
SCIENTIFIC COMPUTING
Applications of Mathematics and Computing to the Physical Sciences

edited by

R. S. STEPLEMAN
Exxon Research and Engineering Company
Linden, New Jersey, U. S.A.

in collaboration with

M.Carver
R. Peskin
W.F.Ames
R. Vich nevetsky

N·H
(r)~,C

[I
1983

) l'

~(
,.

.~ L

(.,(~

\~
NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM· NEW YORK· OXFORD

S~I"'l1l1fJ ~ Computin~
J{, SI"pkIllJn 01 al. (eds.)
,;l I\I.\CS/!'<orth-Holland I'ublishulg Company. 1983 55

O£EPACK, A SYSTEMATIZED CCJ..LECTI(III CF OlE SCLVERS*

Alan C. Hindmarsh

Lawrence Livermore National Laboratory
Livermore, CA 94550, USA

The growing number of good general purpose solvers for initial value problems for
ordinary differential equation (ODE) systems has fueled discussions on the idea of a
systematized collection of such solvers, ODEPACK. Within recent years, a tentative
user interface standard was developed, and an initial collection of five solvers was
written. These solvers handle stiff and nonstiff problems in standard (explicit)
form, problems in linearly implicit form, full Jacobians, banded Jacobians, qeneral
sparse Jacobians, and problems with root finding (g-stop) requirements. Two of the
solvers have automatic (stiff/nonstiff) method selection. These solvers are
described briefly here, and their capabilities are illustrated with an example
problem arising from a model of atmospheric kinetics-transport in two dimensions.

1. INTRODUCTION

Initial value problems for ODE systems have
prompted a great deal of effort in numerical
methods and software development. stiff ODE
systems are now recognized as being particularly
common, and are of course much more challenging
numerically. Here stiffness can be roughly
oefined as the presence of one or more fast
decay processes in time, with a time constant
that is short compared to the time span of
interest. Good general purpose solvers have
been available for up to 20 years, and the
number of such solvers has grown quite sizable.
Among the more popular of these are the GEAR and
EPISODE packages and their variants [1],
developed at LLNL, which use various forms of
eDF (backward differentation formula) methods in
the stiff case, and implicit Adams methods in
the nonstiff case.

Faced with the large number and variety of
ODE solvers, both the users and the suppliers of
this software have expressed a desire for
standardization. In other areas, analogous
pressures have resulted in "systematized
collections" of software (EISPACK, LIt-PACK,
etc.) which meet high standards of quality and
uniformity. Efforts to produce a similar
collection of ODE initial value solvers have had
some success. A tentative user interface
standard was developed, and an initial
collection, called ODEPACK, was then generated.
The starting point of this collection is a
package called LSODE, which is the result of
r ewriting the GEAR [2] and GEARB [3] solvers in
conformity with the standard interface. Several
lariants of LSODE were then written to solve
other problem clases.

*This work was performed under the auspices of
the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract No.
N-7405-Eng-48, and supported in large part by
the DOE Office of Basic Energy Sciences,
:~athematical Sciences Branch.

In the next section, the methods used in the
ODEPACK collection are summarized briefly.
Following that is a short description of each of
the five solvers in the existing collection, as
it is now available. Finally, a two-dimensional
atmospheric modelling problem is used to
illustrate the solvers.

2. SUMMARY OF METHODS

Among the various numerical methods used for
solving ODE initial value problems, a few are
much more commonly used than others. The Adams
multistep methods (explicit and implicit) are
suitable for nonstiff systems, especially the
implicit Adams methods. Explicit Runge-Kutta
methods are also popular, but are also suitable
only for nonstiff problems. Implicit
Runge-Kutta methods of various types are being
widely studied for use on stiff systems. But
for larqe stiff problems, the most popular
methods used are based on the so-called backward
differentiation formulas (BDF's), which are
multistep methods first implemented by C. w.
Gear.

In 1968, Gear wrote a subroutine called
DIFSUB [4] for initial value ODE problems, that
included the BDF methods for stiff systems and
implicit Adams methods for nonstiff systems.
This program was reorganized, rewritten, and
improved upon at LLNl, resulting in the GEAR
package [2]. However, when solving a stiff
system of size N, of the general form

y = dy/dt = f(t,y),

this package makes use of the Jacobian matrix of
partial derivatives,

J = af/ay,

in full NxN form. Thus the GEAR package is
userur-only for nonstiff and fairly small stiff
problems. Because of this, variants of GEAR
were developed later to handle large stiff

56 A, C. HilllJmarsll

problems having some sparse structure in the
Jacobian. Among these were GEARB [3], for the
case of a banded Jj GEARS [5], for a general
sparse matrix Jj and GEARBI [6], for a regularly
blocked J, with block-iterative (block-SOR)
treatment of the associated linear systems.
Another variant, GEARIB [7], was written for
linearly implicit problems, i.e. problems of the
form Ay = g(t,y), in which the matrix A and
dg/dY are banded.

As a frame of reference for later
descriptions of algorithms and software, we give
here a brief summary of the methods used in the
GEAR package (and most of its variants and
descendants), and also LSOOE and its variants.
Consider the system y = f(t,y), where y is a
vector of length N, and consider a discrete time
mesh to, t I, ••• , tn, •••• (Of course,
the independent variable need not be time, but
often it is, and we will think of t as a time or
time-like variable here.) For the moment, we
consider the step size h = tn - tn-I to be
fixed. Discrete approximations Yn to y(tn)
are to be constructed, with Yo given, and Yn
will always denote f(tn'Yn)'

For nonstiff problems, we use the implicit
Adams (or Adams-Moulton) formulas

q-l

Yn Yn-l + h 2:>i Yn-i

1=0

Here q (1 ~ q ~ 12) is the order of
accuracy, and the coefficients ar depend
only on q. The formula is implicit in that
60 > O. Solution of this implicit
equation is done by functional iteration,

Yn(m+l) = Yn-l + h 60 f(tn,Yn(m»

q-l

+ h I Bi Yn-i ,

1=1

where an initial guess (or prediction) Yn(o)
is obtained from an analogous explicit formula.
This iteration is terminated by a convergence
test. Both the step size h and order q are
actually varied during the integration process,
by use of estimates of the local errors
committed, in relation to a user-supplied
tolerance. Changes in h are achieved by
interpolation of the multistep data. Note that
no NxN matrices are involved in this case.

For stiff problems, we use the BDF

q

Yn I Cti yn-i + h 60 Yn

i=1

where again q is the order (here 1 < q < 5),
and Sa > O. Stiffness makes functional­
iteration fail to converge for the step sizes of
interest, because of strong dependencies in f
upon y. Therefore, we use a modified Newton
iteration,

- P [Yn(m+l) - Yn(m)]

= Yn(m) - an - h 60 f(tn,Yn(m» ,

where P is an NxN matrix approximating the
Jacobian of the algebraic system to be solved:

P"I- h 60J, J = af/ay •

(Here I denotes the NxN identity matrix.) Again
a prediction Yn(o) is formed from an analogous
explicit formula. This iteration differs from a
true Newton method in that J is only evaluated
periodically. In fact, J is evaluated only at
predicted values Yn(o), and only on those
steps where a new value appears necessary, on
the basis of a convergence failure or other
indication. The same value of P (or its LU
decomposition, if used) is used over all
iterations in anyone step, and typically also
over several time steps, until a reevaluation of
J and P is called for. (In the case of the
LSODES solver, P is sometimes updated and
LU-decomposed without a reevaluation of J.)
Again, hand q are both varied to meet local
error tolerance requirements.

In applying the BDF method to large stiff
problems, it is important to note that a
numerical solution of the linear system

Px = r

(x = correction vector, r = residual vector)

can very often easily take advantage of a sparse
structure in P. This is accomplished either
through suitable structured LU decompositions,
or through iterative linear system methods that
use a given matrix structure. The use of
structure is especially important in solving DOE
systems that come from time-dependent partial
differential equation (POE) systems by the
method of lines, whereby spatial variables are
discretized, leaving ODE's in time.

Problems in the linearly implicit form
A(t,y) Y = g(t,y) arise frequently. Probably
the most common sources are discretizations (by
the method of lines procedure) of time-dependent
POE systems in which collocation, Galerkin,
finite element, or other weighted residual
methods are applied to the spatial variables.
In these problems, A is a square matrix, usually
nonsingular. We allow A = A(t,y), but often A
is constant. When A is nonsingular, this is an
OOE system, but otherwise it is a
differential-algebraic system. A numerical
method for such an implicit system can be gotten
from either of the multistep formulas given
above, by multiplying both sides by
A(tn,Yn), replacing A(tn,Yn)Yn by
g(tn'Yn)' and solving the resulting implicit

re
tn.

thl

to
cor
it!
Ho'
re!

vaJ
rer
SpE

The
COI
thE
We

In
ex~

New
prE
reI

P

whe
dr I
mat
the

at
cer
par'
for
thi:
of
per'
thel

sell
bas:
asyr
mooi
loc~
fran
fin(
of ~

at e
tolE
alse
CGrT'oIT

(rji~
curr
E:sti
tt,e

ODEPACK . . ·1 ,s)-stemuti=etl Collectiull of ODE S()h'as 57

relation for Yn' If the original formula has
tr.e form

Yn = an + h So Yn ,

then we ootain an implicit relation of the form

to oe solved for y = Yn, where an is a
constant vector. Again, a modified Newton
iteration is usually most appropriate for this.
However, it helpful first to introduce the
residual function

values of which the user is to supply. Here s
represents an approximation to Yn, and we
specifically define s to be

s = (Yn(o) - an) 1 h So

That is, s is a predicted value of Yn that
corresponds to the prediction Yn(o) through
the original formula: Yn(o) = an + h SD s.
We then find that S(y) and r(y) are related by

S(y) = A(tn,y) (y - Yn(o)) - h So r(y)

In analogy with the algorithm for stiff
explicitly given problems, we evaluate the
Newton matrix S' (y) = asl Cy only at the
predicted value Yn(o). From the above
relation, we find that this matrix is

where r'(y) similarly denotes the Jacobian of r,
~/ay. Note that if A is the identity
matrix I, this matrix P reduces to that used in
the case y = f.

The algorithms for solving A y = g arrived
at in this way are numerically reliable only for
certain classes of problems (including in
particular those with non-singular A), and not
for general differential-algebraic systems of
this form [8]. However, for most applications
of interest, these methods have been found to
perform well, if not for the original system,
then for a reorganized form of it.

For all of these methods, the algorithm for
selecting the step size h and method order q is
baSically that used by Gear in [4], based on
asy~ptotic local error analysis, but with some
mod::'fications. On each step, an estimate of the
lecal error (at the current order q) is formed
frem the difference between the predicted and
f ir,al corrected values of y. This gives a value
of :1 suitable for meeting the given tolerances
a: cr~er q (and for redoing the step if the
tolerances were not met). Periodically, one can
0: :0 estimate the local error that would be
eomwltted at orders q - 1 and q + 1
(oissallowing one of these choices if q is
cu::ently 1 or the maximum allowed). These
estimates yield values of h suitable for each of
troe t .-,ree orders. Then the new hand q are

selected on the basis of maximizing h. Except
when a step fails the local error tolerance
test, changes in hand 0 are allowed no more
frequently than every q + 1 steps, in order to
prevent instabilities.

3. THE ODEPACK SOLVERS

3.1 The ODEPACK Concept

The GEAR package and its variants were added
to a list of available general purpose initial
value solvers that was growing quite sizable by
1975. The length and diversity of this list
caused some concern to users and software
developers alike. There was much duplication of
capabilities offered, but at the same time there
was very little in common among the solvers in
terms of either their external appearance or
their internal structure. This situation was in
sharp contrast to that in other areas in which
"systematized collections" of Fortran routines
were being developed. The earliest examples
were EISPACK [9], for computing matrix
eigensystems, LINPACK [10], for solving linear
systems, and FUNPACK, for certain special
functions.

The idea of a systematized collection of
initial value ODE solvers, tentatively called
ODEPACK, was discussed informally as early as
1974, in workshops attended by people from all
over the world [11]. However, it was quickly
realized that the task was much larger in the
ODE case than in other areas, partly because of
the complexity of the subject, and partly
because of widely divergent views of what
ODEPACK should look like. Starting in 1976,
attempts were made to reduce the problem by
involving only people at U.S. Department of
Energy laboratories, and LLNL received funding
to study the feasibility of ODEPACK from the
Applied Mathematical Sciences Research Program
under the Office of Basic Energy Sciences in
OOE.

The natural first step, and a necessary
preliminary to any actual development of an
DDEPACK, was the setting of standards for the
interface between the user and the ODE solvers.
The user interface to a solver consists mainly
of the call sequence of the routine the user
must call, together with definitions of the one
or more user-supplied routines called by the
solver. To the extent that solvers for various
problem types and using various methods must all
communicate certain specific thinas to and from
the user, it is possible to formulate a loose
set of standards for the user interface. An
early proposal is given in [12]. A sequence of
workshops and discussions on user interface
standards for DOE solvers succeeded in producing
a reasonable consensus in 1978 [13,14]. The
resulting tentative interface standard was
achieved only through considerable compromise by
the various participants, which included ODE
software authors and users at various DOE
laboratories.

At that time, it was agreed that several of
the more popular ODE solvers, including GEAR,

58 A. C Hilldmarsh

GEARS, DE/STEP [15) and RKF45 (16), would be
rewritten to conform with the tentative standard
interface (13), resulting in a small collection
that was at least systematized in its external
appearance. The first result of that agreement
was a package based on the GEAR and GEARS
packages, called LSODE (Livermore Solver for
ODE's) [17,18] . Subsequently, four variants of
the LSOOE solver were written, all in accordance
with the tentative standard interface (13), with
minor modifications. In the meantime,
unfortunately, the other software authors
involved withdrew from the agreement, and so
this collection does not yet have analogous
rewritten versions of their codes.

In what follows, the LSODE package, and the
variants of which have been completed to date,
are summarized. Other variants planned are also
mentioned, and comments on availibility of the
solvers are given.

3.2 LSODE: The Sasic Solver

LSODE [17,18] combines the capabilities of
GEAR and GEARS. Thus it solves explicitly given
stiff and nonstiff systems y = f(t,y), and in
the stiff case it treats the Jacobian matrix J =
af/ay as either full or banded, and as
either user-supplied or internally approximated
by difference quotients. Sy comparison with
GEAR and GEARS, LSODE offers a number of new
features that make it more convenient, more
flexible, more portable, and easier to install
in software libraries. Some of these are the
following:

(a) Through the redesigned user interface,
many new options and capabilities are available,
and others are much more convenient than
before. Some examples are--more flexible error
tolerance parameters, independent flags for
starting and stopping options, internally
computed initial step size, two work arrays in
the call sequence for all internal dynamic work
space, user names for f and J in the call
sequence, easy changing of input parameters in
mid-prOblem, convenient optional inputs (such as
maximum method order), convenient optional
outputs (such as step and function evaluation
counts), optional provision of derivatives of
the solution (of various orders) at any point,
and real and integer user data space (of dynamic
length) available in the f and J routines (with
no extra burden on the casual user).

(b) The user documentation, which is
contained in the initial comment cards of the
source, is given in a two-level form. A short
and simple set of instructions, with a short
example program, is given first, for the casual
user. Then detailed instructions are given for
users with special problem features or a desire
for nonstandard options. The latter is also
organized so as to allow selective reading by a
user who wants only a fraction of the
nonstandard capabilities.

(c) When stiff options are selected, linear
systems are solved with routines from LINPACK
[10], which is becoming a widely accepted
standard collection of linear system solvers.

(d) Some retuning of various heuristics was
done so that performance should be more reliable
than for GEAR/GEARS. For example, LSODE has no
minumum step size (unless one is specified as an
optional input), but has instead a maximum
number of failed attempts at a time step.

(e) The core routine which takes a single
step, called STODE, is independent of the way in
which the Jacobian matrix (if used) is treated.
Thus variant versions of LSODE for other matrix
structures (such as LSODES) will share the same
subroutine STOOE.

(f) The writinq of all error messaqes is
done in a small isolated general-purpose message
handler called XERRWV. Two other small
subroutines are user-callable and allow for
optional changing of the output unit number and
optional suppression of error messages. This
trio of routines is compatible with a much
larger error handling package (the SLATEC Error
Handling Package) written at Sandia National
Laboratories [19].

(g) LSODE easily allows a user to interrupt
a problem and restart it later (e.g. in
switching between two or more ODE problems).
Also, using LSOOE in overlay mode is very easy,
with no loss of needed local variables.

(h) The various lists of constants needed
for the integration, formerly appearing in a
subroutine called COSET, are now computed (once
per problem). This adds to the portab~lity of
LSODE.

3.3 LSODI: Implicit Systems

The LSODI solver [17], written jointly with
J. F. Painter (LLNL), treats systems in the
linearly implicit form A(t,y)y = g(t,y), where
A is a square matrix. Many problems, including
POE's treated by finite elements and the like,
result in such systems, and it is almost always
more economical to treat the system in the given
form than to convert it to an explicit form y =
f. LSODI allows A to be singular, but the user
must then input consistent initial values of
both y and y. In the singular case, the system
is a differential-algebraic system, and then the
user must be much more cautious about
formulating a well-posed problem, as well as in
using LSODI, which was not designed to be robust
in this case. LSODI is based on (and
supersedes) the GEARIB package, but corrects a
number of deficiencies, as follows:

(a) The matrices involved can be treated as
either full or banded, by use of the method flag.

(b) The dependence of A on y is
automatically and inexpensively accounted for,
whether partial derivatives are supplied by the
user or computed internally by difference
quotients.

(c) When A is singular, the user needs to
supply the initial value of dy/dt, but no later
values. This array (along with the initial y)
is passed through the call sequence.
(Admittedly, correct initial data can be
difficult to obtain for some types of
problems.) When the initial dy/dt is not being
supplied, an input flag instructs LSODI to

cc
no
A
ma

in
ei
co
(E

re
at
m3
at
cc

sh
re
LS
fl

us
us
su
fu
y,
A
SUI

or
us
COl
de
Stl

cal
th
he
LS

on
fOI
eXI
Na'
di
dil
gel
av,

3.1

y
c:;er
'II a!
Pre
sp,
lir
'fa:
Rec
fOJ

cur
SjS

i
I
I

I
\.

I'
I
I

'.''' .. ,.J~·.u:~·.p:i,JI~ th~it /} i~~ i.'li::i.-,lly
';11, fl:;. ; itl'~~· J n0 ::uch :.~~.~~l;i:.Ptjr.r. or:

. : .. :. :.l.i-:::l;;:.::t i,-:r·.~r~~~ in tr',._ /,,\1 :' '1.(;:-,

" :,.._' \.1 ;j:-Ct...i..l'''i \';(c r: ,C, :':.:. sir~GuL_r.

" 0_ I :·-~lJ~~P·L .:t!t~ :-L:~.;~"";u~!.1 rcut:1f!
: :.r : ,..",-,~_ c~ ;"j:':"r:ws t:11:: lJ~'f:'" ~G s': ,:"': .. l

,-.' ~_" ::cr.(j~ J..iJ:;-, cr ~;r. ~r.tt::riJpt

,', "! ," (T. ;·:::-c: .::-.:r.dit':'or: is s~.C]~;·1~: ec

, \,'~ _: CT' :.1 .:.~; :":'.it~\l;'l.l o..l'""!d ~:;~

r' ~~'~:"'-; ·~:.:r nc~ t.c' r::.IJ:.lu:!ter:;, LS(]C:
. - :-, c::vr:"):, ~y l~r: .J:::t:.:· ·r~ t:-:.:- ~k·wtl.:r

... c)c:. : ~:::.y :-:u~:'::'nq t!-.e ster:: ~izp, l::lr.

.. ~:~Cr_~C withG~~ Gerera~i~g ~~i~

, _ .:, .. : " ... ,x:'r,uiT, e:<ter,t f:os~;ible, L'3nCI
" "1l' user inte-.:-f:ocp. .',~ LSCGE, :!nc SG

,: ~r.e ~id'vant3ges ever CC:A.R~8 th2t
. C,I·:: GEhK anc GE}~RB, ir, terrr,s of
: .:. I ~c~venience, ~Grtability, etc.

"_ rer.ces cetweer. t~e LSOC! "nC LSCCE
.' :c r ' ,.,":(=$ cccur prim8rily in the

- .:~::'~G s~broutines. Witn LSODI, cne ~ust
::~tine to co~pute the residual

. J ' ~'); = g(t,y) - A(t,y)s for 2 given t,
.. :,C :;.r,other rcutine to ;,dd U',e n;atr~y.

.,:. .. _:, ,jrray. Optionally, ';.he user can
::cL.;:j,e to compute the Jacobian matrix
~~~ ~se of r(y) as the basic 

,.' . -: ,_:~.:::i.fC qUanti ty, 8S oppcseo to 
.,: . ::' ,(';::'-s r from va:'ues of g and A, is 

:.:, ' .. r: tC allow for bott1 computatienal and 
. ' :: .. ", ,:c.cr,omies. Usually, the user can 
::': '::' _~1: r(y) without forming A explicitly, 
.: ,: : . .. ' / ~ .·,~. considerably on storage, and often 

:.: :c~struct it at much lower cost than 
:.. : _ ', :: ';.: .... ",c 00 so from g and A. 

:.: ..... exar:-,p:'es of the use of LSODE and LSOOI 
, ' ':.:.::,5 ariSing from POE problems can be 

~~ _ .: _r :i8 ~ and [20]. In the latter, 
r. , : : .:. ' .. · .• ,;:5 ty Painter on incompressible 
. :. . : -'::,Jki;S problems shed some light on the 

~~ , :ties involved with 
" , :~r. :'c.l-alr,ebraic systems. A program for 

. :', ;. ,:1 fferential-algebraic syster.1s is 
" " . ~:e from L. Petzold [21], 

~. ~-S~S: General Sparse Jacobian 

~~GCES package solves explicit systems 
~~t treats the Jacobian matrix J as a 

.' :. :. _<.rse r"atrix in H,e sti ff case. LSOOES 
,:':' ~ :~n jointly with A. H. Sherman (Exxon 
:: ,i~r. ;<E;sE;&rch Company), and superseoes tr,e 
, ~ .riant of GE~R called CEARS. In LSCCES, 
.- ~y ~:~n3 are solved using parts cf the 
~_·.:s~ ~&trix Pbckage (YSMP) ~22,23J. 

. , -.' '";:. ::IF; sy::.tens tc i:e scivf.:c r,;:l'Ie 1:~e 

, , 

J ~: ~ c~r:~ct~c~ '/~c~cr, ~ ~~ :~e ~t~c 

r~ ~c :.~ 1 ~c~la~ c~~~~Cir0 Gn ~~[ 
~~:~~ .: ~r':2~. 7~E E0:J:i~~ Gf t ; E~e 

' ... :': :-:."7 : ;--.:.-.i.::- cf :...::t; :-: ~ :. :' r tI; .. :~ · : ... :--:. 
~~- t~ ~.~:~ ~r~j ·~CT ~ :. :::. t: :~~ f 

) ~-:~~:e: ---~ :6:~~ ~: ~ .: :cJ~i-~ 

(;n(' ~s 

IJ!··"r . 
GC~\I '. 

~;upp.i.i" ;<J) , 0::- ~~ljppli.(~d Girf'ctly tly thf' 
;:.,. u~·er ~r:~-:ut ~"l[l~~ lj~ : tt.' ~ndr.,-)s wr.ich is 

S9 

(t) i~'.'t, ::r,ir:"L,ln of pIvct crder. Di~, \~or,a 1 
Q.lvct lccat:'crs ;:~r~ crll:;St?n, ~lrd the cho.ic(· i:.-; 
'J::':;r:d 'Xl I~.(, ~rt;.ir.:.r, r:: rr.:l)(:'r.U~ !'r:a:sity, H',:'s .~s 
'.:.:n,: by YStv',c \Cr: :~'J ,~.ocule) r. 2;.j. The orC"riro 
ri:.c;critnr:', ~ r.~ri::LJrr, c8r;:rce 31ljcri thr:,) op('rotes 
0:-.: If 'JI~ c; sy:w'u:tric sp:,::-sitj s~. ruetu-.:-p, ('l1rJ ir. 
:.SI')CF.S tr,E' ~itr,:cturc u,ed fo;' tn~s is th.,t of 
.J .,. J T • 

er) 5y~hcl~c LU ~~ctcriz&tiar. of the ~nt~ix 
p. T~~s is base~ c~ly on sp8~~ity fi~~ the pivot 
c:r1er, 8r.C USE'S t :1E' moc!ule in YSMP cesir,r.ed for 
:lcnsyr.",etr:.c rr.3triceo. with ccr.,pressfd r:;6:nter 
stcra'~E: (eCRV (;lcdule) [23~. 

(c) ,':onstructior. cf J. T~i.s C3n be cone 
ir.tA:nally by difference cuotients, cr with 8 

user-suppl.ie,j routine. In the cifferer,ce 
quotient case, the number of f evalUations 
needed is kept to a minimum by a column grouping 
~echr.ique due to Curtis, Powell, and Reid [24). 
In the other case, the user-supplied routine 
provides one column of J at a time, in the form 
of a vector of length N (although only the 
non-zero elements need be computed and stored), 
so that users need never deal with the internal 
data structure for J and P. In any case, J is 
storea internally in an appropriate packed 
fcrm. Evaluations of J are done only 
occasionally, as explained below. 

(e) Construction of P = I - hBoJ. In 
contrast to LSODE and GEARS, LSODES does not 
force a re-evaluation of J whenever the existing 
P is deemed unsuitable for the corrector 
iterations. Instead, when the value of J 
contained in the stored value of P is likely to 
be usable (and P is not, only because hSo 
has changed significantly), then a new matrix P 
is constructed from the old one, with careful 
attention to roundoff error. This cuts down 
qreatly on the total number of J evaluations. 

(f) Numerical LU factorization of P. This 
is dcne by YSMP (CORV module) in sparse form, 
and the array containing 0 is saved in the 
process. Because of the absence of partial 
pivoting for numerical stability, this operation 
can conceivably fail. However, this has only 
rarely been observed in practice, and if it does 
occur (with a current value of J), the step size 
h gets reduced and the difficulty disappears. 

(g) Solution of Px = r. This is done by 
YSMP (CORV mOdule) using the existing sparse 
factorization of P. E:ecause a modified Newton 
iteration is used, ~ar.y '/alues cf r (Le., r.,any 
"-inear s1stems) car. "rise for tr,e same P, and 
the sepa-.:-aticn cf the varicus pr.ases takes 
adv6ntege of that fact, 

The first t~r"e ~heses, ane pa:t of the 
fGurt~, (cclu;nr: r;~ol.!pir,~ fa: ci £'7'e:ence 
ctJctients:, ~re ncr~~li1 dc~e c~ly at the start 
cf t~e ~rct~~r. H~we~~rt t~~ tJser CGn s~ecifl 
~~~t the s05~sity ~~~l~c~ure is tc ~e 
r~:et~r~~-e~ ~~ t~e ~i~die CC ~~~ :r:tlem, ~rd
~hen t~~~e c~e:~t~crs 8r~ : ~pe~t~~ .

I: C ~ ,.J:-:i. ::', :~e --;:t.L": I tjr:F:: ;;~ er: en tj '(:; ~.~~ :.~

.... c': ;:::. ~Jut I- = p . , te-:r:.J:'F. ::. i~ CF-::f:::,r:J...er. :'r.
:-.:r::': .. :Tn s:r:'er Nri':'c Y5'lF :-~:cl..:r'e':". ~~,e -:1t;-i.:I tc

60 A. C. I/i"dmarsh

be described and stored in row order. But this
causes no difficulty, because YSMP includes a
routine for solving the equivalent transpose
problem xTA = rT as well as for the direct
problem Ax = b.

3.5 LSOOA: Automatic Method Selection

LSOOA is a variant of LSODE of yet another
kind. It was written jointly with L. R. Petzold
(Sandia-Livermore), and switches automatically
between nonstiff (Adams) and stiff (BDF)
methods, by an algorithm developed by Petzold
[25]. (The suffix A stands for Automatic.)
Thus it is more convenient for users who do not
want to be bothered with the issue of
stiffness. Also, it is potentially more
efficient than LSOOE (when used with a fixed
method option), when the nature of the problem
changes between stiff and nonstiff in the course
of the solution. In particular, on the initial
(nonstiff) transient interval that is almost
always present in stiff .problems, LSODA uses the
more efficient Adams method. In place of the
method flag parameter of LSOOE, the user of
LSODA supplies only a Jacobian type flag
(specifying whether J is full or banded, to be
user-supplied or internally generated). The
work space supplied to the solver can be either
static (and thus allow for either method), or
dynamic (and altered each time there is a method
switch, to an amount specified by the solver).

3.6 LSOOAR: Rootfinding

LSODAR combines the capabilities of LSODA
with a rootfinder. It allows one to find the
roots of a set of functions 9i(t,y) of the
independent and dependent variables in the ODE
system. (This is sometimes referred to as a
"g-stop" feature.) Thus, for example, it could
be used in a particle tracking problem to
determine when a particle path reaches any of
the walls of a container. LSODAR was also
written jointly with L. R. Petzold, based on an
algorithm [26] developed by K. Hiebert and
L. F. Shampine (Sandia-Albuquerque). The user
must supply, in addition to the LSODA inputs, a
slJbroutine that computes a vector-valued
function g(t,y) = (9i, i=1,2 •••.• NG) such
that a root of any of the NG functions 9i is
desired. Of course there may be several such
roots in a given output interval. and LSODAR
returns them one at a time, in the order in
which they occur along the solution. An integer
array tells the user which 9i (if any) were
found to have a root on any given return. With
LSODAR, it is especially important to choose the
tolerances conservatively. so that numerical
errors in the computed solution yet) do not
deceive the root finding algorithm.

3.7 Future Additions

Several other solvers will be added to the
ODEPACK collection in the near future. as they
are developed in response to the needs of
different classes of problems. In particular.

the following two solvers are nearly complete
and will soon be available:

(a) LSOIBT. This resembles LSODI in that it
solves problems of the form A(t.y) y = Q(t,y).
but it assumes a block-tridiaQonal structure for
all the matrices involved. It then uses a
linear system solver tailored to
block-tridiagonal systems. LSOIBT was developed
from LSODI by C. Kenney (China Lake Naval
Weapons Center). It was motivated by the method
of moving finite elements for parabolic POE
systems. which generates ODE systems A y = g
with block-tridiagonal structure.

(b) LSODIS. This also solves the A y = g
problem. but uses a general purpose sparse
matrix treatment of the linear systems. as in
LSODES . LSODIS was developed from LSODI and
LSODES by S. Balsdon (University of Texas at
Austin) [27]. and was also motivated by finite
element methods.

In addition, plans are under way to rewrite
(and algorithmically improve upon) other
existing solvers for addition to OOEPACK.
Solvers to be so revised include GEARBI [6] and
EPISODE [28].

3.8 Avai l ability

The OOEPACK solvers are available from the
author on request. by way of magnetic tape.
Requestors should specify whether single or
double precision versions (or both) are
desired. LSODE is also available from the
National Energy Software Center (NESC) at
Argonne National Laboratory. The full
collection will also be installed at NESC.
eventually.

To date, one or more members of the ODEPACK
collection have been sent on request to over 200
sites . and the acceptance of the solvers has
been extremely positive.

4. AN EXAMPLE PROBLEM

In order to illustrate the various solvers
described above, and to demonstrate their
relative merits on a realistic problem. we
consider here an example problem. The problem
is a simple atmospheric model with two chemical
species undergoing diurnal kinetics and
transport in two space dimensions. The
independent variables in the POE system are
horizontal position x. altitute z (both in
kilometers), and time t (in sec), with

a ~ x ~ 20. 30 ~ z ~ 50,

a ~ t ~ 86400 (l day) •

The dependent variables are

cl(x,z,t) = the concentration of the
oxygen singlet [0] , and

c2(x,z,t) = concentration of ozone [03]

(both in moles/cm3). The concentration of

molecl
The ec

i
ct

where
deriVe
chemi~

The vo

Both c
homoge
normal
bounda
are

which
satisf

Th
distrj
time a
With I

[03] v
sharp
orders
essent

To
apply
rectan

Thus t
(Xj ,Zk

and th
approx

r
\

ODl:."P., 1 CI(,I S.I 'sfl·/IIl1ti::ed Collectio/l uf ODE Soil'l.'rs 61

., ,', oxyqen [('2] js assumed constant.
: , ' , ~: ons of the model are:

iii 1 2
(Kv (Z)Cz)z + Khcxx + R (c ,c ,t),

(i=1, 2),

~ . , ; 'e sLJcscripts t, z, and x denote partia l
" ,_ , ~:" :es. Here Rl and R2 represent the

- , : rl ana Gre given by

-(kl + k2C2)cl + k3(t)c2
+ k4(t)07.4 ol016

(kl - k2C2)cl - k3(t)C2

j':-" ',:,; icus coefficients are as follows :

10-8 0 exp(z/S), Kh = 4010-6

~ _ = 6. 03, k2 = 4.66 010-16 ,

~:.., (~; = {eXP[-7.60l/Sin(llt/43200»), t < 43200} ,

0, t ~ 43200

~ ... ;:: ; = {eXP[-22.62/Sin(llt/43200)), t < 43200}.

0, t ~ 43200

E,~tn cl and c2 are required to satisfy
r.c[f,c.qeneous Neumann boundary conditions (zero
nc:mal Cerivatives) along all the x and z
bcurcaries. The initial conditions (at t = 0)

c l 106 (l - x2 + x-l/2)(l - i.2 + ~/2).

c2 1012 (1 _ x2 + ~4/2)(l _ ,,2 + ~/2),

x :: (x - 10)/10, i :: (z - 40)/10 ,

whicr, represent mildly peaked distributions
s~t isfying the boundary conditions.

The solution to this problem is a peaked
C:stribution for both variables, changing in
T.irr.e end diffusing somewhat in all directions.
'.~ ~ th respect to time, the ozone concentration
[C3] varies only a few percent, but [0] has a
s~arp initial drop, then rises by over three
c:·:ers of magnitude, and finally drops
~s~entially to zero at sunset.

To solve the above system numerically, we
·, ~; r;lJ the method of lines using a regular
:r-c::8ngular mesh with constant mesh spacings

I'::i. = 20/(Mx-l) , t::z. = 20/ (Mz-l)

...:~ tr,e discrete mesh consists of points
/~ , Zi<) with

)' j (j-l) 6< (j = 1,2, ,M x) ,

Z;.: 30 + (k-l) bz (k = 1,2, ... ,M z)

-~ ::ne aiscrete v,riable c1 k is an
, : Gro~imation to C1(Xj'Zk)' 'The spatial

derivatives are approximated by standard 5-point
central differences, and the boundary conditions
are similarly replaced by difference relations.
To illustrate, consider a nonuniform diffusion
term in one dimension, (K(z) cz(z»z. The
value of this term at a point z = zk is given by

K(z k+1/2) Cz(Zk+l/2) - K(Z k_1/2) Cz(Zk-1/2)

(Zk+1/2 - zk-1/2)

where

cz(zk+1/2) - (ck+l - ck)/(xk+l - xk)

Cz(Zk-1/2) - (ck - ck_l)/(xk - xk-l)

zk+1/2 - (zk+l + Zk)/2

zk-1/2 - (zk_l + zk)/2

(Uniformity of the mesh is not assumed in these
difference formulas.) The boundary conditions
in the 2-D problem are approximated by setting

i i
ca,k = C2,k (all k)

for the boundary segment Xl = 0, and similarly
for the other three boundary segments. These
relations allow one to form a well-defined ODE
for each of the clk. The resulting ODE
system y = f(t,y) has size N = 2MxMz. It is
quite stiff because of the presence of a short
kinetics time constant (about 1/6 sec). The
initial value vector Yo is taken from the
initial condition functions given above. The
system Jacobian J is sparse, with roughly
12MxMz = 6N nonzero elements. As a band
matrix, with component ordering first by
species, then by x, and lastly by z, it has a
half-bandwidth of 2Mx, and thus a full
bandwidth of 4Mx+l. (It is important to use
such an ordering if minimal bandwidth is
important; an ordering by grid points and then
by species produces a Jacobian that is not
banded at all.)

We consider two cases,

Mx = Mz = la, and Mx = Mz = 20.

As to accuracy, a crude model of this type calls
for no more than a few significant figures. To
be conservative in recognizina that tolerance
parameters are applied to local errors, which
can accumulate into global error, we miqht
impose a local relative tolerance of 10-4 . We
must also specify r positive absolute tolerance
on the values of c because it decays to
negligible values at night. A reasonable
absolute tolerance is 10-2 .

Three of the ODEPACK solvers are suitable
for this particular problem--LSODE, LSODA, and
LSODES. In addition, the older package GEARS I
is certainly suitable, and in fact was motivated
by exactly this type of problem. Recall that
LSODES uses a general sparse treatment of the
Jacobian matrix, GEARS I uses block-SOR, while
LSOOE and LSODA will (in this case) treat the

62 .' 1. C l/illtillllJTJII

Jacobian as banded. The problem was set up for
each of these four solvers and run first on a
CDC-7600 computer, then on a Cray-l computer.
On the 7600, only the 10 by 10 grid problem was
run, as the larger problem could not be
accommodated by all of the solvers within the
Small Core Memory (about 57000 words). For all
but GEARBI, both the user-supplied Jacobian
option and the internal difference quotient
Jacobian option were tested. (GEARBI has no
difference quotient option.) The results of the
runs on the CDC-7600 are given in Table 1. The
results of the Cray-l runs are given in Table 2
for the 10 by 10 grid, and in Table 3 for the 20
by 20 grid. The tabulated quantities are:

R.T. CPU run time in sec
NST number of steps
NFE number of f evaluations
NJE number of J evaluations
NLU number of LU decompositions
W.S. total size of work space arrays

In the tables, USJ denotes the user-supplied
Jacobian option, and OQJ denotes the internal
difference quotient Jacobian option. An earlier
comparison test on this problem is in [5].

Table 1. Results of kinetics-transport test
problem (lOxlO grid) on the CDC-7600.

Solver R. T. NST NFE NJE NLU W.S.

LSODE 23.2 344 519 68 68 14,242
(USJ)

LSD DE 28.4 337 3338 69 69 14,242
(DQJ)

LSODA 21.3 339 584 55 55 14,242
(USJ)

LSODA 24.6 339 2795 55 55 14,242
(OOJ)

LSODES 13.1 364 529 10 70 12,455
(USJ)

LSODES 13.5 369 602 8 72 12,664
(OOJ)

GEARS I 6.3 316 526 50 50 3,004

Table 2. Results of kinetics-transport test
problem (lOxlO grid) on the Cray-l.

Solver R. T. NST NFE NJE NLU W.S.

LSOOE 2.52 344 520 68 68 14,242
(USJ)

LSODE 5.16 337 3463 72 72 14,242
(OOJ)

LSODA 2.89 344 587 54 54 14,242
(USJ)

LSODA 4.78 340 2794 55 55 14,242
(DQJ)

LSODES 4.86 364 533 14 71 12,455
(USJ)

LSODES 5.34 378 641 11 76 12,664
(DQJ)

GEARS I 3.04 316 526 50 50 3,004

Table 3. Results of kinetics-transport test
problem (20x20 grid) on the Cray-l.

Solver R. T. NST NFE NJE NLU W.S.

LSODE 19.8 401 604 86 86 104,842
(USJ)

LSODE 43.1 402 7647 87 87 104,842
(ooJ)

LSODA 17.1 312 550 52 52 104,842
(USJ)

LSODA 35.4 344 5486 61 61 104,842
(DOJ)

LSODES 43.2 385 577 10 90 61,033
(USJ)

LSODES 42.2 390 638 8 77 61,842
(OOJ)

GEARSI 16.4 348 544 58 58 12,004

Several points of interest can be noted in
these tables.

(a) First, for each of the two problems, the
number of steps does not vary greatly from
solver to solver, because that is determined
almost entirely by the accuracy requirement, and
the accuracy achieved is much the same for all
these runs. Also, comparison of the 20x20 grid
results with the 10xlO grid results shows that
the latter have errors (due to the spatial
discretization) of up to 2%.

(b) For each problem, the performance
characteristics of LSODE and LSODA are similar,
as expected, since both use a banded Jacobian
here. In most cases, LSODA is faster, primarily
because it uses the cheaper nonstiff (Adams)
method on the initial transient of the problem,
switching to the SDF at about t = 3.6. For the
same reason, the number of Jacobian evaluations
is significantly lower for LSODA than LSODE.
This advantage is offset somewhat by a larger
average number of f evaluations per step for
LSODA during the integration of the transient
(due to the need in LSODA for estimates of the
Lipschitz constant).

(c) For LSODE and LSODA, the use of a
difference quotient Jacobian incurs some
additional expense over the user-supplied
Jacobian, owing to its cost of 4Mx+l (= 41 or
81) additional evaluations of f for each
evaluation of J. On the 7600, this cost penalty
is never more than 25%, but on the Cray, it is
65% to 118%. The reason is that the band matrix
solvers on the Cray (which are highly optimized
versions of the LINPACK routines) are up to 10
times faster than on the 7600, while f
evaluations are only about twice as fast on the
Cray. (This illustrates the speed gains
possible with vector operations on the Cray, in
contrast to the evaluation of f here, which was
left in a form that does not vectorize at all.)
Thus on the Cray, the cost of the f and J
evaluations is a much larger fraction of the
total. For example, for LSOOE (USJ) on the
10xlO grid problem, the cost of the f

eval'
7600
C1ea:
Jaco
solv,

speel
fact
none
cant
matr
2-to
Cray
appe
savil
grea
cons'
on t l
is u!
to 6
that
eval'
sign:
Cray

the I

Jacot
10%)
fewel
eval,
LSOD£
indel

I

lowe:
the J
grid.
For (
advar
info:
store
Thus
on U
opti(
LSODI

(

prob:
shoul
a vel
bloc~
ad'Jar
LU dE
bloc~
2x2 t
itere
a'lerc
grid
overf
there
,Jperc
cropp
the I
times
,-SCDA
ere t
_peed
::EIl.RE
for t
Ti'ws

()f)l:"I'.· l (1\'. 1 S.nIClI/lIli:,," C,,/lcerioll of 001:' Soh'as 63

~V~ : .~ ~ ~ a r s is about 4% of the total on the
7'_' :-~ ' . ~,r: ~bGut 19% of the total on the Cray.
Cif S ~: ~ . ~ t pays to eenerate a closed-form
" _ " "~ , .r ~outine when using LSOOE or LSOOA to
~~ : .~, ' !' t iff system on the Cray.
- - ' ~,""e LSOOES results show a sianificant
~c<? ,..::;:-. fj :l the 7600 over LSOOE and LSOOA (by
:"':;c ~ ~ ~ ~' o f 1.6 to 2.1), but none (or nearly
"C,"e J :r c",e Cray. The reason is tnat, in
:cr ';" " ~ to tne band matrix solvers, the sparse
~6 ~ :~ X sc:vers do not show more than aoout a
2-:c-~ speeoup in moving from tne 7600 to the
::: r:: y. Tr,e speed advantage of LSOOES on the 7600
cppc2rs to be due entirely to its algorithm of
sa v ! ~g Jld values of P, and thus cutting down
;"re:::tly en the number of J evaluations, which
~onsLi tute a sizable fraction of the total cost
on t~e 7600. Note that each computed value of J
is usee for 26 to 49 steps, as opposed to only 5
to 6 steps for LSODE and LSODA. For a problem
t;-.ot is similar but more costly in function
~valuaticns, this behavior would lead to a
sil,niflcant eost advantage for LSOOES on the
C~ay as well as on the 7600.

(e) On both computers and for both problems,
tt-,e cost penalty for a difference quotient
Jacobian is quite small for LSODES (at most
10%). This is partly because there are so many
fewe r J evaluations, and partly because each
evaluatf.:;n of J by difference quotients in
LSGCES costs only 8 evaluations of f here,
independent of the grid size.

(f) The storage requirement for LSODES is
lower t han for LSODE or LSODA, by around 12% on
the IOxlO grid, and around 41% on the 20x20
grid. This trend continues for finer meshes.
Fer courser meshes, LSODES would have no storage
aovantage, reflecting its need for sparsity
informat i on arrays and the fact the matrix P is
stored separately from its LU decomposition.
Thus for the present problem, on the 7600, and
on tne Cray with difference quotient Jacobian
option, LSODES is competitive with LSODE or
LSODA in run time and superior in storage.

(g) Overall, the best performance on this
problem, however, is that of GEARS!. This
should not be a surprise, since the Jacobian has
a very regular block structure of which the
block-SOR method in GEARSI is taking full
!ld~ant8ge, both in storage and computation. The
LU decompositions here are only those of the
bleck diagonal part of the Newton matrix (with
2x2 blocks). The total number of block-SOR
ite~8 tions for the 10xlO grid was 607, or an
a~~r&~e of less than 2 per step. For the 20x20
cr i.e ;: r, is cost rose to 972 iterations, or an
eve:-2.'Je of 2.7 per step. Note that, because
t~·e ::- e is little opportunity for use of vector
e ~F ru :ions, the cost for the 10xlO problem
crG~ ;:; z'G by only a factor of 2.1 in going from
tr.e 7tOGO to the Cray, making the GEARBI run
t:'r,es r.e&rly equal to those of LSODE (USJ) and
L::'C,[J. (1j5J). (A more careful organization of
t -.i:' :, :'CCk-SOR algor i thm might yield greater
SP:f-CS en the Cray.) The storage advantage of
', t:':'~.2 :;: i s tremendous, though - a factor of 4.7
f0~ tr,e IOxlO grid and 8.7 for the 20x20 grid.
T~ ,s fur problems of this general type, which

are amenable to block-iterative matri x
treatment, solution by GEARSI or a similar
alqorithm appears stronoly co~petitive with
other approaches.

In closing, we mention some truly large
problems to which the GEARS I packaqe has been
applied. In the early 1970's, a number of
atmospheric models were developed at LLNL,
involvinq chemical kinetics and transport in up
to 2 space dimensions. Typically, the number of
chemical species was 5 to 20, and typical 2-0
mesh sizes were about 40 by 40. Thus when
finite differenced, these problems generated ODE
systems of sizes exceeding 10,000. The smallest
kinetics time constants were typically in the
range of milliseconds to microseconds, while the
largest diffusion time constants were measured
in years, making these systems extremely stiff.
The GEARS! package, and an extension of it using
Large Core Memory on the CDC-7600 (about 400,000
words), were successfully used to solve these
problems in a wide variety of applications
[29,30,31].

REFERENCES

[1] A. C. Hindmarsh, A Collection of Software
for Ordinary Differential Equations, in the
Proceedinqs of the ANS Topical Meeting ~
Comeutational Methods in Nuclear
Englneering, Williamsburg, VA, April 23-25,
1979.

2] A. C. Hindmarsh, GEAR: Ordinary
Differential Equation System Solver, LLNL
Report UCID-30001, Rev. 3 (December 1974).

[3] A. C. Hindmarsh, GEARS: Solution of
Ordinary Differential Equations Having
Sanded Jacobian, LLNL Report UCID-30059 ,
Rev. 2 (June 1977).

[4] C. W. Gear, Numerical Initial Value
Problems in Ordinary Different~guations
(Prentice-Hall, Englewood CliffS, NJ,
1971), pp. 158-166.

[5] A. H. Sr,erman and A. C. Hindmarsh, GEARS:
A Packaqe for the Solution of Sparse Stiff
Ordinary Differential Equations, in A. M.
Erisman, K. W. Neves, and M. H. Owarakanath
(eds.), Electrical Power Problems: The
Mathematical Challenoe-\SIAM, PhilaoeTphia,
1980), pp. 190-200.

[6] A. C. Hindmarsh, Preliminary Documentation
of GEARSI: Solution of ODE Systems with
Block-Iterative Treatment of the Jacobian,
LLNL Report UCIO-30149 (December 1976).

[7] A. C. Hindmarsh, Preliminary Documentation
of GEARIB: Solution of Implicit Systems of
Ordinary Differential Equations with Banded
Jacobian, LLNL Report UCID-30130 (February
1976) .

64 A. C Hil/dmars"

8J L. R. Petzold, Differential/Algebraic
Equations are not DOEs, SIAM J. on Sci. and
Stat. Computing, to appear:- - - ----

[9J B. T. Smith, J. M. Boyle, B. S. Garbow, Y.
Ikebe, V. C. Klema and C. B. Moler, Matrix
Eigensystem Routines--EISPACK Guide,
Lecture Notes in Computer Science, Vol. 6,
Edition 2 (SprInger-Verlag, New York, 1976).

[lOJ J. J. Dongarra, J. R. Bunch, C. B. Moler,
and G. W. Stewart, LINPACK User's Guide
(SIAM, Philadelphia, 1979) .--- ---

[llJ G. D. Byrne, A Report on the ODE Workshop,
Held at San Antonio, Texas, January 26-2B,
1976, in the ACM-SIGNUM Newsletter, Vol.
11, No.1 (May 1976), pp. 27-28.

[12] A. C. Hindmarsh and G. D. Byrne, A Proposed
ODEPACK Calling Sequence, LLNL Report
UCID-30134 (May 1976).

[13] A. C. Hindmarsh, A Tentative User Interface
Standard for ODEPACK, LLNL Report
UCIO-17954 (October 1978).

[14] A. C. Hindmarsh, A User Interface Standard
for ODE Solvers, in the Proceedings of the
1979 SIGNUM Meeting on Numerical Ordinary
Differential Equations, April 1979, Univ.
of Illinois (Dept. of Camp. Sci.) Report
79-1710, R. D. Skeel (ed.), 1979; also in
the ACM-SIGNUM Newsletter, Vol. 14, No.2
(June 1979), p. 11.

[15] L. F. Shampine and M. K. Gordon, Solution
of ordinarr Differential Equations - The
Initial Va ue Problem (w. H. Freeman and
Co., San Francisco, 1975).

[16] G. E. Forsythe, M. A. Malcolm, and C. B.
Moler, Computer Methods for Mathematical
co17utations (Prentice-HaIT, Englewood
c11 fs, NJ, 1977), pp. 129-147.

[17] A. C. Hindmarsh, LSODE and LSODI, Two New
Initial Value Ordinary Differential
Equation Solvers, in the ACM-SIGNUM
Newsletter, Vol. 15, No.4 (December 1980),
pp. 10-11.

[lB] A. C. Hindmarsh, ODE Solvers for Use with
the Method of Lines, in R. Vichnevetsky and
R. S. Stepleman (eds.), Advances in
Computer Methods for Partial Differential
Equations - IV (IMACS, New Brunswick, NJ,
1981), pp. 312-316.

[19] R. E. Jones, SLATEC Common Mathematical
Library Error Handling Package, Sandia
National Laboratories Report SAND78-1189
(September 1978).

[20] J. F. Painter, Solving the Navier-Stokes
Equations with LSODI and the Method of
Lines, LLNL Report UCID-19262 (December
1981).

[21] L. R. Petzold, A Description of DASSL: A
Differential/Alqebraic System Solver, in
the Proc. of the IMACS lOth World Congress,
Montreal, August 8-13, 1982.

[22) S. C. Eisenstat, M. C. Gursky, M.
H.Schultz, and A. H. Sherman, Yale Sparse
Matrix Package: I. The Symmetric Codes,
Research Report No. 112 (Dept. of Computer
Sciences, Yale University, 1977).

[23] s. C. Eisenstat, M. C. Gursky, M. H.
Schultz, and A. H. Sherman, Yale Sparse
Matrix Package: II. The Nonsymmetric
Codes, Research Report No. 114 (Dept. of
Computer Sciences, Yale Universtiy, 1977).

[24] A. R. Curtis, M. J. D. Powell, and J. K.
Reid, On the Estimation of Sparse Jacobian
Matrices, .:h Inst. Math. Applic. 13,
(1974), pp. 117-119.

[25) L. R. Petzold, Automatic Selection of
Methods for Solving Stiff and Nonstiff
Systems of Ordinary Differential Equations,
Sandia National Laboratories Report
SAND80-823D (September 1980).

[26] K. L. Hiebert and L. F. Shampine,
Implicitly Defined Output Points for
Solutions of ODE's, Sandia National
Laboratories Report SAND80-01BO (February
1980) •

[27] M. K. Seager and S. Balsdon, LSODIS, A
Sparse Implicit ODE Solver, in the Proc. of
the IMACS lOth World Congress, Montreal,
August 8-13, 1982.

[28] A. C. Hindmarsh and G. D.Byrne,
Applications of EPISODE: An Effective
Package for the Integration of Systems of
Ordinary Differential Equations, in L.
Lapidus and W. E. Schiesser (eds.),
Numerical Methods for Differential Systems
(Academic Press, New-York, 1976), pp.
147-166.

[29) J. S. Chang, A. C. Hindmarsh, and N. K.
Madsen, Simulation of Chemical Kinetics
Transport in the Stratosphere, in R. A.
Willoughby (ed.), Stiff Differential
Systems (Plenum Press, New York, 1974), pp.
51-65.

L30) M. C. MacCracken, DOT-ClAP Final Report,
LLNL Report UCRL-5l336 (May 1975).

[31) M. C. MacCracken, D. J. Wuebbles, J. J.
walton, w. H. Duewer, and K. E. Grant,
Livermore Reqional Air Quality Model: I.
Concept and Development, 2:.. of ~.
MeteroloQY, 17 (1978), 254-272.

Sdcnt ifi<
R. Stoplo
€) IMAC

d

I. IN I

fhi~ r
I h(' III

diJI'C'I'PII
art' wri

W I)(,I"E'

/)1\::-::-L
pfohlI'll
ODE s(
to wlv('
I'orm 01
it is po:
PI';Wtil'i

fly 10 S

\ is a ~
is ad\':u
f hpir or

".I'slem:
:Iris!' in
(" al WOI

'liwllt I,v
1111'111 01

:Ipplil":lt
if is lie
("all~(, e
"DE ~y
'·I·ol'lt.io
\a\'ier-~
t'l[llat.ior
ill Ihe si

• Work
"1'i('I1('('S

