AME 60636 Prof. J. M. Powers Homework 5 Due: Wednesday, 16 February 2022

- 1. Use chemkin to plot on a single graph $\overline{c}_{P,i}(T)$ for O, O₂, O₃, N, N₂, CH₄, Ar, and He for 298 $K < T < 5000 \ K$. Use the units of erg/mol/K for \overline{c}_p . Clearly label your plot. Produce a second related plot which gives $\overline{c}_{P,i}(T)/\overline{R}$ for the same range of temperature. Give a physical interpretation of your results.
- 2. Use chemkin to plot on a single graph $\overline{h}_i(T)$ for O, O₂, O₃, N, N₂, CH₄, Ar, and He for 298 K < T < 5000 K. Use the units of erg/mol for \overline{h}_i . Clearly label your plot. Give a physical interpretation of your results.
- 3. Consider the ozone reaction mechanism given by Powers, Singh, and Paolucci, 2002, Journal of Chemical Physics, Vol. 117, p. 1482-1496. At t = 0 s, we have mass fractions $Y_{\rm O} = 0.25$, $Y_{\rm O_2} = 0.25$, $Y_{\rm O_3} = 0.5$, T = 3000 K, and P = 100 kPa. Take the system to be isochoric and adiabatic.
 - (a) Write a system of four ordinary differential equations in four unknowns to describe the evolution of each species concentration as well as temperature. Include appropriate initial conditions.
 - (b) Find a physical equilibrium state.
 - (c) Perform a local linear analysis around the physical equilibrium, and identify the time scales of reaction.
 - (d) Write a fortran (or equivalent) code to integrate the full equations from the initial state to the equilibrium state. Include a copy of your codes as an appendix to your solution. Use the chemkin software package to calculate reaction rates and thermodynamic properties.
 - (e) Plot all species concentrations versus t.
 - (f) Plot temperature versus t.
 - (g) Plot $\overline{\rho}_{O}$ versus $\overline{\rho}_{O_3}$.
 - (h) Plot P(t).