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O£EPACK, A SYSTEMATIZED CCJ..LECTI(III CF OlE SCLVERS* 

Alan C. Hindmarsh 

Lawrence Livermore National Laboratory 
Livermore, CA 94550, USA 

The growing number of good general purpose solvers for initial value problems for 
ordinary differential equation (ODE) systems has fueled discussions on the idea of a 
systematized collection of such solvers, ODEPACK. Within recent years, a tentative 
user interface standard was developed, and an initial collection of five solvers was 
written. These solvers handle stiff and nonstiff problems in standard (explicit) 
form, problems in linearly implicit form, full Jacobians, banded Jacobians, qeneral 
sparse Jacobians, and problems with root finding (g-stop) requirements. Two of the 
solvers have automatic (stiff/nonstiff) method selection. These solvers are 
described briefly here, and their capabilities are illustrated with an example 
problem arising from a model of atmospheric kinetics-transport in two dimensions. 

1. INTRODUCTION 

Initial value problems for ODE systems have 
prompted a great deal of effort in numerical 
methods and software development. stiff ODE 
systems are now recognized as being particularly 
common, and are of course much more challenging 
numerically. Here stiffness can be roughly 
oefined as the presence of one or more fast 
decay processes in time, with a time constant 
that is short compared to the time span of 
interest. Good general purpose solvers have 
been available for up to 20 years, and the 
number of such solvers has grown quite sizable. 
Among the more popular of these are the GEAR and 
EPISODE packages and their variants [1], 
developed at LLNL, which use various forms of 
eDF (backward differentation formula) methods in 
the stiff case, and implicit Adams methods in 
the nonstiff case. 

Faced with the large number and variety of 
ODE solvers, both the users and the suppliers of 
this software have expressed a desire for 
standardization. In other areas, analogous 
pressures have resulted in "systematized 
collections" of software (EISPACK, LIt-PACK, 
etc.) which meet high standards of quality and 
uniformity. Efforts to produce a similar 
collection of ODE initial value solvers have had 
some success. A tentative user interface 
standard was developed, and an initial 
collection, called ODEPACK, was then generated. 
The starting point of this collection is a 
package called LSODE, which is the result of 
r ewriting the GEAR [2] and GEARB [3] solvers in 
conformity with the standard interface. Several 
lariants of LSODE were then written to solve 
other problem clases. 

*This work was performed under the auspices of 
the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under contract No. 
N-7405-Eng-48, and supported in large part by 
the DOE Office of Basic Energy Sciences, 
:~athematical Sciences Branch. 

In the next section, the methods used in the 
ODEPACK collection are summarized briefly. 
Following that is a short description of each of 
the five solvers in the existing collection, as 
it is now available. Finally, a two-dimensional 
atmospheric modelling problem is used to 
illustrate the solvers. 

2. SUMMARY OF METHODS 

Among the various numerical methods used for 
solving ODE initial value problems, a few are 
much more commonly used than others. The Adams 
multistep methods (explicit and implicit) are 
suitable for nonstiff systems, especially the 
implicit Adams methods. Explicit Runge-Kutta 
methods are also popular, but are also suitable 
only for nonstiff problems. Implicit 
Runge-Kutta methods of various types are being 
widely studied for use on stiff systems. But 
for larqe stiff problems, the most popular 
methods used are based on the so-called backward 
differentiation formulas (BDF's), which are 
multistep methods first implemented by C. w. 
Gear. 

In 1968, Gear wrote a subroutine called 
DIFSUB [4] for initial value ODE problems, that 
included the BDF methods for stiff systems and 
implicit Adams methods for nonstiff systems. 
This program was reorganized, rewritten, and 
improved upon at LLNl, resulting in the GEAR 
package [2]. However, when solving a stiff 
system of size N, of the general form 

y = dy/dt = f(t,y), 

this package makes use of the Jacobian matrix of 
partial derivatives, 

J = af/ay, 

in full NxN form. Thus the GEAR package is 
userur-only for nonstiff and fairly small stiff 
problems. Because of this, variants of GEAR 
were developed later to handle large stiff 
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problems having some sparse structure in the 
Jacobian. Among these were GEARB [3], for the 
case of a banded Jj GEARS [5], for a general 
sparse matrix Jj and GEARBI [6], for a regularly 
blocked J, with block-iterative (block-SOR) 
treatment of the associated linear systems. 
Another variant, GEARIB [7], was written for 
linearly implicit problems, i.e. problems of the 
form Ay = g(t,y), in which the matrix A and 
dg/dY are banded. 

As a frame of reference for later 
descriptions of algorithms and software, we give 
here a brief summary of the methods used in the 
GEAR package (and most of its variants and 
descendants), and also LSOOE and its variants. 
Consider the system y = f(t,y), where y is a 
vector of length N, and consider a discrete time 
mesh to, t I, ••• , tn, •••• (Of course, 
the independent variable need not be time, but 
often it is, and we will think of t as a time or 
time-like variable here.) For the moment, we 
consider the step size h = tn - tn-I to be 
fixed. Discrete approximations Yn to y(tn) 
are to be constructed, with Yo given, and Yn 
will always denote f(tn'Yn)' 

For nonstiff problems, we use the implicit 
Adams (or Adams-Moulton) formulas 

q-l 

Yn Yn-l + h 2:>i Yn-i 

1=0 

Here q (1 ~ q ~ 12) is the order of 
accuracy, and the coefficients ar depend 
only on q. The formula is implicit in that 
60 > O. Solution of this implicit 
equation is done by functional iteration, 

Yn(m+l) = Yn-l + h 60 f(tn,Yn(m» 

q-l 

+ h I Bi Yn-i , 

1=1 

where an initial guess (or prediction) Yn(o) 
is obtained from an analogous explicit formula. 
This iteration is terminated by a convergence 
test. Both the step size h and order q are 
actually varied during the integration process, 
by use of estimates of the local errors 
committed, in relation to a user-supplied 
tolerance. Changes in h are achieved by 
interpolation of the multistep data. Note that 
no NxN matrices are involved in this case. 

For stiff problems, we use the BDF 

q 

Yn I Cti yn-i + h 60 Yn 

i=1 

where again q is the order (here 1 < q < 5), 
and Sa > O. Stiffness makes functional­
iteration fail to converge for the step sizes of 
interest, because of strong dependencies in f 
upon y. Therefore, we use a modified Newton 
iteration, 

- P [Yn(m+l) - Yn(m) ] 

= Yn(m) - an - h 60 f(tn,Yn(m» , 

where P is an NxN matrix approximating the 
Jacobian of the algebraic system to be solved: 

P"I- h 60J, J = af/ay • 

(Here I denotes the NxN identity matrix.) Again 
a prediction Yn(o) is formed from an analogous 
explicit formula. This iteration differs from a 
true Newton method in that J is only evaluated 
periodically. In fact, J is evaluated only at 
predicted values Yn(o), and only on those 
steps where a new value appears necessary, on 
the basis of a convergence failure or other 
indication. The same value of P (or its LU 
decomposition, if used) is used over all 
iterations in anyone step, and typically also 
over several time steps, until a reevaluation of 
J and P is called for. (In the case of the 
LSODES solver, P is sometimes updated and 
LU-decomposed without a reevaluation of J.) 
Again, hand q are both varied to meet local 
error tolerance requirements. 

In applying the BDF method to large stiff 
problems, it is important to note that a 
numerical solution of the linear system 

Px = r 

(x = correction vector, r = residual vector) 

can very often easily take advantage of a sparse 
structure in P. This is accomplished either 
through suitable structured LU decompositions, 
or through iterative linear system methods that 
use a given matrix structure. The use of 
structure is especially important in solving DOE 
systems that come from time-dependent partial 
differential equation (POE) systems by the 
method of lines, whereby spatial variables are 
discretized, leaving ODE's in time. 

Problems in the linearly implicit form 
A(t,y) Y = g(t,y) arise frequently. Probably 
the most common sources are discretizations (by 
the method of lines procedure) of time-dependent 
POE systems in which collocation, Galerkin, 
finite element, or other weighted residual 
methods are applied to the spatial variables. 
In these problems, A is a square matrix, usually 
nonsingular. We allow A = A(t,y), but often A 
is constant. When A is nonsingular, this is an 
OOE system, but otherwise it is a 
differential-algebraic system. A numerical 
method for such an implicit system can be gotten 
from either of the multistep formulas given 
above, by multiplying both sides by 
A(tn,Yn), replacing A(tn,Yn)Yn by 
g(tn'Yn)' and solving the resulting implicit 
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relation for Yn' If the original formula has 
tr.e form 

Yn = an + h So Yn , 

then we ootain an implicit relation of the form 

to oe solved for y = Yn, where an is a 
constant vector. Again, a modified Newton 
iteration is usually most appropriate for this. 
However, it helpful first to introduce the 
residual function 

values of which the user is to supply. Here s 
represents an approximation to Yn, and we 
specifically define s to be 

s = (Yn(o) - an) 1 h So 

That is, s is a predicted value of Yn that 
corresponds to the prediction Yn(o) through 
the original formula: Yn(o) = an + h SD s. 
We then find that S(y) and r(y) are related by 

S(y) = A(tn,y) (y - Yn(o)) - h So r(y) 

In analogy with the algorithm for stiff 
explicitly given problems, we evaluate the 
Newton matrix S' (y) = asl Cy only at the 
predicted value Yn(o). From the above 
relation, we find that this matrix is 

where r'(y) similarly denotes the Jacobian of r, 
~/ay. Note that if A is the identity 
matrix I, this matrix P reduces to that used in 
the case y = f. 

The algorithms for solving A y = g arrived 
at in this way are numerically reliable only for 
certain classes of problems (including in 
particular those with non-singular A), and not 
for general differential-algebraic systems of 
this form [8]. However, for most applications 
of interest, these methods have been found to 
perform well, if not for the original system, 
then for a reorganized form of it. 

For all of these methods, the algorithm for 
selecting the step size h and method order q is 
baSically that used by Gear in [4], based on 
asy~ptotic local error analysis, but with some 
mod::'fications. On each step, an estimate of the 
lecal error (at the current order q) is formed 
frem the difference between the predicted and 
f ir,al corrected values of y. This gives a value 
of :1 suitable for meeting the given tolerances 
a: cr~er q (and for redoing the step if the 
tolerances were not met). Periodically, one can 
0: :0 estimate the local error that would be 
eomwltted at orders q - 1 and q + 1 
(oissallowing one of these choices if q is 
cu::ently 1 or the maximum allowed). These 
estimates yield values of h suitable for each of 
troe t .-,ree orders. Then the new hand q are 

selected on the basis of maximizing h. Except 
when a step fails the local error tolerance 
test, changes in hand 0 are allowed no more 
frequently than every q + 1 steps, in order to 
prevent instabilities. 

3. THE ODEPACK SOLVERS 

3.1 The ODEPACK Concept 

The GEAR package and its variants were added 
to a list of available general purpose initial 
value solvers that was growing quite sizable by 
1975. The length and diversity of this list 
caused some concern to users and software 
developers alike. There was much duplication of 
capabilities offered, but at the same time there 
was very little in common among the solvers in 
terms of either their external appearance or 
their internal structure. This situation was in 
sharp contrast to that in other areas in which 
"systematized collections" of Fortran routines 
were being developed. The earliest examples 
were EISPACK [9], for computing matrix 
eigensystems, LINPACK [10], for solving linear 
systems, and FUNPACK, for certain special 
functions. 

The idea of a systematized collection of 
initial value ODE solvers, tentatively called 
ODEPACK, was discussed informally as early as 
1974, in workshops attended by people from all 
over the world [11]. However, it was quickly 
realized that the task was much larger in the 
ODE case than in other areas, partly because of 
the complexity of the subject, and partly 
because of widely divergent views of what 
ODEPACK should look like. Starting in 1976, 
attempts were made to reduce the problem by 
involving only people at U.S. Department of 
Energy laboratories, and LLNL received funding 
to study the feasibility of ODEPACK from the 
Applied Mathematical Sciences Research Program 
under the Office of Basic Energy Sciences in 
OOE. 

The natural first step, and a necessary 
preliminary to any actual development of an 
DDEPACK, was the setting of standards for the 
interface between the user and the ODE solvers. 
The user interface to a solver consists mainly 
of the call sequence of the routine the user 
must call, together with definitions of the one 
or more user-supplied routines called by the 
solver. To the extent that solvers for various 
problem types and using various methods must all 
communicate certain specific thinas to and from 
the user, it is possible to formulate a loose 
set of standards for the user interface. An 
early proposal is given in [12]. A sequence of 
workshops and discussions on user interface 
standards for DOE solvers succeeded in producing 
a reasonable consensus in 1978 [13,14]. The 
resulting tentative interface standard was 
achieved only through considerable compromise by 
the various participants, which included ODE 
software authors and users at various DOE 
laboratories. 

At that time, it was agreed that several of 
the more popular ODE solvers, including GEAR, 
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GEARS, DE/STEP [15) and RKF45 (16), would be 
rewritten to conform with the tentative standard 
interface (13), resulting in a small collection 
that was at least systematized in its external 
appearance. The first result of that agreement 
was a package based on the GEAR and GEARS 
packages, called LSODE (Livermore Solver for 
ODE's) [17,18] . Subsequently, four variants of 
the LSOOE solver were written, all in accordance 
with the tentative standard interface (13), with 
minor modifications. In the meantime, 
unfortunately, the other software authors 
involved withdrew from the agreement, and so 
this collection does not yet have analogous 
rewritten versions of their codes. 

In what follows, the LSODE package, and the 
variants of which have been completed to date, 
are summarized. Other variants planned are also 
mentioned, and comments on availibility of the 
solvers are given. 

3.2 LSODE: The Sasic Solver 

LSODE [17,18] combines the capabilities of 
GEAR and GEARS. Thus it solves explicitly given 
stiff and nonstiff systems y = f(t,y), and in 
the stiff case it treats the Jacobian matrix J = 
af/ay as either full or banded, and as 
either user-supplied or internally approximated 
by difference quotients. Sy comparison with 
GEAR and GEARS, LSODE offers a number of new 
features that make it more convenient, more 
flexible, more portable, and easier to install 
in software libraries. Some of these are the 
following: 

(a) Through the redesigned user interface, 
many new options and capabilities are available, 
and others are much more convenient than 
before. Some examples are--more flexible error 
tolerance parameters, independent flags for 
starting and stopping options, internally 
computed initial step size, two work arrays in 
the call sequence for all internal dynamic work 
space, user names for f and J in the call 
sequence, easy changing of input parameters in 
mid-prOblem, convenient optional inputs (such as 
maximum method order), convenient optional 
outputs (such as step and function evaluation 
counts), optional provision of derivatives of 
the solution (of various orders) at any point, 
and real and integer user data space (of dynamic 
length) available in the f and J routines (with 
no extra burden on the casual user). 

(b) The user documentation, which is 
contained in the initial comment cards of the 
source, is given in a two-level form. A short 
and simple set of instructions, with a short 
example program, is given first, for the casual 
user. Then detailed instructions are given for 
users with special problem features or a desire 
for nonstandard options. The latter is also 
organized so as to allow selective reading by a 
user who wants only a fraction of the 
nonstandard capabilities. 

(c) When stiff options are selected, linear 
systems are solved with routines from LINPACK 
[10], which is becoming a widely accepted 
standard collection of linear system solvers. 

(d) Some retuning of various heuristics was 
done so that performance should be more reliable 
than for GEAR/GEARS. For example, LSODE has no 
minumum step size (unless one is specified as an 
optional input), but has instead a maximum 
number of failed attempts at a time step. 

(e) The core routine which takes a single 
step, called STODE, is independent of the way in 
which the Jacobian matrix (if used) is treated. 
Thus variant versions of LSODE for other matrix 
structures (such as LSODES) will share the same 
subroutine STOOE. 

(f) The writinq of all error messaqes is 
done in a small isolated general-purpose message 
handler called XERRWV. Two other small 
subroutines are user-callable and allow for 
optional changing of the output unit number and 
optional suppression of error messages. This 
trio of routines is compatible with a much 
larger error handling package (the SLATEC Error 
Handling Package) written at Sandia National 
Laboratories [19]. 

(g) LSODE easily allows a user to interrupt 
a problem and restart it later (e.g. in 
switching between two or more ODE problems). 
Also, using LSOOE in overlay mode is very easy, 
with no loss of needed local variables. 

(h) The various lists of constants needed 
for the integration, formerly appearing in a 
subroutine called COSET, are now computed (once 
per problem). This adds to the portab~lity of 
LSODE. 

3.3 LSODI: Implicit Systems 

The LSODI solver [17], written jointly with 
J. F. Painter (LLNL), treats systems in the 
linearly implicit form A(t,y)y = g(t,y), where 
A is a square matrix. Many problems, including 
POE's treated by finite elements and the like, 
result in such systems, and it is almost always 
more economical to treat the system in the given 
form than to convert it to an explicit form y = 
f. LSODI allows A to be singular, but the user 
must then input consistent initial values of 
both y and y. In the singular case, the system 
is a differential-algebraic system, and then the 
user must be much more cautious about 
formulating a well-posed problem, as well as in 
using LSODI, which was not designed to be robust 
in this case. LSODI is based on (and 
supersedes) the GEARIB package, but corrects a 
number of deficiencies, as follows: 

(a) The matrices involved can be treated as 
either full or banded, by use of the method flag. 

(b) The dependence of A on y is 
automatically and inexpensively accounted for, 
whether partial derivatives are supplied by the 
user or computed internally by difference 
quotients. 

(c) When A is singular, the user needs to 
supply the initial value of dy/dt, but no later 
values. This array (along with the initial y) 
is passed through the call sequence. 
(Admittedly, correct initial data can be 
difficult to obtain for some types of 
problems.) When the initial dy/dt is not being 
supplied, an input flag instructs LSODI to 
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:.SI')CF.S tr,E' ~itr,:cturc u,ed fo;' tn~s is th.,t of 
.J .,. J T • 

er) 5y~hcl~c LU ~~ctcriz&tiar. of the ~nt~ix 
p. T~~s is base~ c~ly on sp8~~ity fi~~ the pivot 
c:r1er, 8r.C USE'S t :1E' moc!ule in YSMP cesir,r.ed for 
:lcnsyr.",etr:.c rr.3triceo. with ccr.,pressfd r:;6:nter 
stcra'~E: (eCRV (;lcdule) [23~. 

(c) ,':onstructior. cf J. T~i.s C3n be cone 
ir.tA:nally by difference cuotients, cr with 8 

user-suppl.ie,j routine. In the cifferer,ce 
quotient case, the number of f evalUations 
needed is kept to a minimum by a column grouping 
~echr.ique due to Curtis, Powell, and Reid [24). 
In the other case, the user-supplied routine 
provides one column of J at a time, in the form 
of a vector of length N (although only the 
non-zero elements need be computed and stored), 
so that users need never deal with the internal 
data structure for J and P. In any case, J is 
storea internally in an appropriate packed 
fcrm. Evaluations of J are done only 
occasionally, as explained below. 

(e) Construction of P = I - hBoJ. In 
contrast to LSODE and GEARS, LSODES does not 
force a re-evaluation of J whenever the existing 
P is deemed unsuitable for the corrector 
iterations. Instead, when the value of J 
contained in the stored value of P is likely to 
be usable (and P is not, only because hSo 
has changed significantly), then a new matrix P 
is constructed from the old one, with careful 
attention to roundoff error. This cuts down 
qreatly on the total number of J evaluations. 

(f) Numerical LU factorization of P. This 
is dcne by YSMP (CORV module) in sparse form, 
and the array containing 0 is saved in the 
process. Because of the absence of partial 
pivoting for numerical stability, this operation 
can conceivably fail. However, this has only 
rarely been observed in practice, and if it does 
occur (with a current value of J), the step size 
h gets reduced and the difficulty disappears. 

(g) Solution of Px = r. This is done by 
YSMP (CORV mOdule) using the existing sparse 
factorization of P. E:ecause a modified Newton 
iteration is used, ~ar.y '/alues cf r (Le., r.,any 
"-inear s1stems) car. "rise for tr,e same P, and 
the sepa-.:-aticn cf the varicus pr.ases takes 
adv6ntege of that fact, 

The first t~r"e ~heses, ane pa:t of the 
fGurt~, (cclu;nr: r;~ol.!pir,~ fa: ci £'7'e:ence 
ctJctients:, ~re ncr~~li1 dc~e c~ly at the start 
cf t~e ~rct~~r. H~we~~rt t~~ tJser CGn s~ecifl 
~~~t the s05~sity ~~~l~c~ure is tc ~e 
r~:et~r~~-e~ ~~ t~e ~i~die CC ~~~ :r:tlem, ~rd 
~hen t~~~e c~e:~t~crs 8r~ : ~pe~t~~ . 

I: C ~ ,.J:-:i. ::', :~e --;:t.L": I tjr:F:: ;;~ er: en tj '(:; ~.~~ :.~ 

.... c': ;:::. ~Jut I- = p . , te-:r:.J:'F. ::. i~ CF-::f:::,r:J...er. :'r. 
:-.:r::': .. :Tn s:r:'er Nri':'c Y5'lF :-~:cl..:r'e':". ~~,e -:1t;-i.:I tc 
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be described and stored in row order. But this 
causes no difficulty, because YSMP includes a 
routine for solving the equivalent transpose 
problem xTA = rT as well as for the direct 
problem Ax = b. 

3.5 LSOOA: Automatic Method Selection 

LSOOA is a variant of LSODE of yet another 
kind. It was written jointly with L. R. Petzold 
(Sandia-Livermore), and switches automatically 
between nonstiff (Adams) and stiff (BDF) 
methods, by an algorithm developed by Petzold 
[25]. (The suffix A stands for Automatic.) 
Thus it is more convenient for users who do not 
want to be bothered with the issue of 
stiffness. Also, it is potentially more 
efficient than LSOOE (when used with a fixed 
method option), when the nature of the problem 
changes between stiff and nonstiff in the course 
of the solution. In particular, on the initial 
(nonstiff) transient interval that is almost 
always present in stiff .problems, LSODA uses the 
more efficient Adams method. In place of the 
method flag parameter of LSOOE, the user of 
LSODA supplies only a Jacobian type flag 
(specifying whether J is full or banded, to be 
user-supplied or internally generated). The 
work space supplied to the solver can be either 
static (and thus allow for either method), or 
dynamic (and altered each time there is a method 
switch, to an amount specified by the solver). 

3.6 LSOOAR: Rootfinding 

LSODAR combines the capabilities of LSODA 
with a rootfinder. It allows one to find the 
roots of a set of functions 9i(t,y) of the 
independent and dependent variables in the ODE 
system. (This is sometimes referred to as a 
"g-stop" feature.) Thus, for example, it could 
be used in a particle tracking problem to 
determine when a particle path reaches any of 
the walls of a container. LSODAR was also 
written jointly with L. R. Petzold, based on an 
algorithm [26] developed by K. Hiebert and 
L. F. Shampine (Sandia-Albuquerque). The user 
must supply, in addition to the LSODA inputs, a 
slJbroutine that computes a vector-valued 
function g(t,y) = (9i, i=1,2 •••.• NG) such 
that a root of any of the NG functions 9i is 
desired. Of course there may be several such 
roots in a given output interval. and LSODAR 
returns them one at a time, in the order in 
which they occur along the solution. An integer 
array tells the user which 9i (if any) were 
found to have a root on any given return. With 
LSODAR, it is especially important to choose the 
tolerances conservatively. so that numerical 
errors in the computed solution yet) do not 
deceive the root finding algorithm. 

3.7 Future Additions 

Several other solvers will be added to the 
ODEPACK collection in the near future. as they 
are developed in response to the needs of 
different classes of problems. In particular. 

the following two solvers are nearly complete 
and will soon be available: 

(a) LSOIBT. This resembles LSODI in that it 
solves problems of the form A(t.y) y = Q(t,y). 
but it assumes a block-tridiaQonal structure for 
all the matrices involved. It then uses a 
linear system solver tailored to 
block-tridiagonal systems. LSOIBT was developed 
from LSODI by C. Kenney (China Lake Naval 
Weapons Center). It was motivated by the method 
of moving finite elements for parabolic POE 
systems. which generates ODE systems A y = g 
with block-tridiagonal structure. 

(b) LSODIS. This also solves the A y = g 
problem. but uses a general purpose sparse 
matrix treatment of the linear systems. as in 
LSODES . LSODIS was developed from LSODI and 
LSODES by S. Balsdon (University of Texas at 
Austin) [27]. and was also motivated by finite 
element methods. 

In addition, plans are under way to rewrite 
(and algorithmically improve upon) other 
existing solvers for addition to OOEPACK. 
Solvers to be so revised include GEARBI [6] and 
EPISODE [28]. 

3.8 Avai l ability 

The OOEPACK solvers are available from the 
author on request. by way of magnetic tape. 
Requestors should specify whether single or 
double precision versions (or both) are 
desired. LSODE is also available from the 
National Energy Software Center (NESC) at 
Argonne National Laboratory. The full 
collection will also be installed at NESC. 
eventually. 

To date, one or more members of the ODEPACK 
collection have been sent on request to over 200 
sites . and the acceptance of the solvers has 
been extremely positive. 

4. AN EXAMPLE PROBLEM 

In order to illustrate the various solvers 
described above, and to demonstrate their 
relative merits on a realistic problem. we 
consider here an example problem. The problem 
is a simple atmospheric model with two chemical 
species undergoing diurnal kinetics and 
transport in two space dimensions. The 
independent variables in the POE system are 
horizontal position x. altitute z (both in 
kilometers), and time t (in sec), with 

a ~ x ~ 20. 30 ~ z ~ 50, 

a ~ t ~ 86400 (l day) • 

The dependent variables are 

cl(x,z,t) = the concentration of the 
oxygen singlet [0] , and 

c2(x,z,t) = concentration of ozone [03] 

(both in moles/cm3). The concentration of 

molecl 
The ec 

i 
ct 

where 
deriVe 
chemi~ 

The vo 

Both c 
homoge 
normal 
bounda 
are 

which 
satisf 

Th 
distrj 
time a 
With I 

[03] v 
sharp 
orders 
essent 

To 
apply 
rectan 

Thus t 
(Xj ,Zk 

and th 
approx 



r 
\ 

ODl:."P., 1 CI( ,I S.I 'sfl·/IIl1ti::ed Collectio/l uf ODE Soil'l.'rs 61 

., ,', oxyqen [('2] js assumed constant. 
: , ' , ~: ons of the model are: 

iii 1 2 
(Kv (Z)Cz)z + Khcxx + R (c ,c ,t), 

(i=1, 2), 

~ . , ; 'e sLJcscripts t, z, and x denote partia l 
" ,_ , ~:" :es. Here Rl and R2 represent the 

- , : rl ana Gre given by 

-(kl + k2C2)cl + k3(t)c2 
+ k4(t)07.4 ol016 

(kl - k2C2)cl - k3(t)C2 

j':-" ',:,; icus coefficients are as follows : 

10-8 0 exp(z/S), Kh = 4010-6 

~ _ = 6. 03, k2 = 4.66 010-16 , 

~:.., ( ~; = {eXP[-7.60l/Sin(llt/43200»), t < 43200} , 

0, t ~ 43200 

~ ... ;:: ; = {eXP[-22.62/Sin(llt/43200)), t < 43200}. 

0, t ~ 43200 

E,~tn cl and c2 are required to satisfy 
r.c[f,c.qeneous Neumann boundary conditions (zero 
nc:mal Cerivatives) along all the x and z 
bcurcaries. The initial conditions (at t = 0) 

c l 106 (l - x2 + x-l/2)(l - i.2 + ~/2). 

c2 1012 (1 _ x2 + ~4/2)(l _ ,,2 + ~/2), 

x :: (x - 10)/10, i :: (z - 40)/10 , 

whicr, represent mildly peaked distributions 
s~t isfying the boundary conditions. 

The solution to this problem is a peaked 
C:stribution for both variables, changing in 
T.irr.e end diffusing somewhat in all directions. 
'.~ ~ th respect to time, the ozone concentration 
[ C3] varies only a few percent, but [0] has a 
s~arp initial drop, then rises by over three 
c:·:ers of magnitude, and finally drops 
~s~entially to zero at sunset. 

To solve the above system numerically, we 
·, ~; r;lJ the method of lines using a regular 
:r-c::8ngular mesh with constant mesh spacings 

I'::i. = 20/(Mx-l) , t::z. = 20/ (Mz-l) 

...:~ tr,e discrete mesh consists of points 
/~ , Zi< ) with 

)' j (j-l ) 6< (j = 1,2, ..... ,M x) , 

Z;.: 30 + (k-l) bz (k = 1,2, ... ,M z) 

-~ ::ne aiscrete v,riable c1 k is an 
, : Gro~imation to C1( Xj'Zk)' 'The spatial 

derivatives are approximated by standard 5-point 
central differences, and the boundary conditions 
are similarly replaced by difference relations. 
To illustrate, consider a nonuniform diffusion 
term in one dimension, (K(z) cz(z»z. The 
value of this term at a point z = zk is given by 

K(z k+1/2) Cz(Zk+l/2) - K(Z k_1/2) Cz(Zk-1/2) 

(Zk+1/2 - zk-1/2) 

where 

cz(zk+1/2) - (ck+l - ck)/(xk+l - xk) 

Cz(Zk-1/2) - (ck - ck_l)/(xk - xk-l) 

zk+1/2 - (zk+l + Zk)/2 

zk-1/2 - (zk_l + zk)/2 

(Uniformity of the mesh is not assumed in these 
difference formulas.) The boundary conditions 
in the 2-D problem are approximated by setting 

i i 
ca,k = C2,k (all k) 

for the boundary segment Xl = 0, and similarly 
for the other three boundary segments. These 
relations allow one to form a well-defined ODE 
for each of the clk. The resulting ODE 
system y = f(t,y) has size N = 2MxMz. It is 
quite stiff because of the presence of a short 
kinetics time constant (about 1/6 sec). The 
initial value vector Yo is taken from the 
initial condition functions given above. The 
system Jacobian J is sparse, with roughly 
12MxMz = 6N nonzero elements. As a band 
matrix, with component ordering first by 
species, then by x, and lastly by z, it has a 
half-bandwidth of 2Mx, and thus a full 
bandwidth of 4Mx+l. (It is important to use 
such an ordering if minimal bandwidth is 
important; an ordering by grid points and then 
by species produces a Jacobian that is not 
banded at all.) 

We consider two cases, 

Mx = Mz = la, and Mx = Mz = 20. 

As to accuracy, a crude model of this type calls 
for no more than a few significant figures. To 
be conservative in recognizina that tolerance 
parameters are applied to local errors, which 
can accumulate into global error, we miqht 
impose a local relative tolerance of 10-4 . We 
must also specify r positive absolute tolerance 
on the values of c because it decays to 
negligible values at night. A reasonable 
absolute tolerance is 10-2 . 

Three of the ODEPACK solvers are suitable 
for this particular problem--LSODE, LSODA, and 
LSODES. In addition, the older package GEARS I 
is certainly suitable, and in fact was motivated 
by exactly this type of problem. Recall that 
LSODES uses a general sparse treatment of the 
Jacobian matrix, GEARS I uses block-SOR, while 
LSOOE and LSODA will (in this case) treat the 
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Jacobian as banded. The problem was set up for 
each of these four solvers and run first on a 
CDC-7600 computer, then on a Cray-l computer. 
On the 7600, only the 10 by 10 grid problem was 
run, as the larger problem could not be 
accommodated by all of the solvers within the 
Small Core Memory (about 57000 words). For all 
but GEARBI, both the user-supplied Jacobian 
option and the internal difference quotient 
Jacobian option were tested. (GEARBI has no 
difference quotient option.) The results of the 
runs on the CDC-7600 are given in Table 1. The 
results of the Cray-l runs are given in Table 2 
for the 10 by 10 grid, and in Table 3 for the 20 
by 20 grid. The tabulated quantities are: 

R.T. CPU run time in sec 
NST number of steps 
NFE number of f evaluations 
NJE number of J evaluations 
NLU number of LU decompositions 
W.S. total size of work space arrays 

In the tables, USJ denotes the user-supplied 
Jacobian option, and OQJ denotes the internal 
difference quotient Jacobian option. An earlier 
comparison test on this problem is in [5]. 

Table 1. Results of kinetics-transport test 
problem (lOxlO grid) on the CDC-7600. 

Solver R. T. NST NFE NJE NLU W.S. 

LSODE 23.2 344 519 68 68 14,242 
(USJ) 

LSD DE 28.4 337 3338 69 69 14,242 
(DQJ) 

LSODA 21.3 339 584 55 55 14,242 
(USJ) 

LSODA 24.6 339 2795 55 55 14,242 
(OOJ) 

LSODES 13.1 364 529 10 70 12,455 
(USJ) 

LSODES 13.5 369 602 8 72 12,664 
(OOJ) 

GEARS I 6.3 316 526 50 50 3,004 

Table 2. Results of kinetics-transport test 
problem (lOxlO grid) on the Cray-l. 

Solver R. T. NST NFE NJE NLU W.S. 

LSOOE 2.52 344 520 68 68 14,242 
(USJ) 

LSODE 5.16 337 3463 72 72 14,242 
(OOJ) 

LSODA 2.89 344 587 54 54 14,242 
(USJ) 

LSODA 4.78 340 2794 55 55 14,242 
(DQJ) 

LSODES 4.86 364 533 14 71 12,455 
(USJ) 

LSODES 5.34 378 641 11 76 12,664 
(DQJ) 

GEARS I 3.04 316 526 50 50 3,004 

Table 3. Results of kinetics-transport test 
problem (20x20 grid) on the Cray-l. 

Solver R. T. NST NFE NJE NLU W.S. 

LSODE 19.8 401 604 86 86 104,842 
(USJ) 

LSODE 43.1 402 7647 87 87 104,842 
(ooJ) 

LSODA 17.1 312 550 52 52 104,842 
(USJ) 

LSODA 35.4 344 5486 61 61 104,842 
(DOJ) 

LSODES 43.2 385 577 10 90 61,033 
(USJ) 

LSODES 42.2 390 638 8 77 61,842 
(OOJ) 

GEARSI 16.4 348 544 58 58 12,004 

Several points of interest can be noted in 
these tables. 

(a) First, for each of the two problems, the 
number of steps does not vary greatly from 
solver to solver, because that is determined 
almost entirely by the accuracy requirement, and 
the accuracy achieved is much the same for all 
these runs. Also, comparison of the 20x20 grid 
results with the 10xlO grid results shows that 
the latter have errors (due to the spatial 
discretization) of up to 2%. 

(b) For each problem, the performance 
characteristics of LSODE and LSODA are similar, 
as expected, since both use a banded Jacobian 
here. In most cases, LSODA is faster, primarily 
because it uses the cheaper nonstiff (Adams) 
method on the initial transient of the problem, 
switching to the SDF at about t = 3.6. For the 
same reason, the number of Jacobian evaluations 
is significantly lower for LSODA than LSODE. 
This advantage is offset somewhat by a larger 
average number of f evaluations per step for 
LSODA during the integration of the transient 
(due to the need in LSODA for estimates of the 
Lipschitz constant). 

(c) For LSODE and LSODA, the use of a 
difference quotient Jacobian incurs some 
additional expense over the user-supplied 
Jacobian, owing to its cost of 4Mx+l (= 41 or 
81) additional evaluations of f for each 
evaluation of J. On the 7600, this cost penalty 
is never more than 25%, but on the Cray, it is 
65% to 118%. The reason is that the band matrix 
solvers on the Cray (which are highly optimized 
versions of the LINPACK routines) are up to 10 
times faster than on the 7600, while f 
evaluations are only about twice as fast on the 
Cray. (This illustrates the speed gains 
possible with vector operations on the Cray, in 
contrast to the evaluation of f here, which was 
left in a form that does not vectorize at all.) 
Thus on the Cray, the cost of the f and J 
evaluations is a much larger fraction of the 
total. For example, for LSOOE (USJ) on the 
10xlO grid problem, the cost of the f 
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~V~ : .~ ~ ~ a r s is about 4% of the total on the 
7'_' :-~ ' . ~,r: ~bGut 19% of the total on the Cray. 
Cif S ~: ~ . ~ t pays to eenerate a closed-form 
" _ " "~ , .r ~outine when using LSOOE or LSOOA to 
~~ : .~, ' !' t iff system on the Cray. 
- - ' ~,""e LSOOES results show a sianificant 
~c<? ,..::;:-. fj :l the 7600 over LSOOE and LSOOA (by 
:"':;c ~ ~ ~ ~' o f 1.6 to 2.1), but none (or nearly 
"C,"e J :r c",e Cray. The reason is tnat, in 
:cr ';" " ~ to tne band matrix solvers, the sparse 
~6 ~ :~ X sc:vers do not show more than aoout a 
2-:c-~ speeoup in moving from tne 7600 to the 
::: r:: y. Tr,e speed advantage of LSOOES on the 7600 
cppc2rs to be due entirely to its algorithm of 
sa v ! ~g Jld values of P, and thus cutting down 
;"re:::tly en the number of J evaluations, which 
~onsLi tute a sizable fraction of the total cost 
on t~e 7600. Note that each computed value of J 
is usee for 26 to 49 steps, as opposed to only 5 
to 6 steps for LSODE and LSODA. For a problem 
t;-.ot is similar but more costly in function 
~valuaticns, this behavior would lead to a 
sil,niflcant eost advantage for LSOOES on the 
C~ay as well as on the 7600. 

(e) On both computers and for both problems, 
tt-,e cost penalty for a difference quotient 
Jacobian is quite small for LSODES (at most 
10%). This is partly because there are so many 
fewe r J evaluations, and partly because each 
evaluatf.:;n of J by difference quotients in 
LSGCES costs only 8 evaluations of f here, 
independent of the grid size. 

(f) The storage requirement for LSODES is 
lower t han for LSODE or LSODA, by around 12% on 
the IOxlO grid, and around 41% on the 20x20 
grid. This trend continues for finer meshes. 
Fer courser meshes, LSODES would have no storage 
aovantage, reflecting its need for sparsity 
informat i on arrays and the fact the matrix P is 
stored separately from its LU decomposition. 
Thus for the present problem, on the 7600, and 
on tne Cray with difference quotient Jacobian 
option, LSODES is competitive with LSODE or 
LSODA in run time and superior in storage. 

(g) Overall, the best performance on this 
problem, however, is that of GEARS!. This 
should not be a surprise, since the Jacobian has 
a very regular block structure of which the 
block-SOR method in GEARSI is taking full 
!ld~ant8ge, both in storage and computation. The 
LU decompositions here are only those of the 
bleck diagonal part of the Newton matrix (with 
2x2 blocks). The total number of block-SOR 
ite~8 tions for the 10xlO grid was 607, or an 
a~~r&~e of less than 2 per step. For the 20x20 
cr i.e ;: r, is cost rose to 972 iterations, or an 
eve:-2.'Je of 2.7 per step. Note that, because 
t~·e ::- e is little opportunity for use of vector 
e ~F ru :ions, the cost for the 10xlO problem 
crG~ ;:; z'G by only a factor of 2.1 in going from 
tr.e 7tOGO to the Cray, making the GEARBI run 
t:'r,es r.e&rly equal to those of LSODE (USJ) and 
L::'C,[J. (1j5J). (A more careful organization of 
t -.i:' :, :'CCk-SOR algor i thm might yield greater 
SP:f-CS en the Cray.) The storage advantage of 
', t:':'~.2 :;: i s tremendous, though - a factor of 4.7 
f0~ tr,e IOxlO grid and 8.7 for the 20x20 grid. 
T~ ,s fur problems of this general type, which 

are amenable to block-iterative matri x 
treatment, solution by GEARSI or a similar 
alqorithm appears stronoly co~petitive with 
other approaches. 

In closing, we mention some truly large 
problems to which the GEARS I packaqe has been 
applied. In the early 1970's, a number of 
atmospheric models were developed at LLNL, 
involvinq chemical kinetics and transport in up 
to 2 space dimensions. Typically, the number of 
chemical species was 5 to 20, and typical 2-0 
mesh sizes were about 40 by 40. Thus when 
finite differenced, these problems generated ODE 
systems of sizes exceeding 10,000. The smallest 
kinetics time constants were typically in the 
range of milliseconds to microseconds, while the 
largest diffusion time constants were measured 
in years, making these systems extremely stiff. 
The GEARS! package, and an extension of it using 
Large Core Memory on the CDC-7600 (about 400,000 
words), were successfully used to solve these 
problems in a wide variety of applications 
[29,30,31]. 
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