AME 60636
Examination 1
Prof. J. M. Powers
9 October 2006

1. Consider the three species O, O_{2} and O_{3}. Initially, there is 1 kmole of O at $T=6000 \mathrm{~K}$ and $P=1.01 \times 10^{6}$ dyne $/ \mathrm{cm}^{2}$. The system equilibrates isothermally and isobarically. The reference pressure is $P_{o}=1.01 \times 10^{6} \mathrm{dyne} / \mathrm{cm}^{2}$. At $T=6000 \mathrm{~K}$, one has the following thermodynamic data:

$$
\begin{aligned}
\bar{h}_{O}=0.370 \times 10^{13} \mathrm{erg} / \mathrm{mole}, & \bar{s}_{O}^{o}=0.224 \times 10^{10} \mathrm{erg} / \mathrm{mole} / \mathrm{K}, \\
\bar{h}_{O_{2}}=0.224 \times 10^{13} \mathrm{erg} / \mathrm{mole}, & \bar{s}_{O_{2}}^{o}=0.313 \times 10^{10} \mathrm{erg} / \mathrm{mole} / \mathrm{K}, \\
\bar{h}_{O_{3}}=0.471 \times 10^{13} \mathrm{erg} / \mathrm{mole}, & \bar{s}_{O_{3}}^{o}=0.401 \times 10^{10} \mathrm{erg} / \mathrm{mole} / \mathrm{K},
\end{aligned}
$$

(a) Find the equilibrium concentrations of O, O_{2}, and O_{3}.
(b) Imagine now that the reaction kinetics is governed by the single reaction

$$
O_{2}+M \leftrightharpoons O+O+M
$$

with collision frequency factor 1.85×10^{11}, temperature exponent $\beta=0.5$, and activation energy $E=95560.0 \mathrm{cal} / \mathrm{mole}$. The reaction rate has the typical units of mole $/ \mathrm{cm}^{3} / \mathrm{s}$. Write the appropriate differential-algebraic system that describes the evolution of O, O_{2} and O_{3}.
2. Develop an expression for how element concentration evolves for an ideal mixture of N ideal gases undergoing J reactions in an isobaric environment.

