. O G 0 15.99940 300 5000 0 1 0
 5. OH G 0 17.00737 300 5000 1 1 0
 6. HO2 G 0 33.00677 300 5000 1 2 0
 7. H2O2 G 0 34.01474 300 5000 2 2 0
 8. H2O G 0 18.01534 300 5000 2 1 0
 9. N G 0 14.00670 300 5000 0 0 1
 10. N2 G 0 28.01340 300 5000 0 0 2
 11. NO G 0 30.00610 300 5000 0 1 1

 (k = A T**b exp(-E/RT))
 REACTIONS CONSIDERED A b E

 1. H2+O2=2OH 1.70E+13 0.0 47780.0
 2. OH+H2=H2O+H 1.17E+09 1.3 3626.0
 3. O+OH=O2+H 4.00E+14 -0.5 0.0
 4. O+H2=OH+H 5.06E+04 2.7 6290.0
 5. H+O2+M=HO2+M 3.61E+17 -0.7 0.0
 H2O Enhanced by 1.860E+01
 H2 Enhanced by 2.860E+00
 N2 Enhanced by 1.260E+00
 6. OH+HO2=H2O+O2 7.50E+12 0.0 0.0
 7. H+HO2=2OH 1.40E+14 0.0 1073.0
 8. O+HO2=O2+OH 1.40E+13 0.0 1073.0
 9. 2OH=O+H2O 6.00E+08 1.3 0.0
 10. H+H+M=H2+M 1.00E+18 -1.0 0.0
 H2O Enhanced by 0.000E+00
 H2 Enhanced by 0.000E+00
 11. H+H+H2=H2+H2 9.20E+16 -0.6 0.0
 12. H+H+H2O=H2+H2O 6.00E+19 -1.2 0.0
 13. H+OH+M=H2O+M 1.60E+22 -2.0 0.0
 H2O Enhanced by 5.000E+00
 14. H+O+M=OH+M 6.20E+16 -0.6 0.0
 H2O Enhanced by 5.000E+00

141

 15. O+O+M=O2+M 1.89E+13 0.0 -1788.0
 16. H+HO2=H2+O2 1.25E+13 0.0 0.0
 17. HO2+HO2=H2O2+O2 2.00E+12 0.0 0.0
 18. H2O2+M=OH+OH+M 1.30E+17 0.0 45500.0
 19. H2O2+H=HO2+H2 1.60E+12 0.0 3800.0
 20. H2O2+OH=H2O+HO2 1.00E+13 0.0 1800.0
 21. O+N2=NO+N 1.40E+14 0.0 75800.0
 22. N+O2=NO+O 6.40E+09 1.0 6280.0
 23. OH+N=NO+H 4.00E+13 0.0 0.0

 NOTE: A units mole-cm-sec-K, E units cal/mole

 NO ERRORS FOUND ON INPUT,
 BINARY Vers. 1.0 CHEMKIN linkfile chem.bin written.

 WORKING SPACE REQUIREMENTS ARE
 INTEGER: 770
 REAL: 538
 CHARACTER: 14

142

4. Sample User’s FORTRAN Code: CONP

 PROGRAM CONP
C
C Integration of adiabatic, constant pressure kinetics problems
C
C VERSION 1.2:
C 1. Implement new VODE solver
C VERSION 1.3:
C 1. Add IFLAG to CKLEN, CKINIT argument list.
C VERSION 1.4:
C 1. Change character index "(:" to "(1:"
C*****precision > double
 IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER(I-N)
C*****END precision > double
C*****precision > single
C IMPLICIT REAL (A-H,O-Z), INTEGER (I-N)
C*****END precision > single
C
 PARAMETER (LENIWK=4000, LENRWK=4000, LENCWK=500, NK=5, NLMAX=55,
 1 LIN=5, LOUT=6, LINKCK=25, KMAX=50, ITOL=1, IOPT=0,
 2 RTOL=1.0E-6, ITASK=1, ATOL=1.0E-15)
C
 DIMENSION IWORK(LENIWK), RWORK(LENRWK), X(KMAX), Z(KMAX)
 CHARACTER*16 CWORK(LENCWK), KSYM(KMAX), PRVERS, PRDATE, PREC
 CHARACTER LINE*80
 LOGICAL KERR, IERR
 EXTERNAL FUN
 COMMON /ICONS/ KK, NP, NWT, NH, NWDOT
C
 DATA KERR/.FALSE./, X/KMAX*0.0/, KSYM/KMAX*' '/,
 1 PRVERS/'1.0'/, PRDATE/'March 1, 1996'/
C
C*****precision > double
 PREC = 'DOUBLE'
C*****END precision > double
C*****precision > single
C PREC = 'SINGLE'
C*****END precision > single
C
 WRITE (LOUT, '(/A, /1XA, A, A, A, /A, /A, //)')
 1' CONP: CHEMKIN-III Constant Pressure Kinetics Code,',
 2 PREC(1:ILASCH(PREC)), ' PRECISION VERS. ',
 3 PRVERS(1:ILASCH(PRVERS)+1), PRDATE,
 4 ' Copyright 1995, Sandia Corporation.',
 5' The U.S. Government retains a limited license in this software.'
C
C Initialize CHEMKIN
C*****gas linkfile > binary
 OPEN (LINKCK, FORM='UNFORMATTED', STATUS='UNKNOWN',
 1 FILE='chem.bin')
C*****END gas linkfile > binary
C*****gas linkfile > ascii
C OPEN (LINKCK, FORM='FORMATTED', STATUS='UNKNOWN',
C 1 FILE='chem.dat')
C*****END gas linkfile > ascii
C
 CALL CKLEN (LINKCK, LOUT, LENI, LENR, LENC, IFLAG)
 IF (IFLAG .GT. 0) STOP
 CALL CKINIT (LENIWK, LENRWK, LENCWK, LINKCK, LOUT, IWORK,
 1 RWORK, CWORK, IFLAG)
 IF (IFLAG .GT. 0) STOP
 CLOSE (LINKCK)
 CALL CKINDX (IWORK, RWORK, MM, KK, II, NFIT)
C
 NEQ = KK + 1
 LRW = 22 + 9*NEQ + 2*NEQ**2
 NVODE = LENR + 1
 NP = NVODE + LRW
 NWT = NP + 1
 NH = NWT + KK
 NWDOT = NH + KK

143

 NTOT = NWDOT+ KK - 1
C
 LIW = 30 + NEQ
 IVODE = LENI + 1
 ITOT = IVODE + LIW - 1
C
 IF (KK.GT.KMAX .OR. LENRWK.LT.NTOT .OR. LENIWK.LT.ITOT) THEN
 IF (KK .GT. KMAX) WRITE (LOUT, *)
 1 ' Error...KMAX too small...must be at least ',KK
 IF (LENRWK .LT. NTOT) WRITE (LOUT, *)
 1 ' Error...LENRWK too small...must be at least', NTOT
 IF (LENIWK .LT. ITOT) WRITE (LOUT, *)
 1 ' Error...LENIWK too small...must be at least', ITOT
 STOP
 ENDIF
C
 CALL CKSYMS (CWORK, LOUT, KSYM, IERR)
 IF (IERR) KERR = .TRUE.
 CALL CKWT (IWORK, RWORK, RWORK(NWT))
 CALL CKRP (IWORK, RWORK, RU, RUC, PATM)
C
C Pressure and temperature
C
 WRITE (LOUT, '(/A,//A)')
 1' ADIABATIC FIXED PRESSURE PROBLEM,',
 2' INPUT PRESSURE(ATM) AND TEMPERATURE(K):'
 READ (LIN, *) PA, T
 WRITE (LOUT,7105) PA, T
 RWORK(NP) = PA*PATM
C
C Initial non-zero moles
C
 40 CONTINUE
 LINE = ' '
 WRITE (LOUT, '(/A)') ' INPUT MOLES OF NEXT SPECIES'
 READ (LIN, '(A)', END=45) LINE
 WRITE (LOUT, '(1X,A)') LINE
 ILEN = INDEX (LINE, '!')
 IF (ILEN .EQ. 1) GO TO 40
C
 ILEN = ILEN - 1
 IF (ILEN .LE. 0) ILEN = LEN(LINE)
 IF (INDEX(LINE(1:ILEN), 'END') .EQ. 0) THEN
 IF (LINE(1:ILEN) .NE. ' ') THEN
 CALL CKSNUM (LINE(1:ILEN), 1, LOUT, KSYM, KK, KNUM,
 1 NVAL, VAL, IERR)
 IF (IERR) THEN
 WRITE (LOUT,*) ' Error reading moles...'
 KERR = .TRUE.
 ELSE
 X(KNUM) = VAL
 ENDIF
 ENDIF
 GO TO 40
 ENDIF
C
 45 CONTINUE
C
C Final time and print interval
C
 WRITE (LOUT, '(/A)') ' INPUT FINAL TIME AND DT'
 READ (LIN, *) T2, DT
 WRITE (LOUT,7105) T2, DT
C
 IF (KERR) STOP
C
C Normalize the mole fractions
C
 XTOT = 0.00
 DO 50 K = 1, KK
 XTOT = XTOT + X(K)
 50 CONTINUE

144

 DO 55 K = 1, KK
 X(K) = X(K) / XTOT
 55 CONTINUE
C
C Initial conditions and mass fractions
C
 TT1 = 0.0
 Z(1) = T
 CALL CKXTY (X, IWORK, RWORK, Z(2))
C
C Integration control parameters for VODE
C
 TT2 = TT1
 MF = 22
 ISTATE= 1
 NLINES=NLMAX + 1
C
C Integration loop
C
 250 CONTINUE
 IF (NLINES .GE. NLMAX) THEN
C
C Print page heading
C
 WRITE (LOUT, 7003)
 WRITE (LOUT, 7100) (KSYM(K)(1:10), K=1,MIN(NK,KK))
 NLINES = 1
C
 DO 200 K1 = NK+1, KK, NK
 WRITE (LOUT, 7110) (KSYM(K)(1:10), K=K1, MIN(K1+NK-1, KK))
 NLINES = NLINES + 1
 200 CONTINUE
 ENDIF
C
C Print the solution
C
 T = Z(1)
 CALL CKYTX (Z(2), IWORK, RWORK, X)
C
 WRITE (LOUT, 7105) TT1, T, (X(K), K=1,MIN(NK,KK))
 NLINES = NLINES + 1
C
 DO 300 K1 = NK+1, KK, NK
 WRITE (LOUT, 7115) (X(K), K=K1, MIN(K1+NK-1,KK))
 NLINES = NLINES + 1
 300 CONTINUE
C
 IF (TT2 .GE. T2) STOP
 TT2 = MIN(TT2 + DT, T2)
C
C Call the differential equation solver
C
 350 CONTINUE
C*****precision > single
C CALL SVODE
C*****END precision > single
C*****precision > double
 CALL DVODE
C*****END precision > double
 * (FUN, NEQ, Z, TT1, TT2, ITOL, RTOL, ATOL, ITASK,
 1 ISTATE, IOPT, RWORK(NVODE), LRW, IWORK(IVODE),
 2 LIW, JAC, MF, RWORK, IWORK)
C
 IF (ISTATE .LE. -2) THEN
 IF (ISTATE .EQ. -1) THEN
 ISTATE = 2
 GO TO 350
 ELSE
 WRITE (LOUT,*) ' ISTATE=',ISTATE
 STOP
 ENDIF
 ENDIF

145

 GO TO 250
C
C FORMATS
C
 7003 FORMAT (1H1)
 7100 FORMAT (2X, 'T(SEC)', 6X, 'TMP(K)', 6X, 5(1X,A10))
 7105 FORMAT (12E11.3)
 7110 FORMAT (26X, 5(1X,A10))
 7115 FORMAT (22X, 10E11.3)
 END
C
 SUBROUTINE FUN (N, TIME, Z, ZP, RPAR, IPAR)
C
C*****precision > double
 IMPLICIT DOUBLE PRECISION(A-H,O-Z), INTEGER(I-N)
C*****END precision > double
C*****precision > single
C IMPLICIT REAL (A-H,O-Z), INTEGER(I-N)
C*****END precision > single
C
 COMMON /ICONS/ KK, NP, NWT, NH, NWDOT
 DIMENSION Z(*), ZP(*), RPAR(*), IPAR(*)
C
C Variables in Z are: Z(1) = T
C Z(K+1) = Y(K)
C
C Call CHEMKIN subroutines
C
 CALL CKRHOY (RPAR(NP), Z(1), Z(2), IPAR, RPAR, RHO)
 CALL CKCPBS (Z(1), Z(2), IPAR, RPAR, CPB)
 CALL CKWYP (RPAR(NP), Z(1), Z(2), IPAR, RPAR, RPAR(NWDOT))
 CALL CKHMS (Z(1), IPAR, RPAR, RPAR(NH))
C
C Form governing equation
C
 SUM = 0.0
 DO 100 K = 1, KK
 H = RPAR(NH + K - 1)
 WDOT = RPAR(NWDOT + K - 1)
 WT = RPAR(NWT + K - 1)
 ZP(K+1) = WDOT * WT / RHO
 SUM = SUM + H * WDOT * WT
 100 CONTINUE
 ZP(1) = -SUM / (RHO*CPB)
C
 RETURN
 END

146

5. Input to the Sample FORTRAN Code, CONP

1 1000
H2 1
O2 3
N2 .1
END
3.0E-4 3.0E-5

147

6. Output form the Sample FORTRAN Code, CONP

 CONP: CHEMKIN-III Constant Pressure Kinetics Code,
 DOUBLE PRECISION VERS. 1.0 March 1, 1996
 Copyright 1995, Sandia Corporation.
 The U.S. Government retains a limited license in this software.

 CKLIB: CHEMKIN-III GAS-PHASE CHEMICAL KINETICS LIBRARY,
 DOUBLE PRECISION Vers. 5.0 March 1, 1996
 Copyright 1995, Sandia Corporation.
 The U.S. Government retains a limited license in this software.

 ADIABATIC FIXED PRESSURE PROBLEM,

 INPUT PRESSURE(ATM) AND TEMPERATURE(K):
 0.100E+01 0.100E+04

 INPUT MOLES OF NEXT SPECIES
 H2 1

 INPUT MOLES OF NEXT SPECIES
 O2 3

 INPUT MOLES OF NEXT SPECIES
 N2 .1

 INPUT MOLES OF NEXT SPECIES
 END

 INPUT FINAL TIME AND DT
 0.300E-03 0.300E-04

148

1
 T(SEC) TMP(K) H2 H O2 O OH
 HO2 H2O2 H2O N N2
 NO
 0.000E+00 0.100E+04 0.244E+00 0.000E+00 0.732E+00 0.000E+00 0.000E+00
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.244E-01
 0.000E+00
 0.300E-04 0.100E+04 0.244E+00 0.817E-05 0.732E+00 0.425E-05 0.144E-05
 0.129E-04 0.103E-07 0.259E-04 0.181E-20 0.244E-01
 0.375E-19
 0.600E-04 0.196E+04 0.890E-02 0.169E-01 0.625E+00 0.570E-01 0.411E-01
 0.174E-03 0.355E-04 0.224E+00 0.229E-09 0.262E-01
 0.167E-07
 0.900E-04 0.235E+04 0.367E-02 0.331E-02 0.658E+00 0.235E-01 0.392E-01
 0.845E-04 0.445E-05 0.246E+00 0.193E-08 0.271E-01
 0.163E-05
 0.120E-03 0.243E+04 0.258E-02 0.185E-02 0.665E+00 0.165E-01 0.352E-01
 0.693E-04 0.254E-05 0.251E+00 0.229E-08 0.272E-01
 0.438E-05
 0.150E-03 0.246E+04 0.216E-02 0.139E-02 0.669E+00 0.138E-01 0.330E-01
 0.641E-04 0.197E-05 0.254E+00 0.236E-08 0.273E-01
 0.730E-05
 0.180E-03 0.248E+04 0.197E-02 0.120E-02 0.670E+00 0.125E-01 0.319E-01
 0.619E-04 0.173E-05 0.255E+00 0.237E-08 0.273E-01
 0.102E-04
 0.210E-03 0.248E+04 0.188E-02 0.111E-02 0.671E+00 0.119E-01 0.313E-01
 0.609E-04 0.162E-05 0.255E+00 0.238E-08 0.273E-01
 0.131E-04
 0.240E-03 0.249E+04 0.183E-02 0.106E-02 0.671E+00 0.116E-01 0.310E-01
 0.604E-04 0.157E-05 0.256E+00 0.239E-08 0.273E-01
 0.160E-04
 0.270E-03 0.249E+04 0.181E-02 0.104E-02 0.672E+00 0.115E-01 0.308E-01
 0.602E-04 0.154E-05 0.256E+00 0.240E-08 0.273E-01
 0.188E-04
 0.300E-03 0.249E+04 0.179E-02 0.103E-02 0.672E+00 0.114E-01 0.307E-01
 0.600E-04 0.152E-05 0.256E+00 0.241E-08 0.273E-01
 0.217E-04

149

7. Summary of VODE Math Library Usage

 SUBROUTINE DVODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF,
 2 RPAR, IPAR)
 EXTERNAL F, JAC
 DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK, RPAR
 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW,
 1 MF, IPAR
 DIMENSION Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW),
 1 RPAR(*), IPAR(*)
C---
C DVODE.. Variable-coefficient Ordinary Differential Equation solver,
C with fixed-leading coefficient implementation.
C This version is in double precision.
C
C DVODE solves the initial value problem for stiff or nonstiff
C systems of first order ODEs,
C dy/dt = f(t,y) , or, in component form,
C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ).
C DVODE is a package based on the EPISODE and EPISODEB packages, and
C on the ODEPACK user interface standard, with minor modifications.
C---
C Revision History (YYMMDD)
C 890615 Date Written
C 890922 Added interrupt/restart ability, minor changes throughout.
C 910228 Minor revisions in line format, prologue, etc.
C 920227 Modifications by D. Pang:
C (1) Applied subgennam to get generic intrinsic names.
C (2) Changed intrinsic names to generic in comments.
C (3) Added *DECK lines before each routine.
C 920721 Names of routines and labeled Common blocks changed, so as
C to be unique in combined single/double precision code (ACH).
C 920722 Minor revisions to prologue (ACH).
C 920831 Conversion to double precision done (ACH).
C---
C References..
C
C 1. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE: A Variable
C Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989),
C pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988.
C 2. G. D. Byrne and A. C. Hindmarsh, "A Polyalgorithm for the
C Numerical Solution of Ordinary Differential Equations,"
C ACM Trans. Math. Software, 1 (1975), pp. 71-96.
C 3. A. C. Hindmarsh and G. D. Byrne, "EPISODE: An Effective Package
C for the Integration of Systems of Ordinary Differential
C Equations," LLNL Report UCID-30112, Rev. 1, April 1977.
C 4. G. D. Byrne and A. C. Hindmarsh, "EPISODEB: An Experimental
C Package for the Integration of Systems of Ordinary Differential
C Equations with Banded Jacobians," LLNL Report UCID-30132, April
C 1976.
C 5. A. C. Hindmarsh, "ODEPACK, a Systematized Collection of ODE
C Solvers," in Scientific Computing, R. S. Stepleman et al., eds.,
C North-Holland, Amsterdam, 1983, pp. 55-64.
C 6. K. R. Jackson and R. Sacks-Davis, "An Alternative Implementation
C of Variable Step-Size Multistep Formulas for Stiff ODEs," ACM
C Trans. Math. Software, 6 (1980), pp. 295-318.
C---

150

C Authors..
C
C Peter N. Brown and Alan C. Hindmarsh
C Computing and Mathematics Research Division, L-316
C Lawrence Livermore National Laboratory
C Livermore, CA 94550
C and
C George D. Byrne
C Exxon Research and Engineering Co.
C Clinton Township
C Route 22 East
C Annandale, NJ 08801
C---
C Summary of usage.
C
C Communication between the user and the DVODE package, for normal
C situations, is summarized here. This summary describes only a subset
C of the full set of options available. See the full description for
C details, including optional communication, nonstandard options,
C and instructions for special situations. See also the example
C problem (with program and output) following this summary.
C
C A. First provide a subroutine of the form..
C
C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR)
C DOUBLE PRECISION T, Y, YDOT, RPAR
C DIMENSION Y(NEQ), YDOT(NEQ)
C
C which supplies the vector function f by loading YDOT(i) with f(i).
C
C B. Next determine (or guess) whether or not the problem is stiff.
C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue
C whose real part is negative and large in magnitude, compared to the
C reciprocal of the t span of interest. If the problem is nonstiff,
C use a method flag MF = 10. If it is stiff, there are four standard
C choices for MF (21, 22, 24, 25), and DVODE requires the Jacobian
C matrix in some form. In these cases (MF .gt. 0), DVODE will use a
C saved copy of the Jacobian matrix. If this is undesirable because of
C storage limitations, set MF to the corresponding negative value
C (-21, -22, -24, -25). (See full description of MF below.)
C The Jacobian matrix is regarded either as full (MF = 21 or 22),
C or banded (MF = 24 or 25). In the banded case, DVODE requires two
C half-bandwidth parameters ML and MU. These are, respectively, the
C widths of the lower and upper parts of the band, excluding the main
C diagonal. Thus the band consists of the locations (i,j) with
C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1.
C
C C. If the problem is stiff, you are encouraged to supply the Jacobian
C directly (MF = 21 or 24), but if this is not feasible, DVODE will
C compute it internally by difference quotients (MF = 22 or 25).
C If you are supplying the Jacobian, provide a subroutine of the form..
C
C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, RPAR, IPAR)
C DOUBLE PRECISION T, Y, PD, RPAR
C DIMENSION Y(NEQ), PD(NROWPD,NEQ)
C
C which supplies df/dy by loading PD as follows..
C For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),

151

C the partial derivative of f(i) with respect to y(j). (Ignore the
C ML and MU arguments in this case.)
C For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
C df(i)/dy(j), i.e. load the diagonal lines of df/dy into the rows of
C PD from the top down.
C In either case, only nonzero elements need be loaded.
C
C D. Write a main program which calls subroutine DVODE once for
C each point at which answers are desired. This should also provide
C for possible use of logical unit 6 for output of error messages
C by DVODE. On the first call to DVODE, supply arguments as follows..
C F = Name of subroutine for right-hand side vector f.
C This name must be declared external in calling program.
C NEQ = Number of first order ODE-s.
C Y = Array of initial values, of length NEQ.
C T = The initial value of the independent variable.
C TOUT = First point where output is desired (.ne. T).
C ITOL = 1 or 2 according as ATOL (below) is a scalar or array.
C RTOL = Relative tolerance parameter (scalar).
C ATOL = Absolute tolerance parameter (scalar or array).
C The estimated local error in Y(i) will be controlled so as
C to be roughly less (in magnitude) than
C EWT(i) = RTOL*abs(Y(i)) + ATOL if ITOL = 1, or
C EWT(i) = RTOL*abs(Y(i)) + ATOL(i) if ITOL = 2.
C Thus the local error test passes if, in each component,
C either the absolute error is less than ATOL (or ATOL(i)),
C or the relative error is less than RTOL.
C Use RTOL = 0.0 for pure absolute error control, and
C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error
C control. Caution.. Actual (global) errors may exceed these
C local tolerances, so choose them conservatively.
C ITASK = 1 for normal computation of output values of Y at t = TOUT.
C ISTATE = Integer flag (input and output). Set ISTATE = 1.
C IOPT = 0 to indicate no optional input used.
C RWORK = Real work array of length at least..
C 20 + 16*NEQ for MF = 10,
C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22,
C 22 + 11*NEQ + (3*ML + 2*MU)*NEQ for MF = 24 or 25.
C LRW = Declared length of RWORK (in user's DIMENSION statement).
C IWORK = Integer work array of length at least..
C 30 for MF = 10,
C 30 + NEQ for MF = 21, 22, 24, or 25.
C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower
C and upper half-bandwidths ML,MU.
C LIW = Declared length of IWORK (in user's DIMENSION).
C JAC = Name of subroutine for Jacobian matrix (MF = 21 or 24).
C If used, this name must be declared external in calling
C program. If not used, pass a dummy name.
C MF = Method flag. Standard values are..
C 10 for nonstiff (Adams) method, no Jacobian used.
C 21 for stiff (BDF) method, user-supplied full Jacobian.
C 22 for stiff method, internally generated full Jacobian.
C 24 for stiff method, user-supplied banded Jacobian.
C 25 for stiff method, internally generated banded Jacobian.
C RPAR,IPAR = user-defined real and integer arrays passed to F and JAC.
C Note that the main program must declare arrays Y, RWORK, IWORK,
C and possibly ATOL, RPAR, and IPAR.
C

152

C E. The output from the first call (or any call) is..
C Y = Array of computed values of y(t) vector.
C T = Corresponding value of independent variable (normally TOUT).
C ISTATE = 2 if DVODE was successful, negative otherwise.
C -1 means excess work done on this call. (Perhaps wrong MF.)
C -2 means excess accuracy requested. (Tolerances too small.)
C -3 means illegal input detected. (See printed message.)
C -4 means repeated error test failures. (Check all input.)
C -5 means repeated convergence failures. (Perhaps bad
C Jacobian supplied or wrong choice of MF or tolerances.)
C -6 means error weight became zero during problem. (Solution
C component i vanished, and ATOL or ATOL(i) = 0.)
C
C F. To continue the integration after a successful return, simply
C reset TOUT and call DVODE again. No other parameters need be reset.
C

153

REFERENCES

1. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. and Miller, J. A.: “A Fortran Computer Code
Package for the Evaluation of Gas-Phase Multicomponent Transport Properties,” Sandia National
Laboratories Report SAND86-8246 (1986).

2. Coltrin, M. E., Kee, R. J. and Rupley, F. M.: International Journal of Chemical Kinetics, 23 1111
(1991).

3. Coltrin, M. E., Kee, R. J., Rupley, F. M. and Meeks, E.: “SURFACE CHEMKIN-III: A Fortran
Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface - Gas-Phase
Interface,” Sandia National Laboratories Report SAND96-8217 (1996).

4. Kee, R. J. and Miller, J. A.: “A Structured Approach to the Computational Modeling of Chemical
Kinetics and Molecular Transport in Flowing Systems,” Sandia National Laboratories Report
SAND86-8841 (1986).

5. Kee, R. J., Miller, J. A. and Jefferson, T. H.: “CHEMKIN: A General-Purpose, Problem-Independent,
Transportable, Fortran Chemical Kinetics Code Package,” Sandia National Laboratories Report
SAND80-8003 (1980).

6. Kee, R. J., Rupley, F. M. and Miller, J. A.: “CHEMKIN-II: A Fortran Chemical Kinetics Package for
the Analysis of Gas-Phase Chemical Kinetics,” Sandia National Laboratories Report SAND89-
8009 (1990).

7. Kee, R. J., Rupley, F. M. and Miller, J. A.: “The CHEMKIN Thermodynamic Data Base,” Sandia
National Laboratories Report SAND87-8215B (1990).

8. Gordon, S. and McBride, B. J.: “Computer Program for Calculation of Complex Chemical Equilibrium
Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet
Detonations,” NASA Report SP-273 (1971).

9. Grcar, J. F.: “The Change Tool for Change Programs and Scripts,” Sandia National Laboratories
Report SAND92-8225 (1992).

10. Mitchner, M. and Charles H. Kruger, J.: Partially Ionized Gases, John Wiley & Sons, New York
(1973).

11. Lindemann, F.: Trans. Faraday Soc., 17 598 (1922).

12. Gilbert, R. G., Luther, K. and Troe, J.: Ber. Bunsenges. Phys. Chem., 87 169 (1983).

13. Stewart, P. H., Larson, C. W. and Golden, D.: Combustion and Flame, 75 25 (1989).

14. Wagner, A. F. and Wardlaw, D. M.: Journal of Physical Chemistry, 92 2462 (1988).

15. Stewart, P. H., Larson, C. W. and Golden, D. M.: Combustion and Flame, 75 25 (1989).

16. Janev, R. K., Langer, W. D., K. Evans, J. and D. E. Post, J.: Elementary Processes in Hydrogen-Helium
Plasmas, Springer-Verlag, New York (1987).

17. Brown, P. N., Byrne, G. D. and Hindmarsh, A. C.: SIAM J. Sci. Stat. Comput., 10 1038 (1989).

154

APPENDIX A. STORAGE ALLOCATION FOR THE WORK ARRAYS

 Work arrays ICKWRK, RCKWRK, and CCKWRK contain information about the
 elements, species and reactions in the mechanism; they also contain
 some work space needed for internal manipulations. A user wishing
 to modify a subroutine or to write new routines will probably want
 to use the work arrays directly. The pointers described below are
 starting addresses for information stored in the work arrays, and
 are found in the labeled common block COMMON /CKSTRT/, declared
 by the use of the include file ckstrt.h.

 COMMON /CKSTRT/
 Integer constants
 1 NMM, NKK, NII, MXSP, MXTB, MXTP, NCP, NCP1, NCP2, NCP2T,
 2 NPAR, NLAR, NFAR, NLAN, NFAL, NREV, NTHB, NRLT, NWL, NEIM,
 3 NJAN, NJAR, NFT1, NF1R, NEXC, NMOM, NXSM, NTDE, NRNU, NORD,
 4 MXORD,KEL, NKKI,
 Integer pointers to character string arrays in CCKWRK
 5 IcMM, IcKK,
 Integer pointers to integer arrays in ICKWRK
 6 IcNC, IcPH, IcCH, IcNT, IcNU, IcNK, IcNS, IcNR, IcLT, IcRL,
 7 IcRV, IcWL, IcFL, IcFO, IcFT, IcKF, IcTB, IcKN, IcKT, IcEI,
 8 IcET, IcJN, IcF1, IcEX, IcMO, IcMK, IcXS, IcXI, IcXK, IcTD,
 9 IcTK, IcRNU,IcORD,IcKOR,IcKI, IcKTF,IcK1, IcK2,
 Integer pointers to real variables and arrays in RCKWRK
 * NcAW, NcWT, NcTT, NcAA, NcCO, NcRV, NcLT, NcRL, NcFL, NcKT,
 1 NcWL, NcJN, NcF1, NcEX, NcRU, NcRC, NcPA, NcKF, NcKR, NcRNU,
 2 NcKOR,NcK1, NcK2, NcK3, NcK4, NcI1, NcI2, NcI3, NcI4
 INTEGER CONSTANTS:
 NMM, Total count, elements in problem.
 NKK, Total count, species in problem.
 NII, Total count, reactions in problem.
 MXSP, Maximum number of species (reactants plus products) allowed
 in any reaction; unless changed in the interpreter, MXSP=12.
 MXTB, Maximum number of enhanced third-bodies allowed in any
 reaction; unless changed in the interpreter, MXTB=10.
 MXTP, Maximum number of temperatures allowed in fits of
 thermodynamic properties for any species;
 unless changed in the interpreter and the thermodynamic
 database, MXTP=3.
 NCP, Number of polynomial coefficients to fits of CP/R for a
 species; unless changed in the interpreter and the
 thermodynamic database, NCP=5.
 NCP1, NCP + 1
 NCP2, NCP + 2
 NCP2T, Total number of thermodynamic fit coefficients for species;
 unless changed, NCP2T = (MXTP-1)*NCP2 = 14.
 NPAR, Number of parameters required in the rate expression for
 reactions; in the current formulation NPAR=3, however,
 a 4th parameter is used for purposes of scaling.
 NLAR, Number of parameters required for Landau-Teller reactions;
 NLAR=4.
 NFAR, Number of parameters allowed for pressure-dependent
 reactions; NFAR=8.
 NLAN, Total count, Landau-Teller reactions.
 NFAL, Total count, pressure-dependent reactions.
 NREV, Total count, reactions with reverse parameters.
 NTHB, Total count, reactions with third-bodies.
 NRLT, Total count, Landau-Teller reactions with reverse parameters.
 NWL, Total count, reactions with radiation wavelength enhancement.
 NEIM, Total count, electron-impact reactions.
 NJAN, Total count, Janev-Langer,Evans,Post reactions.

155

 NJAR, Number of parameters required for an NJAN reaction.
 NFT1, Total count, reactions using fit#1.
 NF1R, Number of parameters required for an NFT1 reaction.
 NEXC, Total count, excitation-only reactions.
 NMOM, Total count, electron momentum-transfer reactions.
 NXSM, Total count, ion momentum-transfer reactions.
 NTDE, Total count, non-thermal-equilibrium reactions.
 NRNU, Total count, real stoichiometry reactions.
 NORD, Total count, changed-order reactions.
 MXORD, Maximum number of order changes allowed for above.
 KEL, Species index of the electron species if present.
 NKKI, Total count, ion species in the mechanism.

 STARTING ADDRESSES FOR THE CHARACTER WORK SPACE, CCKWRK.

 IcMM, CCKWRK(I = IcMM) starts an array of element names;
 CCKWRK(I + M - 1) is the name of element M.
 IcKK, CCKWRK(I = IcKK) starts an array of species names;
 CCKWRK(I + K - 1) is the name of species K.

 STARTING ADDRESSES FOR THE INTEGER WORK SPACE, ICKWRK.

 IcNC, ICKWRK(I = IcNC) starts a matrix of elemental composition
 for the species;
 ICKWRK(I + (K-1)*NMM + M - 1) is the quantity of element M
 in species K.
 IcPH, ICKWRK(I = IcPH) starts an array of physical phases for the
 species;
 ICKWRK(I + K - 1) = -1, species K is solid
 = 0, species K is gaseous
 = +1, species K is liquid
 IcCH, ICKWRK(I = IcCH) starts an array of electronic charges for
 the species;
 ICKWRK(I + K - 1) = -2, species K has two excess electrons.
 IcNT, ICKWRK(I = IcNT) starts an array of the total number of
 temperatures dividing the ranges of thermodynamic fits of
 the species;
 ICKWRK(I + K - 1) is the number of dividing temperatures
 for thermodynamic fits for species K.
 IcNU, ICKWRK(I = IcNU) starts a matrix of stoichiometric coefficients
 for the MXSP species in the reactions;
 ICKWRK(I + (N-1)*MXSP + L - 1) is the coefficient of the Lth
 participant species in the Nth reaction.
 IcNK, ICKWRK(I = IcNK) starts a matrix of indices for the MXSP
 species in the reactions;
 ICKWRK(I + (N-1)*MXSP + L -1) is the species index for the
 Lth participant species in the Nth reaction.
 IcNS, ICKWRK(I = IcNS) starts an array of the total counts of
 participant species for the reactions,
 and indicates the reversibility of the reactions;
 ICKWRK(I + N - 1) = +L, reaction N is reversible and has
 L participant species (reactants+products)
 = -L, reaction N is irreversible and has
 L participant species (reactants+products)
 IcNR, ICKWRK(I = IcNR) starts an array of the total count of
 reactants only for the reactions;
 ICKWRK(I + N - 1) is the total reactant count for reaction N.
 IcLT, ICKWRK(I = IcLT) starts an array of reaction indices for
 Landau-Teller reactions;
 ICKWRK(I + N - 1) is the reaction index of the Nth LT reaction.
 IcRL, ICKWRK(I = IcRL) starts an array of reaction indices for
 Landau-Teller reactions with explicit reverse parameters;
 ICKWRK(I + N - 1) is the reaction index of the Nth reaction
 with reverse Landau-Teller parameters.

156

 IcRV, ICKWRK(I = IcRV) starts an array of reaction indices for those
 with explicit reverse Arrhenius coefficients;
 ICKWRK(I + N - 1) is the reaction index of the Nth reaction
 with reverse coefficients.
 IcWL, ICKWRK(I = IcWL) starts an array of reaction indices for those
 with radiation wavelength enhancement;
 ICKWRK(I + N - 1) is the reaction index of the Nth reaction
 with wavelength enhancement.
 IcFL, ICKWRK(I = IcFL) starts an array of reaction indices for those
 with pressure-dependent formulations;
 ICKWRK(I + N - 1) is the reaction index of the Nth pressure-
 dependent reaction.
 IcFO, ICKWRK(I = IcFO) starts an array of formulation types for
 pressure-dependent reactions;
 ICKWRK(I + N - 1) is the type of the Nth pressure-dependent
 reaction, 1 for 3-parameter Lindemann Form
 2 for 6- or 8-parameter SRI Form
 3 for 6-parameter Troe Form
 4 for 7-parameter Troe form
 IcFT, ICKWRK(I = IcFT) starts an array of option types for pressure-
 dependent reactions;
 ICKWRK(I + N - 1) is an option for the Nth pressure-dependent
 reaction, 0 for unimolecular fall-off,
 1 for chemically activated.
 IcKF, ICKWRK(I = IcKF) starts an array of third-body species flags
 for pressure-dependent reactions;
 ICKWRK(I + N - 1) is the third-body species flag for the Nth
 pressure-dependent reaction,
 0, the concentration of the third-body is the sum of the
 concentrations of all species in the problem
 K, the concentration of the third-body is the concentration
 of species K.
 IcTB, ICKWRK(I = IcTB) starts an array of reaction indices for those
 with enhanced third-bodies;
 ICKWRK(I + N - 1) is the reaction index of the Nth third-body
 reaction.
 IcKN, ICKWRK(I = IcKN) starts an array of enhanced species counts
 for 3rd-body reactions;
 ICKWRK(I + N - 1) is the total enhanced species count for the
 Nth third-body reaction.
 IcKT, ICKWRK(I = IcTB) starts a matrix of species indices for
 enhanced 3rd bodies in third-body reactions;
 ICKWRK(I + (N-1)*MXTB + L - 1) is the species index of the
 Lth enhanced species in the Nth third-body reaction.
 IcEI, ICKWRK(I = IcEI) starts an array of reaction indices for
 electron-impact reactions;
 ICKWRK(I + N - 1) is the reaction index of the Nth electron-
 impact reaction.
 IcET, ICKWRK(I = IcET) starts an array of temperature-dependence
 flags for electron-impact reactions;
 ICKWRK(I + N - 1) is a pointer to the temperature in an array
 which is used to compute the reaction's rate.
 IcJN, ICKWRK(I = IcJN) starts an array of reaction indices for
 Janev-Langer reactions;
 ICKWRK(I + N - 1) is the reaction index of the Nth Janev-
 Langer reaction.
 IcF1, ICKWRK(I = IcF1) starts an array of reaction indices for
 fit-type reactions;
 ICKWRK(I + N - 1) is the reaction index of the Nth fit-type
 reaction.
 IcEX, ICKWRK(I = IcEX) starts an array of reaction indices for
 excitation-only reactions;
 ICKWRK(I + N - 1) is the reaction index of the Nth excitation-
 only reaction.

157

 IcMO, ICKWRK(I = IcMO) starts an array of reaction indices for those
 with electron momentum-transfer;
 ICKWRK(I + N - 1) is the reaction index of the Nth electron
 momentum-transfer reaction.
 IcMK, ICKWRK(I = IcMK) starts an array of species indices for an
 electron's collision partner in the electron momentum-transfer
 reactions;
 ICKWRK(I + N - 1) is the species index of the collision
 partner in the Nth electron momentum-transfer reaction.
 IcXS, ICKWRK(I = IcXS) starts an array of reaction indices for those
 with ion momentum-transfer cross-section;
 ICKWRK(I + N - 1) is the reaction index of the Nth ion
 momentum-transfer cross-section reaction.
 IcXI, ICKWRK(I = IcXI) starts an array of species indices for the
 ion collision partner in ion momentum-transfer reactions;
 ICKWRK(I + N - 1) is the species index of the ion collision
 partner in the Nth ion momentum-transfer reaction.
 IcXK, ICKWRK(I = IcXK) starts an array of species indices for the
 non-ion collision partner in ion momentum-transfer reactions;
 ICKWRK(I + N - 1) is the species index of the non-ion
 collision partner for the Nth.
 IcTD, ICKWRK(I = IcTD) starts an array of reaction indices for those
 with non-thermal-equilibrium temperature-dependence;
 ICKWRK(I + N - 1) is the reaction index of the Nth non-
 thermal-equilibrium reaction.
 IcTK, ICKWRK(I = IcTK) starts an array of temperature-dependent
 species indices for the non-thermal-equilibrium reactions;
 ICKWRK(I + N - 1) is the index of the species which determines
 the temperature for the Nth non-thermal-equilibrium reaction.
 IcRNU,ICKWRK(I = IcRNU) starts an array of reaction indices for those
 with real stoichiometry;
 ICKWRK(I + N - 1) is the reaction index of the Nth reaction
 with real stoichiometry.
 IcORD,ICKWRK(I = IcORD) starts an array of reaction indices for those
 with changed-order species;
 ICKWRK(I + N - 1) is the reaction index of the Nth reaction
 with changes of order.
 IcKOR,ICKWRK(I = IcKOR) starts a matrix of species indices for the
 changed-order reactions;
 K = ICKWRK(I + (N-1)*MXORD + L - 1) is the species number of
 the Lth change-of-order for the Nth changed-order
 reaction;
 > 0, K participates in the reverse direction (product),
 < 0, K participates in the forward direction (reactant).
 IcKI, ICKWRK(I = IcKI) starts an array of species indices for those
 which are ions;
 ICKWRK(I + N - 1) is the species index for the Nth ion.
 IcKTF,ICKWRK(I = IcKTF) starts an array of temperature array pointers
 for the species;
 ICKWRK(I + K - 1) is the pointer to the temperature array
 for species K.
 IcK1, ICKWRK(I = IcK1) starts scratch storage space of length NKK.
 IcK2, ditto

 STARTING ADDRESSES FOR THE REAL WORK SPACE, RCKWRK.

 NcAW, RCKWRK(I = NcAW) starts an array of atomic weights (gm/mole);
 RCKWRK(I + M - 1) is the atomic weight of element M.
 NcWT, RCKWRK(I = NcWT) starts an array of molecule weights (gm/mole);
 RCKWRK(I + K - 1) is the molecular weight of species K.
 NcTT, RCKWRK(I = NcTT) starts an array of temperatures (Kelvin)
 used to fit thermodynamic properties for the species;
 RCKWRK(I + (K-1)*MXTP + N - 1) is the Nth temperature for
 species K.

158

 NcAA, RCKWRK(I = NcAA) starts a three-dimensional array of polynomial
 coefficients for thermodynamic properties of the species;
 RCKWRK(I + (L-1)*NCP2 + (K-1)*NCP2T + N - 1) is the Nth
 polynomial coefficient A(N,L,K) for species K, in the Lth
 temperature range.
 NcCO, RCKWRK(I = NcCO) starts a matrix of Arrhenius parameters for
 reactions;
 RCKWRK(I + (N-1)*(NPAR+1) + L -1) is the Lth parameter of
 reaction N, where
 L=1 is the pre-exponential factor (mole-cm-sec-K),
 L=2 is the temperature exponent,
 L=3 is the activation energy (Kelvins), and
 L=4 is used as a scalar for sensitivity analysis.
 NcRV, RCKWRK(I = NcRV) starts a matrix of reverse Arrhenius
 parameters for reactions which give them explicitly;
 RCKWRK(I + (N-1)*(NPAR+1) + L - 1) is the Lth reverse parameter
 for the Nth reaction with reverse parameters declared, where
 L=1 is the pre-exponential factor (mole-cm-sec-K),
 L=2 is the temperature exponent,
 L=3 is the activation energy (Kelvins),
 L=4 is used as a scalar for sensitivity analysis.
 The reaction index is ICKWRK(IcRV + N - 1).
 NcLT, RCKWRK(I = NcLT) starts a matrix of parameters for the Landau-
 Teller reactions;
 RCKWRK(I + (N-1)*NLAR + L - 1) is the Lth Landau-Teller
 parameter for the Nth Landau-Teller reaction, where
 L=1 is B(I) (Eq. 78) (Kelvins**1/3), and
 L=2 is C(I) (Eq. 78) (Kelvins**2/3).
 The reaction index is ICKWRK(IcLT + N - 1).
 NcRL, RCKWRK(I = NcRL) starts a matrix of explicitly-given reverse
 Landau-Teller parameters;
 RCKWRK(I + (N-1)*NLAR + L - 1) is the Lth reverse parameter
 for the Nth reaction with reverse Landau-Teller parameters,
 where
 L=1 is B(I) (Eq. 78) (Kelvins**1/3), and
 L=2 is C(I) (Eq. 78) (Kelvins**2/3).
 The reaction index is ICKWRK(IcRL + N - 1).
 NcFL, RCKWRK(I = NcFL) starts a matrix of parameters for the
 pressure-dependent reactions;
 RCKWRK(I + (N-1)*NFAR + L - 1) is the Lth parameter for the
 Nth pressure-dependent reaction, where the low pressure limits
 limits are defined by
 L=1 is the pre-exponential factor (mole-cm-sec-K),
 L=2 is the temperature exponent, and
 L=3 is the activation energy (Kelvins).
 Additional parameters define the centering, depending on
 the type of formulation -
 Troe: L=4 is the Eq. 73 parameter a,
 L=5 is the Eq. 73 parameter T*** (Kelvins),
 L=6 is the Eq. 73 parameter T* (Kelvins), and
 L=7 is the Eq. 73 parameter T** (Kelvins).
 SRI: L=4 is the Eq. 74 parameter a,
 L=5 is the Eq. 74 parameter b (Kelvins),
 L=6 is the Eq. 74 parameter c (kelvins),
 L=7 is the Eq. 74 parameter d, and
 L=8 is the Eq. 74 parameter e.
 The reaction index is ICKWRK(IcFL+N-1) and the type of
 formulation is ICKWRK(IcFO+N-1).
 NcKT, RCKWRK(I = NcKT) starts a matrix of enhancement factors for
 third-body reactions;
 RCKWRK(I + (N-1)*MXTB + L - 1) is an enhancement factor for
 the Lth enhanced species in the Nth third-body reaction;
 the reaction index is ICKWRK(IcTB+N-1), and the Lth
 enhanced species index is ICKWRK(IcKT+(N-1)*MXTB+L-1).

159

 NcWL, RCKWRK(I = NcWL) starts an array of wavelengths for wavelength-
 enhanced reactions;
 RCKWRK(I + N - 1) is the wavelength enhancement (angstrom)
 for the Nth wavelength-enhanced reaction;
 the reaction index is ICKWRK(IcWL+N-1).
 NcJN, RCKWRK(I = NcJN) starts a matrix of parameters for the Janev-
 Langer reactions;
 RCKWRK(I + (N-1)*NJAR + L - 1) is Lth parameter for the Nth
 Janev-Langer reaction, where
 L=1 is
 L=2 is
 The reaction index is ICKWRK(IcJN+N-1).
 NcF1, RCKWRK(I = NcF1) starts an array of parameters for fit#1
 reactions;
 RCKWRK(I + (N-1)*NF1R + L - 1) is the Lth parameter for the
 Nth fit-type reaction, where
 L=1 is
 L=2 is
 The reaction index is ICKWRK(IcF1+N-1).
 NcEX, RCKWRK(I = NcEX) starts an array of enervy losses for
 excitation-only reactions;
 RCKWRK(I + N - 1) is the excitation energy loss per event
 for the Nth excitation only reaction.
 The reaction index is ICKWRK(IcEX+N-1).
 NcRU, RCKWRK(I = NcRU) is the universal gas constant (ergs/mole-K).
 NcRC, RCKWRK(I = NcRC) is the universal gas constant (cal/mole-K).
 NcPA, RCKWRK(I = NcPA) is the pressure of one standard atmosphere
 (dynes/cm**2).
 NcKF, RCKWRK(I = NcKF) starts an array of the temperature-dependent
 forward rate components for reactions.
 NcKR, RCKWRK(I = NcKR) starts an array of the temperature-dependent
 reverse rate components for reactions.
 NcRNU,RCKWRK(I = NcRNU) starts a matrix of stoichiometric
 coefficients for reactions with real stoichiometry;
 RCKWRK(I + (N-1)*MXSP + L - 1) is the coefficient for
 the Lth species in the Nth real stoichiometry reaction.
 The reaction index is ICKWRK(IcRNU+N-1).
 The species index is ICKWRK(IcNUNK+(N-1)*MXSP+L-1).
 NcKOR,RKWRK(I = NcKOR) starts a matrix of order values for changed-
 order species reactions;
 RCKWRK(I + (N-1)*MXORD + L - 1) is the order for the Lth
 changed-order species in the Nth change-order reaction.
 The reaction index is ICKWRK(IcKOR+N-1).
 The change-order species index is
 ICKWRK(IcKOR+(N-1)*MXORD+L-1).
 NcK1, RCKWRK(I = NcK1) starts species scratch workspace.
 NcK2, RCKWRK(I = NcK2) starts species scratch workspace.
 NcK3, RCKWRK(I = NcK3) starts species scratch workspace.
 NcK4, RCKWRK(I = NcK4) starts species scratch workspace.
 NcI1, RCKWRK(I = NcI1) starts reaction scratch workspace.
 NcI2, RCKWRK(I = NcI2) starts reaction scratch workspace.
 NcI3, RCKWRK(I = NcI3) starts reaction scratch workspace.
 NcI4, RCKWRK(I = ncI4) starts reaction scratch workspace.
 STORING DATA INTO THE ARRAYS is usally accomplished by a
 CALL SKINIT, which reads a linkfile generated by the gas-phase
 mechanism interpreter;
 the linkfile consists of the following records:
 Linkfile information:
 1. FILVER
 2. PRVERS
 3. PREC
 4. KERR
 5. LENI, LENR, LENC
 Parameters and constants:

160

 6. MAXSP, MAXTB, MAXTP, NTHCF, NIPAR, NITAR,
 NIFAR, NJA, MXORD, NF1
 7. MM, KK, II, NREV, NFAL, NTHB, NLAN, NRLT, NWL,
 NCHRG, NEIM, NJAN, NFT1, NEXC, NMOM, NXSM,
 NTDE, NRNU, NORD, KEL, KKION
 8. CKMIN
 Element data:
 9. (CCKWRK(IcMM + M - 1), M = 1, MM) element names
 10. (RCKWRK(NcAW + M - 1), M = 1, MM) atomic weights
 Species data:
 11. (CCKWRK(IcKK + K - 1), K = 1, KK) species names
 12. (RCKWRK(NcWT + K - 1), K = 1, KK) molecular weights
 13. ((ICKWRK(IcNC + (K-1)*MM + M - 1), composition
 M = 1, MM), K = 1, KK)
 14. (ICKWRK(IcCH + K - 1), K = 1, KK) electronic charge
 15. (ICKWRK(IcNT + K - 1), K = 1, KK) #fit temperatures
 16. (ICKWRK(IcPH + K - 1), K = 1, KK) physical phase
 17. ((RCKWRK(NcTT + (K-1)*MAXTP + L - 1), fit temperatures
 L = 1, MAXTP), K = 1, KK)
 18. (((RCKWRK(NcAA + (L-1)*NCP2 + (K-1)*NCP2T + N - 1),
 N = 1, NCP2), L = 1, (MAXTP-1)), K = 1, KK) thermodynamics
 Ion data (if NKKI > 0):
 19. NKKI
 20. (ICKWRK(IcKI + K - 1), K = 1, NKKI) ion species indices
 Reaction data (if II > 0:
 21. (ICKWRK(IcNS + I - 1), I = 1, II) species counts
 22. (ICKWRK(IcNR + I - 1), I = 1, II) reactant counts
 23. ((ICKWRK(IcNU + (I-1)*MAXSP + N - 1), stoichiometric coeff'nts
 ICKWRK(IcNK + (I-1)*MAXSP + N - 1), species indices
 N = 1, MAXSP), I = 1, II)
 24. ((RCKWRK(NcCO + (I-1)*(NPAR+1) + N - 1),
 N = 1, NPAR), I = 1, II) Arrhenius coefficients
 Explicit reverse parameter reaction data (if NREV > 0):
 25. NREV
 26. (ICKWRK(IcRV + N - 1), N = 1, NREV) reaction indices
 27. ((RCKWRK(NcRV + (N-1)*(NPAR+1) + L - 1),
 L = 1, NPAR), N = 1, NREV) reverse coefficients
 Pressure-dependent reaction data (if NFAL > 0):
 28. NFAL, NFAR
 29. (ICKWRK(IcFL+N-1), reaction indices
 ICKWRK(IcFO+N-1), option type
 ICKWRK(IcFT+N-1), flow type
 ICKWRK(IcKF+N-1), N = 1, NFAL) 3rd-body species index
 30. ((RCKWRK(NcFL + (N-1)*NFAR + L - 1), option parameters
 L = 1, NFAR), N = 1, NFAL)
 Third-body reaction data (if NTHB > 0):
 31. NTHB
 32. (ICKWRK(IcTB + N - 1), reaction indices
 ICKWRK(IcKN + N - 1), N = 1, NTHB) 3rd body count
 33. ((ICKWRK(IcKT + (N-1)*MAXTB + L - 1), 3rd body species indices
 L = 1, MAXTB), N = 1, NTHB)
 34. ((RCKWRK(NcKT + (N-1)*MAXTB + L - 1), enhancement factors
 L = 1, MAXTB), N = 1, NTHB)
 Landau-Teller reaction data (if NLAN > 0):
 35. NLAN, NLAR
 36. (ICKWRK(IcLT + N - 1), N = 1, NLAN) reaction indices
 37. ((RCKWRK(NcLT + (N-1)*NLAR + L - 1), L-T parameters
 L = 1, NLAR), N = 1, NLAN)
 Landau-Teller reverse reaction data (if NRLT > 0):
 38. NRLT
 39. (ICKWRK(IcRL + N - 1), N = 1, NRL) reaction indices
 40. ((RCKWRK(NcRL + (N-1)*NLAR + L - 1), reverse L-T parameters
 L = 1, NLAR), N = 1, NRLT)
 Wavelength enhancement reaction data (if NWL > 0):

161

 41. NWL
 42. (ICKWRK(IcWL + N - 1), N = 1, NWL) reaction indices
 43. (RCKWRK(NcWL + N - 1), N = 1, NWL) enhancement factors
 Electron-impact reaction data (if NEIM > 0):
 44. NEIM
 45. (ICKWRK(IcEI + N - 1), N = 1, NEIM) reaction indices
 46. (ICKWRK(IcET + N - 1), N = 1, NEIM) electron energy
 Janev-Langer reaction data (if NJAN > 0):
 47. NJAN, NJAR
 48. (ICKWRK(IcJN + N - 1), N = 1, NJAN) reaction indices
 49. ((RCKWRK(NcJN + (N-1)*NJAR + L - 1), J-L parameters
 L = 1, NJAR), N = 1, NJAN)
 Fit #1 reaction data (if NFT1 > 0):
 50. NFT1, NF1R
 51. (ICKWRK(IcF1 + N - 1), N = 1, NFT1) reaction indices
 52. ((RCKWRK(NcF1 + (N-1)*NF1R + L - 1), fit#1 parameters
 N = 1, NF1R), N = 1, NFT1)
 Excitation-only reaction data (if NEXC > 0):
 53. NEXC
 54. (ICKWRK(IcEX + N - 1), N = 1, NEXC) reaction indices
 55. (RCKWRK(NcEX + N - 1), N = 1, NEXC)
 Electron momentum-transfer collision reaction data (if NMOM > 0):
 56. NMOM
 57. (ICKWRK(IcMO + N - 1), N = 1, NMOM) reaction indices
 58. (ICKWRK(IcMK + N - 1), N = 1, NMOM) partner species indices
 Ion momentum-transfer cross-section reaction data (if NXSM > 0):
 59. NXSM
 60. (ICKWRK(IcXS + N - 1), N = 1, NXSM) reaction indices
 61. (ICKWRK(IcXI + N - 1), N = 1, NXSM) ion species indices
 62. (ICKWRK(IcXK + N - 1), N = 1, NXSM) partner species indices
 Non-thermal-equilibium reaction data (if NTDE > 0):
 63. NTDE
 64. (ICKWRK(IcTD + N - 1), N = 1, NTDE) reaction indices
 65. (ICKWRK(IcTK + N - 1), N = 1, NTDE) species indices
 Real stoichiometry reaction data (if NRNU > 0):
 66. NRNU
 67. (ICKWRK(IcRNU + N - 1), N = 1, NRNU) reaction indices
 68. ((RCKWRK(NCRNU + (N-1)*MAXSP + L - 1), stoichiometric coeff'nts
 L = 1, MAXSP), N = 1, NRNU)
 Changed-order reaction data (if NORD > 0):
 69. NORD
 70. (ICKWRK(IcORD + N - 1), N = 1, NORD) reaction indices
 71. ((ICKWRK(IcKOR + (N-1)*MXORD + L - 1), change-order species
 L = 1, MXORD), N = 1, NORD)
 72. ((RCKWRK(NcKOR + (N-1)*MXORD + L - 1), change-order values
 L = 1, MXORD), N = 1, NORD)

162

INITIAL DISTRIBUTION
UNLIMITED RELEASE

0367 R. J. Buss, 1812
0601 J. Tsao, 1126
0601 M. E. Bartram, 1126
0601 W. G. Breiland, 1126
0601 M. E. Coltrin, 1126
0601 J. R. Creighton, 1126
0601 P. Ho, 1126
0601 H. K. Moffat, 1126
0601 G. H. Hays, 1128

Attn: G. A. Hebner, 1128
P. A. Miller, 1128
M. E. Riley, 1128

0826 W. Hermina, 9111
0826 D. K. Gartling, 9111
0826 S. N. Kempka, 9111
0826 P. R. Schunk, 9111
0827 R. T. McGrath, 9114
0827 T. J. Bartel, 9114
0827 J. E. Brockmann, 9114
0827 R. B. Campbell, 9114
0827 S. J. Choi, 9114
0827 A. S. Geller, 9114
0827 M. L. Hudson, 9114
0827 J. Johannes, 9114
0827 D. J. Rader, 9114
0827 A. J. Russo, 9114
0827 R. Veerasingam, 9114
0827 C. C. Wong, 9114
0834 A. C. Ratzel, 9112
0834 M. R. Baer, 9112
0834 J. R. Torczynski, 9112
0841 P. J. Hommert, 9100

Attn: R. D. Skocypec,9102
J. H. Biffle, 9103
Elaine D. Gorham, 9104
S. E. Gianoulakis, 9113
W. H. Rutledge, 9115
C. W. Peterson, 9116

1078 C. W. Gwyn, 1302
1078 J. D. McBrayer, 1302
1079 A. D. Romig, 1300

Attn: R. S. Blewer, 1305
G. V. Herrera, 1308
P. Esherick, 1311
L. M. Cecchi, 1326

1111 J. N. Shadid, 9221

163

1427 P. L. Mattern, 1100
Attn: S. T. Picraux, 1112

J. Nelson, 1113
T. A. Michalske, 1114
G. A. Samara, 1152
E. B. Stechel, 1153

9001 T. Hunter, 8000
Attn: J. B. Wright, 2200

A. West, 8200
R. C. Wayne, 8400
P. N. Smith, 8500
L. A. Hiles, 8800

9042 C. M. Hartwig, 8345
9042 G. H. Evans, 8345
9042 J. F. Grcar, 8345
9042 S. K. Griffiths, 8345
9042 W. G. Houf, 8345
9042 R. J. Kee, 8303 (10)
9042 R. S. Larson, 8345
9042 A. E. Lutz, 8345
9042 E. Meeks, 8345 (10)
9042 R. H. Nilson, 8345
9042 F. M. Rupley, 8345 (50)
9042 J. W. Shon, 8345
9042 P. A. Spence, 8345
9042 A. Ting, 8345
9052 D. R. Hardesty, 8361
9052 M. D. Allendorf, 8361
9052 L. L. Baxter, 8361
9053 S. R. Vosen, 8362
9053 D. W. Hahn, 8366
9054 W. J. McLean

Attn: C. W. Robinson, 8301
W. Bauer, 8302
R. W. Carling, 8362
R. J. Gallagher, 8366

9055 F. P. Tully, 8353
9055 J. L. Durant, 8353
9055 J. A. Miller, 8353
9057 L. A. Rahn, 8351
9057 J. H. Chen, 8351
9057 T. Echekki, 8351
9057 H. N. Najm, 8351
9057 P. H. Paul, 8351
9141 S. Subramanian, 8800
9161 W. G. Wolfer, 8717
9162 D. A. Buchenauer, 8716

164

9405 T. M. Dyer, 8700
Attn: M. W. Perra, 8711

M. I. Baskes, 8712
J. C. F. Wang, 8713
G. J. Thomas, 8715
K. L. Wilson, 8716
G. A. Benedetti, 8741
M. R. Birnbaum, 8742
P. E. Nielan, 8743
W. A. Kawahara, 8746
D. B. Nelson, 8783

9214 C. F. Melius, 8117
9409 R. H. Stulen, 8250
9021 Technical Communications Department, 8535, for OSTI (10)
9021 Technical Communications Department, 8535/Technical Library, MS8099, 13414
8099 Technical Library 13414 (4)
9018 Central Technical Files, 8523-2 (3)

