AME 598i Prof. J. M. Powers Homework 2 Due: Friday, 31 January 2003

- 1. Write a description of less than one page of the Zeldovich mechanism of NO_x production. Use the IATEX text formatter to generate your output. Include appropriate formatted equations and appropriate references.
- 2. Consider a system which is a part of the Zeldovich mechanism for formation NO:
 - (a) $O + N_2 \to NO + N$, $k_1 = 1.8 \times 10^{14} \frac{cm^3}{mol \ s} \exp\left(\frac{-38370 \ K}{T}\right)$,

 - (b) $NO + N \to O + N_2$, $k_2 = 3.8 \times 10^{13} \frac{cm^3}{mol \ s} \exp\left(\frac{-425 \ K}{T}\right)$, (c) $N + O_2 \to NO + O$, $k_3 = 1.8 \times 10^{10} \frac{cm^3}{mol \ s \ K} T \exp\left(\frac{-4680 \ K}{T}\right)$, (d) $NO + O \to N + O_2$, $k_4 = 3.8 \times 10^9 \frac{cm^3}{mol \ s \ K} T \exp\left(\frac{-20820 \ K}{T}\right)$,

Take the system to be isothermal with $T = 1600 \ K$ and isochoric with $V = 1000 \ cm^3$. At $t = 0 \ s$, we have $N_N = 1 \ mol, \ N_{NO} = 2 \ mol, \ N_{N_2} = 3 \ mol, \ N_O = 4 \ mol, \ N_{O_2} = 5 \ mol.$

- Write a system of five ordinary differential equations in five unknowns to describe the evolution of each species concentration. Include appropriate initial conditions.
- Find conserved quantities and give the physical significance of each.
- Reduce the system to two ordinary differential equations in two unknowns, where the unknowns are $[O_2]$ and $[N_2]$.
- Find all equilibrium states, and identify which are physical.
- Perform a local linear analysis around each physical equilibrium, and identify the time scales of reaction.
- Write a Fortran 77 (or equivalent) code to integrate the full equations from the initial state to the equilibrium state. Include a copy of your code (leaving out the dlsode subroutine) as an appendix to your solution.
- Plot all species concentrations versus t.
- Plot $[N_2]$ versus $[O_2]$.
- Plot P(t).
- Using the thermochemical calculator (http://blue.caltech.edu/tcc) to estimate the enthalpies at the end states, calculate the total heat transfer in kJ in the process.