AME 598i Examination 1 Prof. J. M. Powers 7 March 2003

- 1. At t = 0 s, a stoichiometric mixture of H_2 and O_2 (that is for every mole of O_2 initially, there exists two moles of H_2) is enclosed in a fixed volume of 1000 cm^3 at P = 1 MPa, T = 1000 K.
 - (a) Using the detailed reaction mechanism developed in homework, generate a plot of T(t) and, on the same plot $[H_2O](t)$ and [OH](t). Make sure your plot elucidates all of the features of the development and ultimate equilibration.
- 2. Consider a simplified combustion model for an unsteady system with spatial homogeneity, Arrhenius kinetics and lumped convection:

$$\frac{dT}{dt} = \alpha(1 - T)e^{-\theta/(\kappa + T)} - \beta T, \qquad T(0) = 0.$$

If $\alpha=10$, $\kappa=1/10$, $\beta=\theta=1$, find all equilibrium temperatures and their stability. Numerically determine and plot T(t).