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sider the total mixture as a single compressible fluid, with
the species-averaged density, momentum, and energyThe compressible Navier Stokes equations can be extended to

model multi-species, chemically reacting gas flows. The result is a evolving according to the corresponding conservation laws.
large system of convection-diffusion equations with stiff source In addition, the mass fraction of each species evolves ac-
terms. In this paper we develop the framework needed to apply cording to a separate continuity equation. These continuity
modern high accuracy numerical methods from computational gas

equations are strongly coupled through the chemical reac-dynamics to this extended system. We also present representative
tions, and they also couple strongly to the equations forcomputational results using one such method. The framework de-

veloped here is useful for many modern numerical schemes. We the mixture via the effect of reactions on temperature
first present an enthalpy based form of the equations that is well and pressure.
suited both for physical modeling and for numerical implementa- Since chemical reactions can cause large localized tem-
tion. We show how to treat the stiff reactions via time splitting, and

perature variations during combustion, it is important toin particular how to increase accuracy by avoidng the common
accurately include the temperature dependencies in thepractice of approximating the temperature. We derive simple, exact

formulas for the characteristics of the convective part of the equa- equations of state used for the gas species. The most tracta-
tions, which are essential for application of all characteristic-based ble model that includes a realistic temperature dependence
schemes. We also show that the common practice of using approxi- is that of a thermally perfect gas, for which the heat capaci-
mate analytical expressions for the characteristics can potentially

ties can be general functions of temperature. In practiceproduce spurious oscillations in computations.
these functions are based on experimental data and theyWe implement these developments with a particular high ac-

curacy characteristic-based method, the finite difference ENO differ significantly from the ideal gas law at the higher
space discretization with the 3rd order TVD Runge–Kutta time dis- temperatures encountered during combustion.
cretization, combined with the second order accurate Strang time By considering the mathematical and physical character
splitting of the reaction terms. We illustrate the capabilities of this

of the problem, we can pose some general requirements forapproach with calculations of a 1-D reacting shock tube and a 2-D
suitable numerical methods. The resulting model equationscombustor. Q 1997 Academic Press

form a large system of nonlinear conservation laws with
both first and second order derivative terms (from convec-

1. INTRODUCTION tive and diffusive transport) and zeroth order source terms
(from reactions). Because the diffusive terms are weak,

Chemically reacting, high speed gas flows arise in a vari- we expect that the spatial transport terms will result in
ety of combustion problems, such as the fueling of a scram- the development of steep fronts. Because the reactions
jet engine or the incineration of waste in a dump combus- proceed rapidly once they are triggered, we expect that
tor. The combination of energetic chemical reactions and the source terms will be stiff in time. Thus any numerical
compressible gas dynamics yields the unique phenomena approach must effectively handle stiff time integration and
of detonation and deflagration. The basic properties of steep spatial fronts.
these effects can be understood via the Chapman– Since the stiff source terms require specialized and costly
Jouget theory. time integration, it is most practical to use a time splitting

For theoretical modeling or numerical simulation of such to isolate their treatment from the rest of the problem. To
flows, the compressible Navier Stokes equations can be handle the steep spatial fronts, it is natural to apply modern
extended to include multiple gas species and the appro- shock-capturing numerical methods for the convective part
priate chemical reactions. The standard approach is to con- of the conservation laws. These methods typically require

complete analytic expressions for the characteristic data,
i.e., the eigenvalues and eigenvectors of the linearized con-1 Research supported in part by ARPA URI-ONR-N00014-92-J-1890,

NSF DMS 94-04942, and ARO DAAL03-91-G-0162. vective flux matrix.
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Based on these general considerations, we expect many approach. We implement this framework using thermody-
namic and chemistry data tables from CHEMKIN, andnumerical approaches will have a common need for a

proper time split formulation and analytic expressions for numerics consisting of second order Strang time splitting
with a stiff ODE integrator (LSODE) for the reactionthe characteristic data. Obtaining both these things would

seem routine, but in fact the complexity of the equations equations, 3rd order TVD Runge–Kutta time integration
for the convection-diffusion terms, central differencing formakes both potentially difficult and has led to the use

of a variety of simplifying procedures which may cause the diffusive terms, and 3rd order finite difference ENO
for the characteristic based discretization of the convectionunanticipated errors in the computations, as some of our

examples will illustrate. Our primary goal here is to show terms. We apply this to a one-dimensional Sod shock tube
in the presence of combustion reactions, and to a two-that, with the equations properly formulated, both the time

splitting and characteristic data can be obtained without dimensional model of a toxic waste combustor, and discuss
the results.simplifying assumptions in an unambiguous and practically

useful form. We also show that with these in hand, modern
characteristic based methods do an excellent job of captur- 2. MODEL EQUATIONS
ing the phenomena present in chemically reacting gas

2.1. Multiple Speciesflows.
We develop our framework as follows: first, we present The 2-D Euler equations can be modified to account for

an enthalpy based formulation of the governing equations, compressible flows with more than one species. The 2-D
i.e., the energy equation for the mixture is written in terms Euler equations for multi-species flow are
of the enthalpy. Various other equivalent forms are possi-
ble, such as using temperature or internal energy as the

Ut 1 [F(U)]x 1 [G(U)]y 5 0 (1)
explicit variable, but the enthalpy formulation is advanta-
geous for two reasons: it is convenient for physical model-
ing, and it results in a system for which the characteristics
can be determined analytically in a compact and relatively
simple form.

Then, we show how to apply time splitting to these
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equations in order to isolate the time evolution of the stiff
reaction terms. In the previous work there has been some
ambiguity regarding what terms should be held constant
in the reaction portion of this time split evolution. For
example, it has been a common practice to freeze the
temperature during this step, but this is not a true time
splitting of the model equations. Given the strong tempera-
ture dependence of the reaction rates, this is also a physi-
cally questionable practice. Others have considered adding
an additional ODE for the simultaneous evolution of tem-
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2 ,perature with the reaction ODEs, but this approach adds
unnecessary complication and also requires a decision
about which thermodynamic quantities are being held con-
stant during the step. In contrast, we show that a proper
time splitting of the stiff reaction terms unambiguously
requires that certain thermodynamic quantities (not tem-

E 5 2p 1
r(u2 1 v2)

2
1 rh, (3)perature) be held constant during the solution of the reac-

tion ODEs, and further we show that a simple scalar root
finding procedure, such as Newton’s method, is all that is

where E is the energy per unit volume, h is enthalpy perrequired to implement this proper time splitting.
unit mass, N is the number of species being considered,Next, we derive simple expressions for the characteristic
and Yi is the mass fraction of the ith species [16]. Notedata, i.e., Jacobian matrix of the convective fluxes, and the
that YN 5 1 2 oN21

i51 Yi .associated eigenvalues and eigenvectors. These are the
primary ingredients needed to apply a variety of modern

2.1.1. Energy and Enthalpy
high accuracy characteristic based methods developed for
gas dynamics. The total energy per unit volume is designated by E.

We can writeFinally, we illustrate the capabilities of this numerical
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hi(T) 5 h f
i 1 cpiT, (12)

E 5 re 1
r(u2 1 v2)

2
, (4)

where h f
i 5 hi(0) is the enthalpy per unit mass at 0K for

the ith species. This is also sometimes called the heat ofwhere e is the internal energy per unit mass. We write the
formation. The heat of formation for a gas is a constantenthalpy per unit mass as
and can be found in the JANAF Thermochemical Tables
[13]. We can rewrite Eq. (11) for a thermally perfect
species,h5e1

p
r

5ON
i51

Yiei 1
oN

i51 pi

r
5 ON

i51
Yi Sei 1

pi

rYi
D5ON

i51
Yihi ,

(5)
hi(T) 5 h f

i 1 ET

0
cpi(s) ds (13)

where ei , pi , and hi are the internal energy, partial pressure,
and the enthalpy per unit mass of the ith gas, respectively. using the heat of formation.
We can likewise define The final result from Eq. (5),

h 5 ON
i51

Yihi , (14)H 5
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(6)

as the total enthalpy of the mixture. Using Eq. (5) to defines the enthalpy for a mixture of gases. Each thermally
eliminate e in Eq. (4) we can write perfect species utilizes Eq. (13), while each calorically per-

fect species utilizes Eq. (12). The enthalpy formulation of
the energy equation results in a convenient form for physi-

E 5 2p 1
r(u2 1 v2)

2
1 rh (7) cal modeling, because the enthalpy is tabulated as a func-

tion of temperature for many gases. Also, this form allows
us to readily model a gas as thermally perfect in one tem-as our energy equation.
perature regime and calorically perfect in another. SuchIn a perfect gas, the internal energy, enthalpy, and spe-
flexibility can be used to investigate the effects of the ther-cific heats are functions of the temperature only. In this
mally and calorically perfect assumptions.case we can write

Two common examples are worth noting. If all the spe-
cies are thermally perfect,

hi 5 hi(T) ei 5 ei(T) (8)

cpi 5 cpi(T) cvi 5 cvi(T) (9)
h5ON

i51
Yih

f
i 1ET

0
ON
i51

Yicp,i(s)ds5ON
i51

Yih
f
i 1ET

0
cp(s)ds, (15)

for a perfect gas, where cpi is the specific heat at constant
pressure of the ith species, and cvi is the specific heat at where cp is the total specific heat at constant pressure of
constant volume of the ith species. Two other relationships the mixture. If all the species are calorically perfect,
which hold for a perfect gas,

h 5 ON
i51

Yi h
f
i 1 cpT. (16)dhi(T) 5 cpi(T) dT dei(T) 5 cvi(T) dT, (10)

will be very useful [1]. 2.1.2. Equation of State
We can integrate both sides of the first equation in (10)

For a mixture of perfect gases, each gas has partialto get
pressure,

hi(T) 5 hi(0) 1 ET

0
cpi(s) ds. (11) pi 5 rYiRiT, (17)

where the specific gas constant Ri for each species isWe can further classify perfect gases into two categories.
A thermally perfect gas is one in which the specific heats are
non-constant functions of temperature [1]. A calorically Ri 5

Ru

Wi
, (18)

perfect gas is one in which the specific heats are constant [1].
Thus, Eq. (11) can be simplified, in the case of a calorically
perfect species, where Ru 5 8314 J/(kmol K) is the universal gas constant,
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and Wi is the molecular weight of the ith species [13]. Next with cp and W defined in Eqs. (24) and (25), respectively
[16, 15]. Note that for a mixture of calorically perfect gases,we define R as
c 5 c(Yi) is a function of the mass fractions. For a mixture
of thermally perfect gases, c 5 c(Yi , T) is a function of

R 5 ON
i51

YiRi (19) both the mass fractions and the temperature.

2.2. Diffusive Transport and Chemical Reactions
and we can write the equation of state for multi-species

The 2-D Euler equations for multi-species flow can beflow
further modified to account for viscosity, heat conduction,
mass diffusion, and chemical reactions. The modified equa-
tions are the 2-D Navier Stokes equations for multi-speciesp 5 ON

i51
pi 5 ON

i51
rYiRiT 5 r SON

i51
YiRiD T 5 rRT (20)

flow with chemical reactions

which is valid for mixtures of calorically perfect and ther- Ut 1 [F(U)]x 1 [G(U)]y 5 [Fv(U)]x 1 [Gv(U)]y 1S (27)
mally perfect gases [1].

E52p1
r(u2 1v2)

2
1 rh, (28)

2.1.3. Specific Heats and Gamma

We define gamma where U, F(U), and G(U) are given by Eq. (2), and the
source term S is defined as

c 5
cp

cv
(21)

as the ratio of specific heats [2]. For a calorically perfect
gas, c is constant. It is not unreasonable to assume that
air at standard conditions is calorically perfect with c 5 S 51

0

0

0
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_
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2 , (29)
1.4. For a thermally perfect gas, c 5 c(T) is a function of
the temperature.

Another useful equation

cp 2 cv 5 R (22)

where ġi is the mass production rate of the ith species [16].
can be used with Eq. (21) to get Also Fv(U) and Gv(U) are given by

c 5
cp

cp 2 R
(23)

which is also valid for both calorically perfect and thermally
perfect gases [2]. Fv(U) 51

0
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2 ,
The specific heat and molecular weight of the mixture

are given by
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where the unexpected form of Eq. (25) is explained in [8]. Gv(U) 51
0
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Gamma for the mixture is given by

c 5
cp

cp 2 Ru/W
(26)
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t11 5 Sd e(2ux 2 vy), t12 5 e(uy 1 vx), Kutta methods [12, 9]. The viscosity, ei 5 ei(T), and ther-
mal conductivity, ki 5 ki(T), of each species depend on

t22 5 Sd e(2vy 2 ux) (31)
the temperature. The binary diffusion coefficients, Dji 5
Dji(T, p), are functions of the temperature and pressure.

Q1 5 kTx 1 r ON
i51

hiDi,m(Y1)x , All of these can be accurately evaluated with a chemical
kinetics package, such as CHEMKIN [10].

Consider Eq. 34. The first four equations of this systemQ2 5 kTy 1 r ON
i51

hiDi,m(Yi)y , (32)
imply that rt 5 (ru)t 5 (rv)t 5 Et 5 0. Thus, r, u, v, and
E are constants. Using the fact that r is constant along
with Eq. (29), we see that solving Eq. (34) reduces towhere e is the mixture viscosity, k is the mixture thermal
solving the following system of ordinary differential equa-conductivity, and Di,m is the mass diffusivity of species i
tions,into the mixture [1]. For the detailed forms of these terms,

see [8].

3. NUMERICAL METHODS

3.1. Numerical Approach

Consider the 2-D Navier Stokes equations for multi- 1
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2 , (35)
species flow with chemical reactions given by Eq. (27). We
solve these equations using a time splitting scheme. We
will use Strang Splitting [14], which is 2nd order accurate,
to incorporate the chemistry. We do not use splitting for
the fluid dynamic equations. The method consists of solving
two separate ordinary differential equations which have

where r is a constant. Note that we have replaced theright hand sides adding to the right hand side of Eq. (27),
independent variable p in Eq. (29) with r, as is explained
in [8]. We solve this system of stiff ODEs with a numericalUt 1 [F(U)]x 1 [G(U)]y 5 [Fv(U)]x 1 [Gv(U)]y (33)
package [10]. For the full details on numerical implementa-

Ut 5 S, (34) tion, see [7].
It is important to note that T is a function of the

where the first of these is the 2-D Navier Stokes equations mass fractions when solving Eq. (35). A proper procedure
for multi-species flow without chemical reactions, and the for evaluating this function for temperature is described
second is a purely reacting equation. In one step we allow in subsection 3.2. However, as long as we follow the
a non-reacting fluid to convect and diffuse. In the other procedure dictated by the time splitting, there is no
step we allow a motionless fluid to react. ambiguity about how to properly treat the temperature

The success of Strang splitting depends on the operators during the chemical reaction step. Contrary to common
being split apart and on the smoothness of the underlying practices, temperature should not be frozen during this
solution. As an extreme example, one cannot split apart step, nor is there a need to derive an ODE with which
the two spatial convection terms of the discretized 2-D to co-evolve the temperature. Instead, temperature is an
Euler equations, because the truncation error due to non- implicit function of the mass fractions, as well as the
commutativity of operators causes a ‘‘blow-up’’ of the solu- other conserved variables that are held constant during
tion. In our case the splitting works well, since the source this part of the splitting. All that is required is to properly
terms are not overly stiff. If we had a much more stiff evaluate the temperature as a function of these quantities,
source term, the time step for an accurate time splitting whenever a value is required. Since the functional rela-
would become overly restrictive. In that case, to use a tionship is implicit, this amounts to finding the root of
practical time step and prevent unresolved (in space and a scalar equation for the temperature.
time) reaction fronts from propagating at incorrect speeds,
we would need to use a temperature minimizing procedure
such as that described in [5, 6, 16, 11].

3.2. Solving for Temperature
Consider Eq. (33). We evaluate the hyperbolic terms,

[F(U)]x and [G(U)]y , with the ENO method [12]. The It is necessary to compute the temperature from the
conserved variables. We get an expression for the tempera-parabolic terms, [Fv(U)]x and [Gv(U)]y , are evaluated with

standard conservative central differencing. Once all terms ture by combining the energy equation with the equation
of state. Combining Eq. (28) with Eq. (20) yieldshave been computed, we update in time with TVD Runge–
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for a thermally perfect gas. Note that

df(T)
dT

512C2
dh(T)

dT
512C2cp(T)512

cp(T)
R

5
21

c21
,

(39)

where c is a function of temperature. Since c is always
greater than one, this shows that f(T) is a strictly decreas-
ing function of temperature.

We can solve Eq. (38) with the Newton–Raphson itera-
tion [3] applied to the temperature. The iteration is of
the form

Tn11 5 Tn 2 f(Tn) F Tn 2 Tn21

f (Tn) 2 f(Tn21)
G , (40)

where the temperature from the last time step is used for
T0 and we set T21 5 T0 1 1. Since the Newton–Raphson
iteration is not guaranteed to converge, it is better to use
it for only a few iterations. We use it for 5 iterations, then
switch to bisection [3] if we are not within an acceptable
error tolerance. In practice, Newton–Raphson has always
converged in at most 5 iterations.

In order to do the above iteration for the temperature,
we need to be able to calculate the enthalpy h(T). To
obtain a convenient form, integrate Eq. (10) starting from

FIG. 1. Initial data for the two independent wave equations, resulting T 5 298K to getin simple translation to the left and to the right.

T 5
2E 1 r(u2 1 v2)/2 1 rh(T)

r(oN
i51 YiRi) (36)

5 C1 1 C2h(T),

where C1 and C2 are constants if the conserved variables
are fixed. Note that h(T) is defined in Eq. (14).

If we have a calorically perfect gas, then Eq. (36) can
be written in the form,

T 5
C3

1 2 C4cp
, (37)

where C3 and C4 are constants if the conserved variables
are fixed. In this case we have an explicit equation for
the temperature.

However, if we have a thermally perfect gas, Eq. (36)
is implicit for the temperature. We rewrite Eq. (36) as

FIG. 2. Initial data for the separating box problem, as seen in one
of the mixed fields. The evolution will split this initial box into two
separate boxes traveling in opposite directions.f(T) 5 T 2 C1 2 C2h(T) 5 0 (38)
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hi(T) 5 h298
i 1 ET

298
cpi(s) ds, (41)

where h298
i is the enthalpy per unit mass at 298K for species

i. This is also sometimes called the heat of formation at
298K, which is a standard constant that can be found in
the JANAF Thermochemical Tables [13]. If we assume
that we have a calorically perfect gas, then we could use
298K to evaluate our constant value for cpi , defining this
notationally as c298

pi . Then Eq. (41) becomes

hi(T) 5 h298
i 1 c298

pi (T 2 298) (42)

for a calorically perfect gas with reference temperature of
298K.

To speed up the actual implementation, we construct a
table of hi(T) for each species including every integer
temperature between 298K and 4800K. We approximate
the integral to desired accuracy, using CHEMKIN to give
us the values of cpi(T) when needed. This is done once at
the beginning of the code. During computation, if we need
hi(T) for a non-integral value of the temperature, we inter-

FIG. 3. Numerical solutions for the separating box problem, showing
polate linearly. the oscillations that result from using an approximate eigensystem, deviat-

Simple modification of this table for hi(T) enables calcu- ing from the true eigensystem by the amounts shown. The results for the
box to the right are shown, while the box to the left has a symmetric result.lations of calorically perfect mixtures. One could also have

certain gases be thermally perfect with others calorically
perfect. Further, a single gas could be thermally perfect in
one temperature range and calorically perfect in another
temperature range.

a positive eigenvalue field which has been incorrectly
mixed with a negative eigenvalue field. One-sided upwind
differencing on this mixed field will result in one-sided4. EIGENVALUES AND EIGENVECTORS
downwind differencing on the field which is incorrectly
represented by the eigenvalue. This will result in fieldsMany modern numerical methods for compressible gas
that have their convection discretized as a linear combina-flows require complete characteristic data—i.e., the eigen-
tion of upwind and downwind differencing. Even thoughsystem of the linearized convective flux matrix—as an es-
the downwind portion may be ‘‘small,’’ it can still contrib-sential part of the numerical discretization. For practical
ute a significant oscillatory error near discontinuitiescalculations, analytical expressions are required for the
(shocks or contacts).eigensystem, rather than general but costly iterative nu-

merical procedures.
However, for equations describing the flow of many

4.1. Example: Separating Box Probleminteracting species, the convection terms for momentum
and energy can be far from simple, due to the complicated Consider the following two one-way wave equations and
equation of state. Finding the Jacobian matrix of the con- their respective solutions,
vective flux with respect to the conserved variables can
be a tedious calculation, and solving analytically for the ut 1 ux 5 0, u(x, t) 5 u0(x 2 t) (43)
corresponding eigensystem may seem impossible. Thus, it

vt 2 vx 5 0, v(x, t) 5 v0(x 1 t), (44)is tempting to try and simplify these calculations by drop-
ping small terms or treating non-constant terms as approxi-
mately constant. But this practice can lead to unexpected where the initial data u0 and v0 are given in Fig. 1. The

solutions to these equations move left and right as shownnumerical difficulties.
The nature of these difficulties can be understood as by the arrows in Fig. 1. Now consider changing the variables

by letting w 5 v 1 u and z 5 v 2 u. This yields a systemfollows. If the eigensystem is slightly perturbed, the
corresponding characteristic fields are mixed. Consider of differential equations
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FIG. 4. Thermally Perfect Solution (1900 steps). The reaction wave and the shock are traveling from left to right. The shock is still in the lead,
but losing ground.

Consider the following Jacobian matrix and associatedSw

z
D

t
1 Sz

w
D

x
5 0 (45) eigensystem

J 5 S 0 (1 2 «)2

(1 1 «)2 0
D (48)with initial data w0 5 v0 1 u0 and z0 5 v0 2 u0 . Also note

that the solution of this system is
l1 5 21 1 «2, l2 5 1 2 «2 (49)

w(x, t) 5 v0(x 2 t) 1 u0(x 1 t) (46)
L1 5 S1 1 «

2
,
21 1 «

2 D , L2 5 S1 1 «

2
,
1 2 «

2 D (50)
z(x, t) 5 v0(x 2 t) 2 u0(x 1 t) (47)

which is obvious from the change of variables. Figure 2
shows the initial data for w which consists of two open

R1 5 1
1

1 1 «

21
1 2 «

2 , R2 5 1
1

1 1 «

1
1 2 «

2 . (51)unit boxes defined on (21, 0) < (0, 1). As time evolves
the boxes travel in opposite directions, as depicted by the
arrows in Fig. 2.
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FIG. 5. Thermally Perfect Solution (2300 steps). The reaction wave has overtaken the shock, with the result splitting into three distinct waves.
From left to right: a rarefaction wave, a contact discontinuity, and a detonation wave.

If we set « 5 0, then this is the Jacobian and eigensystem One can see that ENO and TVD Runge–Kutta admit
significant oscillations even on small perturbations of thefor the convection term in Eq. (45). Otherwise, a nonzero

« gives a perturbation of the Jacobian matrix. This yields Jacobian matrix. It is therefore not advisable to alter a
Jacobian matrix in order to simplify the computation ofa different eigensystem, and is designed so as to mimic

ignoring small terms when computing complicated Ja- an eigensystem.
cobians.

We will now solve Eq. (45) numerically with 3rd order
4.2. 2-D Euler with Multiple Species

ENO on the convection terms, and 3rd order TVD Runge–
Kutta in time. We set « 5 0, which yields the true eigensys- Consider the convective part of the conservation equa-

tions (1), (2), and (3). This is a system of N 1 3 equations,tem. Figure 3 shows the results for the box moving to the
right. Results for the box moving to the left are symmetric. so there will be N 1 3 eigenvalues with associated eigenvec-

tors. For the eigenvalues and eigenvectors of the JacobianWe also solve with «2 5 0.01, «2 5 0.05, and «2 5 0.1. These
give a 1%, 5%, and a 10% perturbation of the eigenvalues, matrix of F(U) in Eq. (2), set A 5 1 and B 5 0 below. For

the eigenvalues and eigenvectors of the Jacobian matrix ofrespectively. Again Fig. 3 shows the results for the box on
the right. The box on the left has symmetric results. G(U) in Eq. (2), set A 5 0 and B 5 1 below.
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FIG. 6. Calorically Perfect Solution (1900 steps). The calorically perfect assumptions drive the reaction and cause the reaction wave to prematurely
overtake the shock.

Based on Eq. (14) and (13), we can calculate the follow- d(rh)
d(rYi)

5 hi 2 hN 1 rcp
dT

d(rYi)
, (56)ing derivatives of rh with respect to the conserved vari-

ables,

where Eq. (56) holds for i 5 1 to N 2 1.
These derivatives of rh are valid for both a mixture ofd(rh)

dr
5 hN 1 rcp

dT
dr

(52) thermally perfect gases and a mixture of calorically perfect
gases. Further, they are valid for any mixture of gases in
which cp, i is defined as a function of temperature for eachd(rh)

d(ru)
5 rcp

dT
d(ru)

(53)
species. One could construct a table of cp, i’s which obeys
any combination of thermally perfect and calorically per-d(rh)

d(rv)
5 rcp

dT
d(rv)

(54) fect assumptions. We use CHEMKIN [10] to compute real-
istic values for cp, i . For some lower temperatures where
CHEMKIN does not have data, we extrapolate using ad(rh)

dE
5 rcp

dT
dE

(55)
calorically perfect assumption.
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FIG. 7. Calorically Perfect Solution (2300 steps). The calorically perfect assumptions drive the reaction and force a non-physical accelerated
evolution of the solution.

From Eq. (3) we can write
dp
dE

5 21 1 rcp
dT
dE

(61)

p 5 2E 1
r(u2 1 v2)

2
1 rh (57)

dp
d(rYi)

5 hi 2 hN 1 rcp
dT

d(rYi)
, (62)

and take derivatives with respect to the conserved variables
to obtain where Eq. (62) holds for i 5 1 to N 2 1. Note that we have

used Eqs. (52)–(56). Now take derivatives with respect to
the conserved variables of Eq. (20) to obtaindp

dr
5

2(u2 1 v2)
2

1 hN 1 rcp
dT
dr

(58)

dp
d(ru)

5 u 1 rcp
dT

d(ru)
(59)

dp
dr

5 RNT 1 rR
dT
dr

(63)

dp
d(ru)

5 rR
dT

d(ru)
(64)

dp
d(rv)

5 v 1 rcp
dT

d(rv)
(60)
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FIG. 8. Velocity field in the combustor problem at times 1000 and 3000 microseconds. The jet of H2 gas (red) is continuously injected into the
O2 gas (blue) in the chamber, resulting in vortex shedding.

FIG. 9. Velocity field in the combustor problem at times 6000 and 9000 microseconds. The primary vortices develop, entrain H2 and O2 , and
enhance mixing.

dp
d(ru)

5 (c 2 1)(2u) (69)dp
d(rv)

5 rR
dT

d(rv)
(65)

dp
dE

5 rR
dT
dE

(66) dp
d(rv)

5 (c 2 1)(2v) (70)

dp
d(rYi)

5 (Ri 2 RN)T 1 rR
dT

d(rYi)
(67)

dp
dE

5 (c 2 1) (71)
which we can use to eliminate the derivatives of T in Eqs.
(58)–(62). We can than solve for the derivatives of p to
obtain dp

d(rYi)
5 (c 2 1) S2hi 1 hN 1

cp(Ri 2 RN)T
R D (72)

dp
dr

5 (c 2 1) Su2 1 v2

2
2 hN 1

cpRNT
R D (68)

which we will need below.
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FIG. 10. Velocity field in the combustor problem at times 9300 and 9900 microseconds. The mixture ignites in two primary vortices and a
combustion front, indicated by the presence of OH (yellow), spreads outward, leaving behind the combustion product H2O (green).

FIG. 11. Velocity field in the combustor problem at times 10800 and 12000 microseconds. There is widespread burning, with much of the O2

consumed in the process.

The Jacobian matrix can be written as where I is the N 1 3 by N 1 3 identity matrix, and

ûI 1 JF 1 JB (73)

with

JF 5 Sdp
dr

Jf
dp

d(ru)
Jf

dp
d(rv)

Jf
dp
dE

Jf

Jf 51
0

A

B

û

0

_

0

2 , Jb 51
2û

A

B

0

0

_

0

2 . (76)

dp
d(rY1)

Jf ? ? ?
dp

d(rYN21)
JfD (74)

JB 5 (1Jb uJb vJb HJb Y1Jb ? ? ? YN21Jb)T, (75)
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The eigenvalues of this Jacobian matrix are and reflecting off. After a delay a reaction wave kicks in
at the boundary. This reaction wave picks up steam and

l1 5 û 2 c (77) merges with the shock causing a split into 3 waves. From
wall to outflow (left to right) these waves are a rarefaction,l2 5 ? ? ? 5 lN12 5 û (78)
a contact discontinuity, and a detonation wave.

lN13 5 û 1 c. (79) We apply the 1-D Euler equations for multi-species flow
with chemical reactions. Assume that we have a 2/1/7 molarThe left eigenvectors, Lp, are the rows of the matrix

1
b2

2
1

û
2c

1
b3

2
2

b1u
2

2
A
2c

2
b1v
2

2
B
2c

b1

2
2b1z1

2
)

2b1zN21

2

1 2 b2 2 b3 b1u b1v 2b1 b1z1 ) b1zN21

v̂ B 2A 0 0 ) 0

2Y1 0 0 0

_ _ _ _ I

2YN21 0 0 0

b2

2
2

û
2c

1
b3

2
2

b1u
2

1
A
2c

2
b1v
2

1
B
2c

b1

2
2b1z1

2
)

2b1zN21

2

2 . (80)

The right eigenvectors, Rp, are the columns of the matrix ratio of H2/O2/Ar. All gases involved are assumed to be
thermally perfect. We use a full chemical mechanism, see
[8] for details.

We use the initial data

r 5 .072
kg
m3 , u 5 0

m
s

(86)1
1 1 0 0 ) 0 1

u 2 Ac u B 0 ) 0 u 1 Ac

v 2 Bc v 2A 0 ) 0 v 1 Bc

H 2 ûc H 2
1
b1

2v̂ z1 ) zN21 H 1 ûc

Y1 Y1 0 Y1

_ _ _ I _

YN21 YN21 0 YN21

2 .

p 5 7173
J

m3 (87)

on the left side of the shock. Then we use a numerical
(81) algorithm [7] to calculate conditions on the right side which

are consistent with the Rankine–Hugoniot equations forHere I is the N 2 1 by N 2 1 identity matrix, and
a shock. This yields initial data of

q2 5 u2 1 v2, û 5 Au 1 Bv, v̂ 5 Av 2 Bu (82)

r 5 .18075
kg
m3 , u 5 2487.34

m
s

(88)c 5 !cp
r

(83)

p 5 35594
J

m3 (89)b1 5
c 2 1

c2 , b2 5 1 1 b1q2 2 b1H (84)

on the right side of the shock. We use a 12-cm domain forb3 5 b1 ON21

i51
Yizi , zi 5

21
c 2 1 S dp

d(rYi)
D . (85)

a time of 230 es, 400 uniform grid cells, and 2300 equal
time steps. A reflective boundary condition at the wall is

5. NUMERICAL EXAMPLES implemented by adding ghost cells.
We will examine the solution after a total of 1900 time

5.1. 1-D Chemically Reacting ‘‘SOD’’ Shock Tube
steps, and after 2300 time steps. The results are shown in
Figs. 4 and 5. Next, we run the code under the caloricallyWe consider a one-dimensional test problem with chemi-

cal reactions. We have a shock hitting a solid wall boundary perfect assumptions. We use a reference temperature of
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298 K. The results are shown in Figs. 6 and 7. The calorically We have shown how to properly time split these equa-
tions in order to efficiently integrate the stiff reaction termsperfect assumptions drive the reaction, and cause a major

difference in evolution of the solution. while avoiding inaccurate or unnecessary common prac-
tices such as freezing the temperature, or introducing a
temperature ODE.

We have derived new, simple expressions for the charac-5.2. 2-D Combustor Simulation
teristics of the convective portion of the equations, which

Consider the 2-D Navier Stokes equations for multi- allow the application of many modern characteristic-based
species flow with chemical reactions. All gases involved numerical methods.
are assumed to be thermally perfect. See [8] for details on We have used these equations, time splitting, and charac-
the chemical mechanism. teristics together with the finite difference ENO discretiza-

We have a 4 cm by 3 cm domain, with 64 by 48 cells. tion to perform high accuracy calculations of representa-
The time step taken was 10 es. The initial data were a tive 1-D and 2-D problems.
motionless mixture with (T, p) 5 (700K, 36100Pa). The The framework and numerical results presented here
mixture consists of a 2/7 molar ratio of O2/Ar gas. There show that the modern high accuracy numerical methods
is an inflow of size 0.4375 cm at the bottom and an outflow developed for gas dynamics can be usefully extended to

the much more complicated problem of chemically reactingof equal size at the top. At the inflow, we inject a 4/7 molar
gas flows, and that these methods can effectively captureratio of H2/Ar, at 10 m/sec with (T, p) 5 (1166K,
the complex combustion phenomena present in these121000Pa).
flows.The results for the velocity field are shown in Figs. 8–11.

The vectors are color coded to better illustrate the solution.
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