At \(t = 0 \) s, a constant volume, \((V = 1000 \text{ cm}^3)\), isothermal \((T = 5000 \text{ K})\) chamber contains 1.00 mole of pure \(O_2\). The reaction kinetics are dictated by the standard law of mass action with Arrhenius temperature dependency. The reactions and associated kinetic constants (with values taken from Maas and Pope’s paper) are as follows:

\[
2O + M \rightarrow O_2 + M \quad A_1 = 2.90 \times 10^{17} \frac{K}{s} \left(\frac{\text{cm}^3}{\text{mol}} \right)^2, \quad \beta_1 = -1.00, \quad E_1 = 0.00 \frac{\text{erg}}{\text{mol}}
\]

\[
O_2 + M \rightarrow 2O + M \quad A_2 = 6.78 \times 10^{18} \frac{K}{s} \left(\frac{\text{cm}^3}{\text{mol}} \right), \quad \beta_2 = -1.00, \quad E_2 = 496.4 \times 10^{10} \frac{\text{erg}}{\text{mol}}
\]

The universal gas constant is \(R = 8.31 \times 10^7 \frac{\text{erg}}{\text{mol} \cdot \text{K}}\). Take the caloric state equations to be

\[
\tilde{h}_O = \left(2.49 \times 10^{12} \frac{\text{erg}}{\text{mol}}\right) + \left(2.127 \times 10^8 \frac{\text{erg}}{\text{mol} \cdot \text{K}} \right) (T - 298 \text{ K})
\]

\[
\tilde{h}_{O_2} = \left(0 \frac{\text{erg}}{\text{mol}}\right) + \left(3.932 \times 10^8 \frac{\text{erg}}{\text{mol} \cdot \text{K}} \right) (T - 298 \text{ K})
\]

1. Write differential equations for the time evolution of each species’ concentration.

2. Use an algebraic technique to find the concentrations of \(O\) and \(O_2\) at equilibrium.

3. Find the time constants of relaxation near the equilibrium point.

4. Integrate the equations from \(t = 0\) to a time when the system is nearly at equilibrium.

5. Give computer generated plots of \(c_{O_2}(t), c_O(t), P(t)\).

6. How much heat was transferred from the environment to the chamber in this process?