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1. Consider the reaction kinetics law using the notation described in class
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(a) Taking Kc,j , j = 1, . . . , J , as having known values, give a simple sufficient condition, or
set of conditions, for the ith species to be in equilibrium.

(b) Using appropriate notation as described in class, show that element mass fractions remain
constant with time.

By inspection, a sufficient condition, which may not be necessary, for equilibrium is that each of the J
reactions be in equilibrium. This will exist when
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A less likely, and less interesting, condition for equilibrium would be to have at least one of the ck =
0, k = 1, . . . ,N when ν′

kj
6= 0, for each of the J reactions. This simply implies that for each reaction, a

necessarry reactant is totally absent, thus suppressing that reaction and inducing a state which is formally
in equilibrium. Other sufficient conditions which are not very interesting include αj = 0, j = 1, . . . , J ;
νij = 0, i = 1, . . . ,N ; j = 1, . . . , J ; T = 0.

For the second part, one can begin with the equation for reaction kinetics and carry out a series of
operations, as done in class, utilizing definitions described in class:
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φlici represents the number of moles of element l per unit volume, by the following
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Now, since the atomic mass of element l, Ml, is a constant.
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That is, the element mass density, ρe
l
, of element l is constant with time.

2. Species A and B have identical molecular masses and undergo an irreversible decomposition
described by

A + A → B + A.

The reaction is isothermal and isochoric. At t = 0, cA = cAo, and cB = 0.

(a) Write an appropriate simple ordinary differential equation for the change in concentration
of species A with respect to time. Define any appropriate constants.

(b) Find the equilbrium concentration of A.

(c) Find cA(t).

From kinetics of the irreversible reaciton, one gets
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Solve for cA:
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As t → +∞, one finds
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3. Find the most general stoichiometric balance for the reaction
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Rearranging, one writes

ν1H2 + ν2O2 + ν3H2O + ν4OH + ν5O = 0. (20)

Taking l = 1 to correspond to H and l = 2 to correspond to O, one solves the equation

φ · ν = 0. (21)

Here φ is the matrix of elements in each species and ν is the vector of stoichiometric coefficients. Leaving
out the details, one finds
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In row echelon form, this becomes
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So, ν3, ν4, and ν5 are free variables. Take ν3 = r, ν4 = s, and ν5 = t, so that
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So the most general balance is given by

−(r + s/2)H2 − (r/2 + s/2 + t/2)O2 + rH2O + sOH + tO = 0. (26)

Slightly more traditionally, one might say

(r + s/2)H2 + (r/2 + s/2 + t/2)O2 � rH2O + sOH + tO (27)

Taking even more traditionally r = 2, one gets

(2 + s/2)H2 + (1 + s/2 + t/2)O2 � 2H2O + sOH + tO. (28)

So when s = 0 and t = 0, one gets the traditional simple balance.


