AME 598i
Prof. J. M. Powers
Homework 12
Due: Wednesday 30 April 2003
Consider the one-dimensional analog of the model given by Powers and Gonthier. ${ }^{1}$ Use as a starting point Equations (1-8) taking $v=0$, and take all parametric constants to be those given in the paper.

- Reproduce the scaling arguments to get the proper one-dimensional analog of Equations (1217).
- Get an analytic solution for $\lambda_{1}(x), \lambda_{2}(x), P(x), \rho(x)$, and $u(x)$ in the high Mach number limit. Show plots for each.
- Select a wavespeed which generates an eigenvalue detonation. For this wavespeed, numerically determine and plot $\lambda_{1}(x), \lambda_{2}(x), P(x), \rho(x), u(x)$, and $M^{2}(x)$.
- Similar to Figure 3, plot the $P-\lambda_{1}$ phase plane.

[^0]
[^0]: ${ }^{1}$ Powers and Gonthier, 1992, "Reaction zone structure for strong, weak overdriven, and weak underdriven oblique detonations," Physics of Fluids A, Vol. 9, pp. 2082-2089.

