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1. p. 17: Eq. (1.65) requires that 2.9× 107 be replaced by 2.9× 1017.

2. p. 22: Just before Eq. (1.103), replace ρO = 0.0004442414 by ρO =
0.000442294.

3. p. 22: In Eqs. (1.104, 1.105), replace 0.0004442414 by 0.000442294.

4. p. 24: In Eq. (1.112), a13 should include units of 1/s. So we should find

a13 = 1.85× 1011
(
mol

cm3

)
−1

1

s
(K)−0.5, . . . (1.112)

5. p. 35: In Eqs. (1.205), (1.206), the units for a2 should include 1/K1.01.

a2 =

(

9.7× 10−15

(
molecule

cm3

)
−1

1

K1.01 s

)(

6.02× 1023
molecule

mol

)

, (1.205)

= 5.8394× 109
(
mol

cm3

)
−1

1

K1.01 s
, (1.206)

6. p. 60: Problem 1.3 should have “....to identify the local time scales...”

7. p. 60: Problem 1.4 should have “...energy conservation of Eq. (1.336)...”

8. p. 83: Problem 2.2 should mention the two gases are inert, so the wording
should be “A volume with two chambers contains inert calorically perfect
ideal gases.”

9. p. 98: An addition can be considered to distinguish the so-called “adiabatic
gamma”, γa, from the γ of Eq. (3.147) which is the ratio of specific heats.
It could read as follows.

“Here we consider the so-called adiabatic gamma, γa. It is closely related
to the ratio of specific heats γ, but appeals to energy conservation. In this
discussion, we build on the analysis of Davis.1

1W. C. Davis, 1985, “Equation of state for detonation products,” Eighth International

Detonation Symposium, ed. J. Short, Naval Surface Weapons Center, White Oak, Silver

Spring, MD, pp. 785-795.
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Let us begin with the Gibbs equation T ds = de + P dv, and take it in
the isentropic limit for which ds = 0:

de+ P dv = 0.

For a general caloric equation of state, we can expect

e = e(P, v).

Thus

de =
∂e

∂P

∣
∣
∣
∣
v

dP +
∂e

∂v

∣
∣
∣
∣
P

dv.

Eliminate de to get

∂e

∂P

∣
∣
∣
∣
v

dP +
∂e

∂v

∣
∣
∣
∣
P

dv + P dv = 0,

dP +
∂e
∂v

∣
∣
P
+ P

∂e
∂P

∣
∣
v

dv = 0,

dP +
v
(

∂e
∂v

∣
∣
P
+ P

)

P ∂e
∂P

∣
∣
v

︸ ︷︷ ︸

≡γ

P

v
dv = 0.

We now define the adiabatic gamma, γ, as

γa(P, v) ≡
v
(

∂e
∂v

∣
∣
P
+ P

)

P ∂e
∂P

∣
∣
v

.

For a general material, γa is a thermodynamic variable that is a function
of two independent variables, e.g. γa = γa(P, v). It is easy to show for a
calorically perfect ideal gas that γa = cP /cv and is a constant. So for a
calorically perfect ideal gas γa = γ, the ratio of specific heats.

With this definition of γa, the first law of thermodynamics becomes

dP + γa
P

v
dv = 0.

We could also say

dP

P
= −γa(P, v)

dv

v
,

ln
P

Po

= −
∫

γa(P, v)
dv

v
.

This is as far as we can go for a general equation of state with γa =
γa(P, v). However, in the case that γa is a constant, which is the case
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for a CPIG, we get ln(P/Po) = −γa ln(v/vo) = ln(vo/v)
γa . This gives

Pvγa = Pov
γa

o , our polytropic relation for a calorically perfect ideal gas.

We can also say

γa(P, v) = − v

P

∂P

∂v

∣
∣
∣
∣
s

= − ∂ lnP

∂ ln v

∣
∣
∣
∣
s

Also, because v = 1/ρ, dv = −1/ρ2 dρ, we have

dP − γa
P

ρ
dρ = 0,

giving

∂P

∂ρ

∣
∣
∣
∣
s

= γa
P

ρ
= c2.

For non-ideal gases, recall the ratio of specific heats γ must be

γ =
cP
cv

=
∂v

∂P

∣
∣
∣
∣
T

∂P

∂v

∣
∣
∣
∣
s

.

In order for γa = γ, we must have −v/P = ∂v/∂P |T . This is the case for
ideal gases, but not for general non-ideal gases.

10. p. 116: Two terms in Eq. (3.317) should have units of kJ/kmol K. So we
should find

−2

(

5.9727× 105
kJ

kmol
− (6000 K)

(

216.926
kJ

kmol K

))

+

(

2.05848× 105
kJ

kmol
− (6000 K)

(

292.984
kJ

kmol K

))

=

(

8.314
kJ

kmol K

)

× (6000 K) ln

(
y2
N

yN2

P

Po

)

.

(3.317)

11. p. 129: just after Eq. (4.28), one should find χ3 = CO2.

12. p. 163: in the first line at the top of the page, the subscript “N” should
be italicized giving

“Thus, for the mixture of ideal gases, e(T, ρ1, . . . , ρN ) = eo.”

13. p. 178: Eq. (5.31) should have cP and read

dρ

dt
= M

J∑

j=1

rj

N∑

i=1

νij

(
hi

cPT
− 1

)

, (5.31)
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14. p. 181: Eq. (5.61) should have “.....+RT....”. It should read

gi = µi = h
o

i − T

(

soi −R ln

(
Pi

Po

))

= (h
o

i − Tsoi ) +RT ln

(
Pi

Po

)

. (5.61)

15. p. 182: Eq. (5.62) should have “.....+RT....” yielding the correct

µi = µo
i +RT ln

(
Pi

Po

)

. (5.62)

16. p. 190: In Eq. (5.158), on the left side of the equation, the last entry
should be nN . That is the N should be in italics as N . Thus we should
find







n1

n2

...
nN








=








n1o

n2o

...
nNo








+








D11

D21

...
DN 1








ξ1 +








D12

D22

...
DN 2








ξ2 + · · ·+








D1 N−L

D2 N−L

...
DN N−L








ξN−L.

(5.158)

17. p. 190: In Eq. (5.160), on the left side of the equation, the last entry
should be nN . That is, the N should be in italics as N , yielding








n1

n2

...
nN








=








n1o

n2o

...
nNo








+








D11 D12 . . . D1 N−L

D21 D22 . . . D2 N−L

...
...

...
...

DN1 DN2 . . . DN N−L















ξ1
ξ2
...

ξN−L








. (5.160)

18. p. 195: The last sentence on the page should read, “And once it reaches....”

19. p. 255: In Fig. 6.6, the labels “SACIM” and “ILDM” should be reversed,
yielding
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z
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z
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20. p. 260: Eq. (6.65) should be

z1 + z2 + 2z3 = 4/120 = 0.03333333 mol/g, (6.65)

for N conservation.

21. p. 260: Eq. (6.66) should be

z1 + z4 + 2z5 = 4/120 = 0.03333333 mol/g, (6.66)

for O conservation.

22. p. 277: Problem 6.2. Replace “Find the critical value of beta for which
the CIM is neither attracting or repelling” with “Study the behavior as
β is varied. Identify values of β that induce attraction and those that
induce repulsion. Describe the behavior of the transition from attraction
to repulsion.”

23. p. 304: Eqs. (8.51), (8.52) need a −σ. We should find

Z(t) = e−σt · Zo, (8.50)

S
−1 · (Y(t) −Yeq) = e−σt · S−1 · (Yo −Yeq), (8.51)

Y(t) = Yeq + S · e−σt · S−1 · (Yo −Yeq). (8.52)

24. p. 305: In Eq. (8.54) the entry in the lower left corner of the matrix A

should be −990000. This affects Eq. (8.56) as well. This correction renders
A to be consistent with Eq. (8.59). Thus we should have Eq. (8.54) as

A =

(
1000000 s−1 −99000000 s−1

−990000 s−1 99010000 s−1

)

, Yo =

(
10−2

10−1

)

, Yeq =

(
10−5

10−6

)

.

(8.54)

We should have Eq. (8.56) as

dY2

dt
= (990000 s−1)(Y1 − 10−5)− (99010000 s−1)(Y2 − 10−6), Y2(0) = 10−1. (8.56)

25. p. 307: In Eq. (8.74) the entry in the lower left corner of the matrix A
should be −990000. This affects Eq. (8.76) as well. Thus we should have
Eq. (8.74) as

A =

(
1000000 s−1 −99000000 s−1

−990000 s−1 99010000 s−1

)

, Yo =

(
10−2

10−1

)

, Yeq =

(
10−5

10−6

)

.

(8.74)

Eq. (8.76) should be

(

102
cm

s

) dY2

dx
=

(

101
cm2

s

)
d2Y2

dx2
+ (990000 s−1)(Y1 − 10−5)

−(99010000 s−1)(Y2 − 10−6), (8.76)
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26. p. 308: In Eqs. (8.83, 8.84), terms just to the right of ℓ1 and ℓ2 should be
enclosed by the absolute value symbol so as to render the result positive.
Thus we should find

The relevant length scales are

ℓ1 =

∣
∣
∣
∣
∣

1
(
5− 5

√
400001

)
cm−1

∣
∣
∣
∣
∣
= 3.2× 10−4 cm, (8.83)

ℓ2 =

∣
∣
∣
∣
∣

1
(
5− 5

√
41
)
cm−1

∣
∣
∣
∣
∣
= 3.7× 10−2 cm. (8.84)

27. p. 308: Just after Eq. (8.84), there is extra spacing in the sentence and
some improper kerning. It should read

“Especially for ℓ1, these are both well estimated by the simple formulæ of
Eq. (8.71):”

28. p. 310: In Eq. (8.99) the entry in the lower left corner of the matrix A
should be −990000. Thus we should find

A =

(
1000000 s−1 −99000000 s−1

−990000 s−1 99010000 s−1

)

. (8.99)

29. p. 312: Problem 8.3 should refer to Section 8.2.2.

30. p. 389: The last equation of Eq. (12.130) should have instead ρ1u1λ1.
Thus, we should find

U







ρ2 − ρ1
ρ2u2 − ρ1u1

ρ2
(
e2 +

1

2
u2
2

)
− ρ1

(
e1 +

1

2
u2
1

)

ρ2λ2 − ρ1λ1







=








ρ2u2 − ρ1u1

ρ2u
2
2 + P2 − ρ1u

2
1 − P1

ρ2u2

(

e2 +
1

2
u2
2 +

P2

ρ2

)

− ρ1u1

(

e1 +
1

2
u2
1 +

P1

ρ1

)

ρ2u2λ2 − ρ1u1λ1








. (12.130)

31. p. 400: There is a sign error Eq. (12.223) in the term involving q. This
propagates to Eqs. (12.236, 12.237). Thus, for Eq. (12.223), we should
find

(
v

vo

)

=

(

1 + D2

Povo

) (
1 + µ̂2

)

2 D2

Povo

±

√
(

1 + D2

Povo

)2

(1 + µ̂2)
2 − 4 D2

Povo

(

1 +
(

1 + D2

Povo

)

µ̂2 + 2µ̂2 λq
Povo

)

2 D2

Povo

. (12.223)
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For Eq. (12.236), we should find

(
v

vo

)

=

(

1 + D2

Povo

) (
1 + µ̂2

)

2 D2

Povo

±

√
(

1 + D2

Povo

)2

(1 + µ̂2)
2 − 4 D2

Povo

(

1 +
(

1 + D2

Povo

)

µ̂2 + 2µ̂2 q
Povo

)

2 D2

Povo

. (12.236)

For Eq. (12.237), we should find

(

1 +
D2

CJ

Povo

)2
(
1 + µ̂2

)2 − 4
D2

CJ

Povo

(

1 +

(

1 +
D2

CJ

Povo

)

µ̂2 + 2µ̂2
q

Povo

)

= 0. (12.237)

32. p. 402: In Eq. (12.238) one of the terms inside the parenthesis that is
inside the radical needs changed: 2µ̂2 should be 2µ̂2 q

P0v0
. We should find

D2

CJ

Povo
=

1 + 4µ̂2 q
Povo

− µ̂4 ± 2
√

2q
Povo

µ̂2(1 + 2µ̂2 q
P0v0

− µ̂4)

(µ̂2 − 1)2
. (12.238)

33. p. 407: Fig. 12.6. The lower right T (x̂) should be T (−x̂).

34. p. 435: It should be emphasized that our calculations are for P = 1 atm
and not Lehr’s P = 0.421 atm.

35. p. 448: Problem 12.6 as stated will yield non-physical results. To render
its results physical and retain coherence among earlier problems, take
D = 2700 m/s for Problems 12.4, 12.5, and 12.6.

36. p. 453: In the author index, one simply reads “Chen, 173” and should be
“Chen, J.-Y., 173”.

37. p. 453: Add “Date, A. W., 173” to the author index
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