AME 598t
Examination 1: Solution
Prof. J. M. Powers
3 March 2005

1. Consider the reaction kinetics law using the notation described in class

$$
\frac{d c_{i}}{d t}=\sum_{j=1}^{J} \nu_{i j} \underbrace{\underbrace{\alpha_{j} T^{\beta_{j}} \exp \left(\frac{-E_{j}}{\Re T}\right)}_{\equiv k_{j}(T)} \prod_{k=1}^{N} c_{k}^{\nu_{k j}^{\prime}}\left(1-\frac{1}{K_{c, j}} \prod_{k=1}^{N} c_{k}^{\nu_{k j}}\right)}_{=r_{j}}
$$

(a) Taking $K_{c, j}, j=1, \ldots, J$, as having known values, give a simple sufficient condition, or set of conditions, for the $i^{t h}$ species to be in equilibrium.
(b) Using appropriate notation as described in class, show that element mass fractions remain constant with time.

By inspection, a sufficient condition, which may not be necessary, for equilibrium is that each of the $J$ reactions be in equilibrium. This will exist when

$$
\begin{align*}
1-\frac{1}{K_{c, j}} \prod_{k=1}^{N} c_{k}^{\nu_{k j}} & =0  \tag{1}\\
1 & =\frac{1}{K_{c, j}} \prod_{k=1}^{N} c_{k}^{\nu_{k j}}  \tag{2}\\
K_{c, j} & =\frac{1}{K_{c, j}} \prod_{k=1}^{N} c_{k}^{\nu_{k j}} \tag{3}
\end{align*}
$$

A less likely, and less interesting, condition for equilibrium would be to have at least one of the $c_{k}=$ $0, k=1, \ldots, N$ when $\nu_{k j}^{\prime} \neq 0$, for each of the $J$ reactions. This simply implies that for each reaction, a necessarry reactant is totally absent, thus suppressing that reaction and inducing a state which is formally in equilibrium. Other sufficient conditions which are not very interesting include $\alpha_{j}=0, j=1, \ldots, J$; $\nu_{i j}=0, i=1, \ldots, N ; j=1, \ldots, J ; T=0$.
For the second part, one can begin with the equation for reaction kinetics and carry out a series of operations, as done in class, utilizing definitions described in class:

$$
\begin{align*}
\frac{d c_{i}}{d t} & =\sum_{j=1}^{J} \nu_{i j} r_{j}, \quad i=1, \ldots, N,  \tag{4}\\
\phi_{l i} \frac{d c_{i}}{d t} & =\phi_{l i} \sum_{j=1}^{J} \nu_{i j} r_{j}, \quad i=1, \ldots, N ; j=1, \ldots, L,  \tag{5}\\
\frac{d}{d t}\left(\phi_{l i} c_{i}\right) & =\sum_{j=1}^{J} \phi_{l i} \nu_{i j} r_{j}, \quad i=1, \ldots, N ; l=1, \ldots, L,  \tag{6}\\
\sum_{i=1}^{N} \frac{d}{d t}\left(\phi_{l i} c_{i}\right) & =\sum_{i=1}^{N} \sum_{j=1}^{J} \phi_{l i} \nu_{i j} r_{j}, \quad l=1, \ldots, L,  \tag{7}\\
\frac{d}{d t}\left(\sum_{i=1}^{N} \phi_{l i} c_{i}\right) & =\sum_{j=1}^{J} r_{j} \sum_{i=1}^{N} \underbrace{\phi_{l i} \nu_{i j}}_{=0}, \quad l=1, \ldots, L,  \tag{8}\\
\frac{d}{d t}\left(\sum_{i=1}^{N} \phi_{l i} c_{i}\right) & =0, \quad l=1, \ldots, L \tag{9}
\end{align*}
$$

The term $\sum_{i=1}^{N} \phi_{l i} c_{i}$ represents the number of moles of element $l$ per unit volume, by the following analysis

$$
\begin{equation*}
\sum_{i=1}^{N} \phi_{l i} c_{i}=\sum_{i=1}^{N} \frac{\text { moles element } l}{\text { moles species } i} \frac{\text { moles species } i}{\text { volume }}=\frac{\text { moles element } l}{\text { volume }} \equiv c_{l}^{e} \tag{10}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{d c_{l}^{e}}{d t}=0, \quad, l=1, \ldots, L \tag{11}
\end{equation*}
$$

Now, since the atomic mass of element $l, \mathcal{M}_{l}$, is a constant.

$$
\begin{align*}
\mathcal{M}_{l} \frac{d c_{l}^{e}}{d t} & =0, \quad, l=1, \ldots, L  \tag{12}\\
\frac{d}{d t}\left(\mathcal{M}_{l} c_{l}^{e}\right) & =0  \tag{13}\\
\frac{d}{d t} \rho_{l}^{e} & =0 \tag{14}
\end{align*}
$$

That is, the element mass density, $\rho_{l}^{e}$, of element $l$ is constant with time.
2. Species $A$ and $B$ have identical molecular masses and undergo an irreversible decomposition described by

$$
A+A \rightarrow B+A
$$

The reaction is isothermal and isochoric. At $t=0, c_{A}=c_{A o}$, and $c_{B}=0$.
(a) Write an appropriate simple ordinary differential equation for the change in concentration of species $A$ with respect to time. Define any appropriate constants.
(b) Find the equilbrium concentration of $A$.
(c) Find $c_{A}(t)$.

From kinetics of the irreversible reaciton, one gets

$$
\begin{equation*}
\frac{d c_{A}}{d t}=-k c_{A}^{2}, \quad c_{A}(0)=c_{A o} \tag{15}
\end{equation*}
$$

Separate variables to get

$$
\begin{equation*}
\frac{d c_{A}}{c_{A}^{2}}=-k d t \tag{16}
\end{equation*}
$$

Integrate to get

$$
\begin{equation*}
-\frac{1}{c_{A}}+\frac{1}{c_{A o}}=-k t \tag{17}
\end{equation*}
$$

Solve for $c_{A}$ :

$$
\begin{equation*}
c_{A}(t)=\frac{1}{\frac{1}{c_{A o}}+k t} \tag{18}
\end{equation*}
$$

As $t \rightarrow+\infty$, one finds

$$
\begin{equation*}
\lim _{t \rightarrow \infty} c_{A}(t)=0 \tag{19}
\end{equation*}
$$

3. Find the most general stoichiometric balance for the reaction

$$
\nu_{1}^{\prime} \mathrm{H}_{2}+\nu_{2}^{\prime} O_{2} \leftrightharpoons \nu_{3}^{\prime \prime} \mathrm{H}_{2} \mathrm{O}+\nu_{4}^{\prime \prime} \mathrm{OH}+\nu_{5}^{\prime} O
$$

Rearranging, one writes

$$
\begin{equation*}
\nu_{1} H_{2}+\nu_{2} O_{2}+\nu_{3} H_{2} O+\nu_{4} O H+\nu_{5} O=0 \tag{20}
\end{equation*}
$$

Taking $l=1$ to correspond to $H$ and $l=2$ to correspond to $O$, one solves the equation

$$
\begin{equation*}
\boldsymbol{\phi} \cdot \boldsymbol{\nu}=0 \tag{21}
\end{equation*}
$$

Here $\phi$ is the matrix of elements in each species and $\boldsymbol{\nu}$ is the vector of stoichiometric coefficients. Leaving out the details, one finds

$$
\left(\begin{array}{lllll}
2 & 0 & 2 & 1 & 0  \tag{22}\\
0 & 2 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3} \\
\nu_{4} \\
\nu_{5}
\end{array}\right)=\binom{0}{0}
$$

In row echelon form, this becomes

$$
\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 / 2 & 0  \tag{23}\\
0 & 1 & 1 / 2 & 1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3} \\
\nu_{4} \\
\nu_{5}
\end{array}\right)=\binom{0}{0}
$$

So, $\nu_{3}, \nu_{4}$, and $\nu_{5}$ are free variables. Take $\nu_{3}=r, \nu_{4}=s$, and $\nu_{5}=t$, so that

$$
\left(\begin{array}{ll}
1 & 0  \tag{24}\\
0 & 1
\end{array}\right)\binom{\nu_{1}}{\nu_{2}}=\binom{-r-s / 2}{-r / 2-s / 2-t / 2}
$$

So

$$
\left(\begin{array}{c}
\nu_{1}  \tag{25}\\
\nu_{2} \\
\nu_{3} \\
\nu_{4} \\
\nu_{5}
\end{array}\right)=\left(\begin{array}{c}
-r-s / 2 \\
-r / 2-s / 2-t / 2 \\
r \\
s \\
t
\end{array}\right)=r\left(\begin{array}{c}
-1 \\
-1 / 2 \\
1 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
0 \\
-1 / 2 \\
0 \\
0 \\
1
\end{array}\right)
$$

So the most general balance is given by

$$
\begin{equation*}
-(r+s / 2) H_{2}-(r / 2+s / 2+t / 2) O_{2}+r H_{2} O+s O H+t O=0 \tag{26}
\end{equation*}
$$

Slightly more traditionally, one might say

$$
\begin{equation*}
(r+s / 2) H_{2}+(r / 2+s / 2+t / 2) O_{2} \leftrightharpoons r H_{2} \mathrm{O}+s \mathrm{OH}+t \mathrm{O} \tag{27}
\end{equation*}
$$

Taking even more traditionally $r=2$, one gets

$$
\begin{equation*}
(2+s / 2) \mathrm{H}_{2}+(1+s / 2+t / 2) \mathrm{O}_{2} \leftrightharpoons 2 \mathrm{H}_{2} \mathrm{O}+s \mathrm{OH}+t \mathrm{O} \tag{28}
\end{equation*}
$$

So when $s=0$ and $t=0$, one gets the traditional simple balance.

